Solutions for Exercise 3 on Problem Set 5

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function and let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be given by $H(x, y):=f(x)$. Then the Hamiltonian vector field of H is defined by

$$
\omega_{\mathrm{st}}\left(X_{H}, \cdot\right)=-d H=-\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i}
$$

so

$$
X_{H}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial}{\partial y_{i}}
$$

It follows that the flow of X_{H} is given by

$$
\phi_{t}^{X_{H}}((x, y))=\left(x, y+t\left(\frac{\partial f}{\partial x_{1}}(x), \ldots, \frac{\partial f}{\partial x_{n}}(x)\right)\right) .
$$

In particular, if one identifies $\mathbb{R}^{2 n}$ with $T^{*} \mathbb{R}^{n}$ by mapping $(x, y) \in \mathbb{R}^{2 n}$ to $\sum_{i=1} y_{i} d x_{i} \in T_{x}^{*} \mathbb{R}^{n}$, then $\phi_{1}^{X_{H}}\left(\mathbb{R}^{n} \times\{0\}\right)$ is identified with the Graph of $d f$.
Now let $L_{0}, L_{1} \subseteq \mathbb{R}^{2 n}$ be Lagrangian submanifolds intersecting transversely in the point $p=(x, y) \in \mathbb{R}^{2 n}$. W.l.o.g. assume that $p=0=(0,0)$. By the Lagrangian neighbourhood theorem, there exist $\epsilon^{\prime}>0$ and a symplectomorphism $\varphi_{0}: B^{2 n}\left(0, \epsilon^{\prime}\right) \rightarrow U_{0} \subseteq \mathbb{R}^{2 n}$ to a neighbourhood of 0 s.t. $\varphi_{0}\left(L_{1}\right) \cap$ $B^{2 n}\left(0, \epsilon^{\prime}\right)=\{0\} \times \mathbb{R}^{n} \cap B^{2 n}\left(0, \epsilon^{\prime}\right)$. Because $T_{0} L_{0} \pitchfork T_{0} L_{1}$ there exists $0<\epsilon<\epsilon^{\prime}$ s. t. $\varphi_{0}\left(L_{0}\right) \cap B^{2 n}(0, \epsilon)=\left\{\left(x^{\prime}, \alpha\left(x^{\prime}\right)\right) \mid x^{\prime} \in B^{n}(0, \epsilon)\right\}$ for a function $\alpha: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Interpreting α as a section of $T^{*} \mathbb{R}^{n}$ over $B^{n}(0, \epsilon)$ (i.e. as a 1 -form) under the identification $\mathbb{R}^{2 n} \cong T^{*} \mathbb{R}^{n}$ as before, by an example from the lecture, the graph of α is Lagrangian if and only if α is closed. Since $B^{n}(0, \epsilon)$ is simply connected, by the Poincaré-Lemma there exists $f: B^{n}(0, \epsilon) \rightarrow \mathbb{R}$ with $\alpha=d f$. By what was shown above, for the Hamiltonian $H(x, y)=f(x)$ on $T^{*} B^{n}(0, \epsilon) \cong B^{n}(0, \epsilon) \times \mathbb{R}^{n}$, $\phi_{1}^{X_{H}}\left(B^{n}(0, \epsilon) \times\{0\}\right)=\operatorname{Graph}(\alpha)$, so $\left(\phi_{1}^{X_{H}}\right)^{-1} \operatorname{maps} \varphi_{0}\left(L_{0}\right) \cap B^{2 n}(0, \epsilon)$ to $B^{n}(0, \epsilon) \times\{0\}$. Furthermore, because $\alpha_{0}=d f_{0}=0,\left(X_{H}\right)_{(0, y)}=0$, so $\left(\phi_{1}^{X_{H}}\right)^{-1}$ leaves $\varphi_{0}\left(L_{1}\right)=\{0\} \times B^{n}(0, \epsilon)$ invariant. Hence $\varphi:=\left(\phi_{1}^{X_{H}}\right)^{-1} \circ \varphi_{0}$ has the desired properties.
For the final claim, define

$$
\begin{aligned}
f: \mathbb{R}^{n} \backslash\{0\} & \rightarrow \mathbb{R} \\
x & \mapsto \ln (\|x\|) .
\end{aligned}
$$

Then $d f=\frac{1}{\|x\|^{2}} \sum_{i=1}^{n} x_{i} d x_{i}$. Considered as a function $g: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n} \backslash\{0\}$, this maps $x \mapsto \frac{x}{\|x\|^{2}}$ and is its own inverse. Its graph Γ in $\left(\mathbb{R}^{n} \backslash\{0\}\right) \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ is diffeomorphic to $\mathbb{R}^{n} \backslash\{0\} \cong \mathbb{R} \times S^{n-1}$ and since $g^{-1}=g$, it can be considered either as the graph of g over $\left(\mathbb{R}^{n} \backslash\{0\}\right) \times\{0\}$ or over $\{0\} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$. Also, consider
Γ as a subset of $\mathbb{R}^{2 n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$. Pick a smooth cutoff function $\rho: \mathbb{R}^{n} \rightarrow[0,1]$ with $\rho(x)=1$ for $\|x\| \geq 1$ and $\rho(x)=0$ for $\|x\| \leq \frac{1}{2}$. Define the Hamiltonian $H_{1}: \mathbb{R}^{2 n} \rightarrow \mathbb{R},(x, y) \mapsto \rho(x) f(x)$. This is well defined on all of $\mathbb{R}^{2 n}$ by choice of ρ. The Hamiltonian flow of H_{1} then is the identity on $B^{n}\left(0, \frac{1}{2}\right) \times \mathbb{R}^{n}$ and as above, $\left(\phi_{1}^{X_{H_{1}}}\right)^{-1}$ maps $\Gamma \cap\left(\mathbb{R}^{n} \backslash B^{n}(0,1)\right) \times \mathbb{R}^{n}$ to $\mathbb{R}^{n} \times\{0\} \cap\left(\mathbb{R}^{n} \backslash B^{n}(0,1)\right) \times \mathbb{R}^{n}$. Analogously, define $H_{2}: \mathbb{R}^{2 n} \rightarrow \mathbb{R},(x, y) \mapsto \rho(y) f(y)$ with Hamiltonian flow $\phi_{t}^{X_{H_{2}}}$. The image L of Γ under $\left(\phi_{1}^{X_{H_{2}}}\right)^{-1} \circ\left(\phi_{1}^{X_{H_{1}}}\right)^{-1}$ (which is the time-1-map of a Hamiltonian flow by a previous exercise) then has the desired properties.

