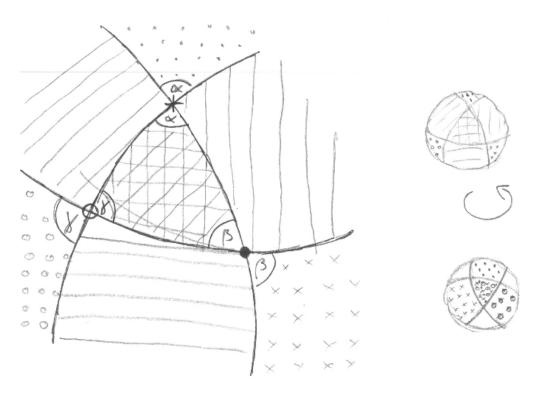
Höhere Analysis

Lösungsskizzen zur Weihnachtsserie

1. a) Sei $\alpha \in (0, 2\pi]$ der Winkel zwischen den beiden Halbkreisen, die den Sektor beranden und sei F_{α} seine Fläche. Aus der Rotationsinvarianz des Flächenelementes auf der Sphäre um die Achse die durch die beiden Spitzen des Sektors (und den Ursprung) läuft, folgt, dass $\frac{F_{\alpha}}{4\pi} = \frac{\alpha}{2\pi}$, wobei 4π die Fläche der Sphäre ist. Damit ist $F_{\alpha} = 2\alpha$.



 $\mathbf{b})$

c) Sind α, β, γ die Innenwinkel des Dreiecks, so wird die Sphäre von jeweils 2 Sektoren mit Winkel α , β und γ überdeckt, wobei das Dreieck jeweils von einem der Sektoren mit Winkel α , β und γ überdeckt wird, also dreifach, das am Ursprung gespiegelte Dreieck von der restlichen drei Sektoren. Sei F_{Δ} die Fläche des Dreiecks. Dann ist mit a) $4\pi = 2F_{\alpha} + 2F_{\beta} + 2F_{\gamma} - 4F_{\Delta} = 4(\alpha + \beta + \gamma) - 4F_{\Delta}$ oder

$$F_{\Delta} = \alpha + \beta + \gamma - \pi.$$

2. a) Es ist $d\alpha_1 = dx \wedge dy$. Um die Einschränkung von α_1 auf M zu verstehen, betrachten wir die Projektion $\operatorname{pr}_1: M \to \mathbb{R}^2 \times \{0\} \subset \mathbb{R}^4$ und stellen fest, dass $\operatorname{pr}_1(M) \subset S^1 \subset \mathbb{R}^2$. Bezeichnet man mit $\iota: S^1 \to \mathbb{R}^2$ die Einbettung, dann ist $\iota^*(dx \wedge dy) = 0$, als Zweiform auf einer eindimensionalen Untermannigfaltigkeit, und damit gilt auch die Einschränkung $d\alpha_1|_M = \operatorname{pr}_1^* \iota^*(dx \wedge dy) = 0$. Sei $\delta: [0, 2\pi] \to M$ die durch $\delta(t) := (\cos(t), \sin(t), 0, 0)$ gegebene geschlossene Kurve. Dann ist $\int_\delta \alpha_1 = \int_0^{2\pi} \cos(t) d\sin(t) = \int_0^{2\pi} \cos^2(t) dt > 0$. Wäre α_1 exakt, so müsste nach dem Satz von Stokes das Integral über eine geschlossene Kurve verschwinden. α_1 ist also nicht exakt.

 $d\alpha_2 = dx \wedge dy + dw \wedge dz = 0$, denn der erste Summand verschwindet nach dem Argument gerade eben und der zweite Summand verschwindet wie man mit demselben Argument angewandt auf die Projektion $\operatorname{pr}_2: M \to \{0\} \times \mathbb{R}^2 \subset \mathbb{R}^4$ zeigt.

Es ist $\int_{\delta} \alpha_2 = \int_{\delta} \alpha_1$, also α_2 nicht exakt nach demselben Argument wie eben.

 $d\alpha_3 = dy \wedge dz - dx \wedge dw \neq 0$, denn im Punkt $p = (1, 0, 1, 0) \in M$ ist der Tangentialraum von M gegeben durch $T_pM = \operatorname{span}\left\{\frac{\partial}{\partial y}\Big|_p, \frac{\partial}{\partial z}\Big|_p\right\}$ und

$$d\alpha_3\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) = 1.$$

Ganz analog zeigt man, dass auch α_4 nicht geschlossen ist.

