Symplectic Geometry

Problem Set 4

- 1. Give examples of closed submanifolds of $T^4 = \mathbb{R}^4/\mathbb{Z}^4$ which are isotropic or coisotropic or Lagrangian or symplectic with respect to the standard symplectic structure $\omega_{\rm st} = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$ on T^4 ! Can you find some that are not tori?
- **2.** Let (M, ω) be a symplectic manifold and $S \subset M$ a closed oriented hypersurface.
 - a) Prove that $L := TS^{\perp_{\omega}}$ is a 1-dimensional subbundle of TS which inherits an orientation from S.
 - **b)** Prove that if $S = H^{-1}(c)$ for a regular value $c \in \mathbb{R}$ of a function $H : M \to \mathbb{R}$, then the restriction of X_H to S is a section of L.

Any one-dimensional subbundle of the tangent bundle of some manifold S is integrable, i.e. it is tangent to a family of 1-dimensional submanifolds of S. In the situation above, this family consists of the flow lines of X_H as in **b**). It is called the characteristic foliation of the hypersurface $S \subset (M, \omega)$.

 \mathbf{c}) Describe the subbundle L and the characteristic foliation for

$$S_{a,b} = \{(z_1, z_2) \mid \frac{|z_1|^2}{a^2} + \frac{|z_2|^2}{b^2} = 1\} \subset \mathbb{C}^2 \cong (\mathbb{R}^4, \omega_{\mathrm{st}}),$$

where a, b > 0 (Consider the three cases: $a = b, \frac{a}{b} \in \mathbb{Q} \setminus \{1\}$ and $\frac{a}{b} \notin \mathbb{Q}$).

d) Conclude that there is no symplectomorphism $\varphi: (\mathbb{R}^4, \omega_{\rm st}) \to (\mathbb{R}^4, \omega_{\rm st})$ which maps the standard sphere $S^{2n-1} = S_{1,1}$ onto $S_{a,b}$ for $(a,b) \neq (1,1)$.