Symplectic Geometry

Problem Set 3

1. Show that if $\gamma: M \rightarrow M$ is any symplectomorphism of (M, ω) and $H: M \rightarrow \mathbb{R}$ is smooth, then the Hamiltonian vector fields of the functions H and $H \circ \gamma^{-1}$ are related by

$$
X_{H \circ \gamma^{-1}}(\gamma(x))=\gamma_{*}\left(X_{H}(x)\right)
$$

where $\gamma_{*}: T M \rightarrow T M$ is the differential of γ.
2. Consider a Hamiltonian function $H: B^{2}(0,1) \rightarrow \mathbb{R}$ of the form $H=y \cdot \rho(r)$, where $\rho: B^{2}(0,1) \rightarrow[0,1]$ is a smooth function of the radius $r=\sqrt{x^{2}+y^{2}}$ which equals 1 for $0 \leq r \leq \frac{1}{2}$ and equals 0 for $\frac{3}{4} \leq r \leq 1$.
Describe the image of the ball $B^{2}\left(0, \frac{1}{100}\right)$ under the time- t-map φ_{t} of the Hamiltonian flow of H for $t=1, t=10^{2}$ and $t=10^{5}$ qualitatively!
3. (Hamiltonian diffeomorphisms)

Let $\varphi_{t}:(M, \omega) \rightarrow(M, \omega)$ be the family of diffeomorphisms determined by the time-dependent Hamiltonian function $H:[0,1] \times M \rightarrow \mathbb{R}$ via

$$
\dot{\varphi}_{t}=X_{H_{t}} \circ \varphi_{t}
$$

a) For each $t \in(0,1)$, write φ_{t} as time one map of a family of diffeomorphisms determined by a new Hamiltonian function built from H.
b) Find a time-dependent Hamiltonian function whose time one map is $\left(\varphi_{1}\right)^{-1}$.
c) Now suppose ψ is the time one map of a second family ψ_{t} determined by $F:[0,1] \times M \rightarrow \mathbb{R}$. Find a time-dependent Hamiltonian function with time one map $\psi \circ \varphi$.

In summary, you have shown that Hamiltonian diffeomorphisms form a group.
4. (Poisson structure of a symplectic manifold)

Let (M, ω) be a symplectic manifold. Given two functions $F, G \in C^{\infty}(M)$, define their Poisson bracket to be the new function

$$
\{F, G\}:=-\omega\left(X_{F}, X_{G}\right) .
$$

a) Prove that $\{.,\}:. C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ is a Lie bracket, i.e. it satisfies

$$
\begin{aligned}
\{G, F\} & =-\{F, G\} \\
\{F,\{G, H\}\} & =\{\{F, G\}, H\}+\{G,\{F, H\}\}
\end{aligned}
$$

b) Prove that $\{F G, H\}=F\{G, H\}+G\{F, H\}$.
c) Prove that $X_{\{F, G\}}=\left[X_{F}, X_{G}\right]$.