Da das Differential jeder exakten Form verschwindet ($d^2 = 0$), sind insbesondere α_3 und α_4 also auch nicht exakt.

b) Die Einschränkungen der α_i auf C sind Einsformen auf einer eindimensionalen Untermannigfaltigkeit, insbesondere also automatisch geschlossen. Die Einschränkung von α_1 auf C ist nicht exakt, denn $\int_{\gamma} \alpha_1 = \int_{\delta} \alpha_1 > 0$.

Auf C gilt x = z und y = w. Es ist damit $\alpha_2|_C = x dy - \frac{1}{2}(x dy - y dx) = \frac{1}{2}(x dy + y dx) = d(\frac{1}{2}xy)$, $\alpha_2|_C$ ist also exakt.

Es ist $\gamma^*\alpha_3 = \sin(t) d\cos(t) - \cos(t) d\sin(t) = -\sin^2(t) dt - \cos^2 dt = -dt$, also $\int_{\gamma} \alpha_3 \neq 0$, und damit $\alpha_3|_C$ nicht exakt.

Wieder wegen x = z und y = w auf C ist $\alpha_4|_C = x dx + y dy = \frac{1}{2}d(x^2 + y^2) = 0$, denn $x^2 + y^2 = 1$ auf M, insbesondere also auf C.

c) Zwei geschlossene Einsformen α,β repräsentieren genau dann dieselbe Äquivalenzklasse $[\alpha]=[\beta]$ in $H^1_{\mathrm{dR}}(M)$ wenn $\alpha-\beta$ exakt ist. Insbesondere ist $[\alpha]=0$ genau dann, wenn α exakt ist. Für α_1 und α_2 aus a) gilt damit $[\alpha_1]\neq 0$ und $[\alpha_2]\neq 0$. Die beiden Äquivalenzklassen sind auch linear unabhängig, denn anderenfalls gäbe es ein $\lambda\neq 0$ sodass $[\alpha_1]-\lambda[\alpha_2]=[\alpha_1-\lambda\alpha_2]=0$. In diesem Fall muss $\alpha':=\alpha_1-\lambda\alpha_2=(1-\lambda)x\,dy+\frac{\lambda}{2}(z\,dw-w\,dz)=(1-\lambda)\alpha_1+\frac{\lambda}{2}(z\,dw-w\,dz)$ exakt sein. Ist δ die geschlossene Kurve aus a), so ist $\int_\delta\alpha'=(1-\lambda)\int_\delta\alpha_1$, was genau dann verschwindet, wenn $\lambda=1$, mithin $\alpha'=\frac{1}{2}(z\,dw-w\,dz)$. Ist $\delta':[0,2\pi]\to M$

die durch $\delta'(t) := (0, 0, \cos(t), \sin(t))$ definierte geschlossene Kurve, so ist $\delta'^*\alpha' = \frac{1}{2}(\cos(t) d\sin(t) - \sin(t) d\cos(t)) = \frac{1}{2}(\cos^2(t) dt + \sin^2(t) dt) = \frac{1}{2} dt$. Somit ist $\int_{\delta'} \alpha' = \pi \neq 0$ und α' kann nicht exakt sein. $[\alpha_1]$ und $[\alpha_2]$ sind also linear unabhängig und spannen einen zweidimensionalen Unterraum in $H^1_{\mathrm{dR}}(M)$ auf.

Bemerkung: Es gilt sogar dim $H^1_{dR}(M) = 2$, aber dies können wir mit den bisher erarbeiteten Methoden nicht beweisen.

3. a) Wegen diam(\emptyset) = 0 folgt $h_{m,\varepsilon}(\emptyset) = 0$ für alle $\varepsilon > 0$ und damit auch $h_m^*(\emptyset) = 0$

Ist $A \subseteq B$ und zu gegebenem $\varepsilon > 0$ $\{B_i\}_{i=1}^{\infty}$ eine Folge von Mengen mit $B \subseteq \bigcup_{i=1}^{\infty} B_i$ und diam $(B_i) < \varepsilon$, so ist auch $A \subseteq \bigcup_{i=1}^{\infty} B_i$ und somit

$$\left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(A_i))^m \mid A \subseteq \bigcup_{i=1}^{\infty} A_i, \operatorname{diam}(A_i) < \varepsilon \right\} \supseteq$$

$$\supseteq \left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(B_i))^m \mid B \subseteq \bigcup_{i=1}^{\infty} B_i, \operatorname{diam}(B_i) < \varepsilon \right\},$$

woraus $h_{m,\varepsilon}(A) \leq h_{m,\varepsilon}(B)$ folgt. Da $\varepsilon > 0$ beliebig war, folgt auch $h_m^*(A) \leq h_m^*(B)$.

