Universität Hamburg Janko Latschev Andreas Gerstenberger

Symplectic Geometry

Problem Set 3

1. Show that if $\gamma: M \to M$ is any symplectomorphism of (M, ω) and $H: M \to \mathbb{R}$ is smooth, then the Hamiltonian vector fields of the functions H and $H \circ \gamma^{-1}$ are related by

$$X_{H \circ \gamma^{-1}}(\gamma(x)) = \gamma_*(X_H(x))$$

where $\gamma_*: TM \to TM$ is the differential of γ .

- 2. Consider a Hamiltonian function $H: B^2(0,1) \to \mathbb{R}$ of the form $H = y \cdot \rho(r)$, where $\rho: B^2(0,1) \to [0,1]$ is a smooth function of the radius $r = \sqrt{x^2 + y^2}$ which equals 1 for $0 \le r \le \frac{1}{2}$ and equals 0 for $\frac{3}{4} \le r \le 1$. Describe the image of the ball $B^2(0,\frac{1}{100})$ under the time-t-map φ_t of the Hamiltonian flow of H for $t=1,\,t=10^2$ and $t=10^5$ qualitatively!
- 3. (Hamiltonian diffeomorphisms) Let $\varphi_t : (M, \omega) \to (M, \omega)$ be the family of diffeomorphisms determined by the time-dependent Hamiltonian function $H : [0, 1] \times M \to \mathbb{R}$ via

$$\dot{\varphi}_t = X_{H_t} \circ \varphi_t.$$

- a) For each $t \in (0,1)$, write φ_t as time one map of a family of diffeomorphisms determined by a new Hamiltonian function built from H.
- **b)** Find a time-dependent Hamiltonian function whose time one map is $(\varphi_1)^{-1}$.
- c) Now suppose ψ is the time one map of a second family ψ_t determined by $F:[0,1]\times M\to\mathbb{R}$. Find a time-dependent Hamiltonian function with time one map $\psi\circ\varphi$.

In summary, you have shown that Hamiltonian diffeomorphisms form a group.

4. (Poisson structure of a symplectic manifold) Let (M, ω) be a symplectic manifold. Given two functions $F, G \in C^{\infty}(M)$, define their Poisson bracket to be the new function

$$\{F,G\} := -\omega(X_F, X_G).$$

a) Prove that $\{\,.\,,\,.\,\}:C^\infty(M)\times C^\infty(M)\to C^\infty(M)$ is a Lie bracket, i.e. it satisfies

$$\{G,F\} = -\{F,G\}$$

$$\{F,\{G,H\}\} = \{\{F,G\},H\} + \{G,\{F,H\}\}.$$

- **b)** Prove that $\{FG, H\} = F\{G, H\} + G\{F, H\}.$
- c) Prove that $X_{\{F,G\}} = [X_F, X_G]$.