Winter 2012/13

Symplectic Geometry

Problem Set 1

1. Recall that for a linear subspace W of a symplectic vector space (V, ω) we defined the ω -orthogonal complement as

$$W^{\perp_{\omega}} := \{ v \in V : \omega(w, v) = 0 \text{ for all } w \in W \}.$$

- **a)** Prove that $\dim W + \dim W^{\perp_{\omega}} = \dim V!$
- **b)** Prove that $(W^{\perp_{\omega}})^{\perp_{\omega}} = W!$
- c) Prove that W is a symplectic subspace if and only if $(W, \omega|_W)$ is a symplectic vector space if and only if $V = W \oplus W^{\perp_{\omega}}$!
- **2.** Prove that a linear subspace W of codimension 1 in a symplectic vector space (V, ω) is always coisotropic!
- **3.** Prove that $\text{Sp}(2, \mathbb{R})$ is diffeomorphic to the open solid torus $S^1 \times \mathbb{R}^2$!
- **4.** Give examples of elements of $SL(4, \mathbb{R})$ which are not elements of $Sp(4, \mathbb{R})$!
- 5. Prove that a 2-form ω on a 2n-dimensional real vector space V is symplectic if and only if

$$\omega^n = \omega \wedge \dots \wedge \omega \neq 0.$$