Um das 3. Axiom für ein äußeres Maß nachzuprüfen, sei $\{A_i\}_{i=1}^{\infty}$ eine beliebige Folge von Teilmengen $A_i \subseteq X$ und definiere $A := \bigcup_{i=1}^{\infty} A_i$. Zu zeigen ist dann $h_m^*(A) \leq \sum_{i=1}^{\infty} h_m^*(A_i)$. Wegen $A_i \subseteq A$ für alle $i \in \mathbb{N}$, folgt aus dem zuvor gezeigten, dass aus $h_{m,\varepsilon}^*(A_i) = \infty$ für ein beliebiges $i \in \mathbb{N}$ und $\varepsilon > 0$ bereits $h_{m,\varepsilon}(A) = \infty$ und damit auch $h_m^*(A) = \infty$. Man kann also annehmen, dass $h_{m,\varepsilon}(A_i) < \infty$ für alle $i \in \mathbb{N}$ und $\varepsilon > 0$.

Sei nun $\varepsilon > 0$ beliebig. Wir werden zeigen dass für alle $\delta > 0$, $h_{m,\varepsilon}(A) \le \sum_{i=1}^{\infty} h_{m,\varepsilon}(A_i) + \delta$.

Daraus folgt die Behauptung, denn zuerst folgt daraus $h_{m,\varepsilon}(A) \leq \sum_{i=1}^{\infty} h_{m,\varepsilon}(A_i)$, woraus wiederum $h_m^*(A) \leq \sum_{i=1}^{\infty} h_m^*(A_i)$ folgt. Für die zweite Folgerung verwendet man die in c) gezeigte Behauptung dass für feste m und A $h_{m,\varepsilon}(A)$ monoton fallend ist in ε , das Bilden des Supremums über $\varepsilon > 0$ also der Limes $\varepsilon \to 0$ ist und alle Summanden in der rechten Seite der Ungleichung nichtnegativ sind.

Sei also $\delta > 0$ beliebig. Zu jedem $i \in \mathbb{N}$ existiert dann eine Folge von Mengen $\{A_i^j\}_{i=1}^{\infty}$ mit $\operatorname{diam}(A_i^j) < \varepsilon$, $A_i \subseteq \bigcup_{j=1}^{\infty} A_i^j$ und $\sum_{j=1}^{\infty} ((\operatorname{diam}(A_i^j))^m \le h_{m,\varepsilon}(A_i) + \frac{\delta}{2^i}$. Die (Doppel-)Folge $\{A_i^j\}_{i,j=1}^{\infty}$ erfüllt dann $\operatorname{diam}(A_i^j) < \varepsilon$ und

 $A \subseteq \bigcup_{i,j=1}^{\infty} A_i^j$, also

$$h_{m,\varepsilon}(A) \leq \sum_{i,j=1}^{\infty} (\operatorname{diam}(A_i^j))^m$$

$$= \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} (\operatorname{diam}(A_i^j))^m \right)$$

$$\leq \sum_{i=1}^{\infty} \left(h_{m,\varepsilon}(A_i) + \frac{\delta}{2^i} \right)$$

$$= \sum_{i=1}^{\infty} h_{m,\varepsilon}(A_i) + \delta.$$

(Alle auftretenden Reihen haben nichtnegative Summanden, man kann also beliebig umordnen und insbesondere sind die Doppelreihen wohldefiniert).

b) Zu $\varepsilon > 0$ beliebig wähle ein $N \in \mathbb{N}$ mit $\frac{2\sqrt{n}}{\varepsilon} \leq N < \frac{2\sqrt{n}}{\varepsilon} + 1$. $[0,1]^n$ wird von den N^n Würfeln mit Kantenlänge $\frac{\varepsilon}{2\sqrt{n}}$ der Form

$$W_{k_1,\dots,k_n} := \left[\frac{\varepsilon}{2\sqrt{n}}k_1, \frac{\varepsilon}{2\sqrt{n}}(k_1+1)\right] \times \dots \times \left[\frac{\varepsilon}{2\sqrt{n}}k_n, \frac{\varepsilon}{2\sqrt{n}}(k_n+1)\right]$$

mit $0 \le k_i \le N-1$, $i=1,\ldots,n$, überdeckt. Jeder dieser Würfel hat Durchmesser $\sqrt{n} \frac{\varepsilon}{2\sqrt{n}} = \frac{\varepsilon}{2} < \varepsilon$. Damit gilt

$$h_{n,\varepsilon}([0,1]^n) \le \sum_{k_1,\dots,k_n=0}^{N-1} (\operatorname{diam}(W_{k_1,\dots,k_n}))^n$$
$$= N^n \left(\frac{\varepsilon}{2}\right)^n \le \left(\left(\frac{2\sqrt{n}}{\varepsilon} + 1\right)\frac{\varepsilon}{2}\right)^n = \left(\sqrt{n} + \frac{\varepsilon}{2}\right)^n.$$

Ist $\varepsilon \leq \sqrt{n}$, so folgt hieraus $h_{n,\varepsilon}([0,1]^n) \leq \left(\frac{3\sqrt{n}}{2}\right)^n$. Da $h_{n,\varepsilon}([0,1]^n)$ monoton fallend in ε ist (vgl. Teil **c**), folgt dann auch $h_n^*([0,1]^n) \leq \left(\frac{3\sqrt{n}}{2}\right)^n$.

c) Als Vorbemerkung bemerkt man einmal, dass eine Isometrie des metrischen Raumes (X,d), d. h. eine bijektive Abbildungs $f:X\to X$ mit d(x,y)=d(f(x),f(y)) für alle $x,y\in X$, h_m^* erhält, d. h. $h_m^*(f(A))=h_m^*(A)$ für jede Teilmenge $A\subseteq X$. Dies folgt direkt aus der Definition, da eine Isometrie den Durchmesser erhält und eine 1-1 Beziehung zwischen Überdeckungen von A und f(A) herstellt. Insbesondere gilt dies also für Verschiebungen auf dem \mathbb{R}^n , d. h. ist $x\in \mathbb{R}^n$ und $A\subseteq \mathbb{R}^n$, so ist $h_m^*(A)=h_m^*(A+x)$, mit $A+x:=\{a+x\in \mathbb{R}^n\mid a\in A\}$.

Des weiteren zeigt man, dass auf dem \mathbb{R}^n die Beziehung $h_m^*(rA) = r^m h_m^*(A)$

für $r \in (0, \infty)$, $A \subseteq \mathbb{R}^n$ und $rA := \{ra \in \mathbb{R}^n \mid a \in A\}$. Dies zeigt man folgendermaßen:

Sei $\varepsilon > 0$. Ist $\{A_i\}_{i=1}^{\infty}$ eine Folge von Teilmengen mit $A \subseteq \bigcup_{i=1}^{\infty} A_i$ und $\operatorname{diam}(A_i) < \varepsilon$, so ist $rA \subseteq \bigcup_{i=1}^{\infty} rA_i$ und $\operatorname{diam}(rA_i) = r \operatorname{diam}(A_i) < r\varepsilon$. Sei nun $\delta > 0$ beliebig und wähle eine Folge $\{A_i\}_{i=1}^{\infty}$ wie eben so dass außerdem $\sum_{i=1}^{\infty} (\operatorname{diam}(A_i))^m \le h_{m,\varepsilon}(A) + \frac{\delta}{r^m}$. Dann folgt aus dem eben gesagten

$$h_{m,r\varepsilon}(rA) \le \sum_{i=1}^{\infty} (\operatorname{diam}(rA_i))^m$$
$$= r^m \sum_{i=1}^{\infty} (\operatorname{diam}(A_i))^m$$
$$\le r^m h_{m,\varepsilon}(A) + \delta$$

und somit, da $\delta > 0$ beliebig,

$$h_{m,r\varepsilon}(rA) \le r^m h_{m,\varepsilon}(A)$$

woraus wiederum folgt, dass

$$h_m^*(rA) \le r^m h_m^*(A).$$

Wendet man dies nun auf die Menge A ersetzt durch die Menge rA und auf r ersetzt durch $\frac{1}{r}$ an, so ergibt sich $h_m^*(A) = h_m^*(\frac{1}{r}(rA)) \leq \left(\frac{1}{r}\right)^m h_m^*(rA)$, also auch $r^m h_m^*(A) \leq h_m^*(rA)$. Zusammen also $h_m^*(rA) = r^m h_m^*(A)$. Daraus folgt unmittelbar, zusammen mit b), dass für $x \in \mathbb{R}^n$, $r \in (0, \infty)$ die Menge $x + [0, r]^n = x + r[0, 1]^n$ endliches n-dimensionales Hausdorff-Maß besitzt. Da jede beschränkte Menge in einer Menge von dieser Form enthalten ist, folgt aus dem Monotonie-Axiom für äußere Maße dass auch jede beschränkte Menge endliches n-dimensionales Hausdorff-Maß besitzt. Seien $0 < \varepsilon < \varepsilon'$. Aus der offensichtlichen Inklusion

$$\left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(A_i))^m \mid A \subseteq \bigcup_{i=1}^{\infty} A_i, \operatorname{diam}(A_i) < \varepsilon \right\} \subseteq$$

$$\subseteq \left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(A_i))^m \mid A \subseteq \bigcup_{i=1}^{\infty} A_i, \operatorname{diam}(A_i) < \varepsilon' \right\}$$

folgt $h_{m,\varepsilon}(A) \geq h_{m,\varepsilon'}(A)$, die Funktion $\varepsilon \mapsto h_{m,\varepsilon}(A)$ ist also monoton fallend. Somit ist $h_m^*(A) = \sup_{\varepsilon > 0} h_{m,\varepsilon}(A) = \lim_{\varepsilon \to 0} h_{m,\varepsilon}(A)$. Sei nun M > m. Dann ist

$$h_{M,\varepsilon}(A) = \inf \left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(A_i))^M \mid A \subseteq \bigcup_{i=1}^{\infty} A_i, \operatorname{diam}(A_i) < \infty \right\}$$

$$= \inf \left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(A_i))^m (\operatorname{diam}(A_i))^{M-m} \mid A \subseteq \bigcup_{i=1}^{\infty} A_i, \operatorname{diam}(A_i) < \infty \right\}$$

$$\leq \inf \left\{ \varepsilon^{M-m} \sum_{i=1}^{\infty} (\operatorname{diam}(A_i))^m \mid A \subseteq \bigcup_{i=1}^{\infty} A_i, \operatorname{diam}(A_i) < \infty \right\}$$

$$= \varepsilon^{M-m} h_{m,\varepsilon}(A)$$

$$< \varepsilon^{M-m} h_{\infty}^*(A).$$

Somit ist $h_M^*(A) = \lim_{\varepsilon \to 0} h_{M,\varepsilon}(A) \le \lim_{\varepsilon \to 0} \varepsilon^{M-m} h_m^*(A) = 0$, falls $h_m^*(A) < \infty$.

d) Sei $m := \frac{\ln 2}{\ln 3}$. Wir werden zeigen, dass $h_m^*(C) = 1$ gilt, woraus die Behauptung folgt.

Um $h_m^*(C) \leq 1$ einzusehen, erinnert man sich an die Konstruktion der Cantor-Menge. Man konstruiert C bekanntlich als Durchschnitt von abgeschlossenen Teilmengen $C_n \subset [0,1]$, wobei C_n gerade aus 2^n disjunkten abgeschlossenen Intervallen der Länge $\frac{1}{3^n}$ besteht. Zum Beispiel ist

$$C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1], \quad C_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1], \quad \text{usw}$$

Bezeichnet man die Teilintervalle von C_n mit $C_{n,k}$, $1 \leq k \leq 2^n$, so gilt offenbar

$$C \subset \bigcup_{k=1}^{2^n} C_{n,k}$$
 und $\sum_{k=1}^{2^n} \operatorname{diam}(C_{n,k})^m = 2^n \cdot \frac{1}{3^{n \frac{\ln 2}{\ln 3}}} = 1.$

Da wir zu jedem $\epsilon > 0$ ein $n \in \mathbb{N}$ mit $\frac{1}{3^n} < \epsilon$ finden, folgt $h_m^*(C) \leq 1$. Um $h_m^*(C) \geq 1$ zu beweisen, beginnen wir mit einer Vorüberlegung. Ist $A \subset \mathbb{R}$ eine beliebige Teilmenge von \mathbb{R} mit diam $(A) < \infty$, so gilt diam A = t - s, wobei

$$s = \inf A$$
 und $t = \sup A$.

Wegen der Stetigkeit der Funktion $x\mapsto x^m$ findet man zu jedem $\eta>0$ offene Umgebungen (s',t') von [s,t] (und damit von A), so dass

$$(t'-s')^m \le (t-s)^m + \eta.$$

Nun beginnen wir unseren eigentlichen Beweis¹. Ist $h_m^*(C) < 1$, so gibt es insbesondere eine Überdeckung $\bigcup A_i$ von C, so dass

$$\sum_{i>1} (\operatorname{diam} A_i)^m < 1. \tag{1}$$

Mit der Vorüberlegung können wir annehmen, dass die Mengen A_i offene Intervalle sind, ohne die Ungleichung zu verlieren (wähle für die Vergrößerung von A_i die Konstante $\eta_i = \frac{\eta}{2^i}$ mit η klein genug). Da C kompakt ist, genügen bereits endlich viele A_i , um C zu überdecken.

Sei nun eine Überdeckung $A_1 \cup \cdots \cup A_r$ von C mit einer minimalen Anzahl $r \in \mathbb{N}$ von offenen Intervallen gewählt, welche (1) erfüllt. Schneidet jedes der Intervalle A_i nur eine der beiden Hälften $C \cap [0, \frac{1}{3}]$ und $C \cap [\frac{2}{3}, 1]$ von C, so wird eine dieser Hälften von C durch r' < r der Mengen A_i mit $\sum_{i=1}^{r'} (\operatorname{diam} A_i)^m < \frac{1}{2}$ überdeckt. Skaliert man diese Mengen um den Faktor 3, so erhält man eine Überdeckung von C mit r' < r offenen Mengen und

$$\sum_{i=1}^{r'} (\operatorname{diam} 3A_i)^m = 3^m \sum_{i=1}^{r'} (\operatorname{diam} A_i)^m < 3^m \cdot \frac{1}{2} = 1.$$

Dies ist ein Widerspruch zur Wahl der Überdeckung $A_1 \cup \cdots \cup A_r$ mit einer minimalen Anzahl von Intervallen.

Also müssen $p \geq 1$ der r Intervalle A_i beide Hälften von C schneiden. Da man alle bis auf das am weitesten links startende und das am weitesten rechts aufhörende der p Intervalle weglassen könnte, muss $p \leq 2$ gelten. Da für $0 \leq s, t \leq \frac{1}{3}$ die Funktion

$$f(s,t) = (s + \frac{1}{3} + t)^m - s^m - t^m$$

nichtnegativ ist (denn $f(\frac{1}{3}, \frac{1}{3}) = 0$ und die partiellen Ableitungen sind negativ), können wir jedes dieser p Intervalle A_i durch die beiden Teilintervalle

$$\{x \in A_i \mid x \le \frac{1}{3}\}$$
 und $\{x \in A_i \mid x \ge \frac{2}{3}\},$

und erhalten wieder eine Überdeckung von C mit r+p Intervallen A_j' , so dass immer noch

$$\sum_{j=1}^{r+p} (\operatorname{diam} A_j')^m < 1.$$

Nun können wir wieder die neuen, nichtoffenen Intervalle durch etwas größere offene ersetzen, ohne die Ungleichung zu verletzen. In dieser offenen

¹vgl. S. 140/141 in: F. Morgan, Geometric measure theory, A beginner's guide, 2. Auflage, Academic Press, 1995

Überdeckung trifft wieder jedes Intervall nur eine der beiden Hälften von C, und der Skalierungstrick produziert eine Überdeckung durch $\frac{r+p}{2}$ offene Intervalle.

Da die ursprüngliche Überdeckung die minimale Anzahl Intervalle benutzte, muss nun aber $\frac{r+p}{2} \geq r$ gelten. Damit bleiben nur die Fälle r=p=1, was aber diam $A_1=1$ bedeutet und somit zum Widerspruch $\sum (\operatorname{diam} A_i)^m \geq 1$ führt, oder r=p=2, so dass diam $A_i \geq \frac{2}{3}$ gelten muss, was ebenfalls zum Widerspruch $\sum_i (\operatorname{diam} A_i)^m > 1$ führt. Insgesamt folgt also $h_m^*(C)=1$, so dass wir gezeigt haben, dass C die Hausdorff-Dimension $m=\frac{\ln 2}{\ln 3}$ besitzt.