Summer 2023

Universität Hamburg Janko Latschev Pavel Hájek

Symplectic Geometry

Problem Set 6

- 1. We consider the two Lagrangian submanifolds of $(\mathbb{R}^{2n}, \omega_{st})$ that were discussed in the lecture.
 - a) Consider the Lagrangian embedding

$$\varphi_1 : S^{n-1} \times S^1 \to \mathbb{C}^n \cong \mathbb{R}^{2n}$$
$$(\xi, e^{it}) \mapsto (1 + \epsilon e^{it}) \cdot \xi$$

and compute the Maslov index of the loop $\gamma_1 : \mathbb{R}/\mathbb{Z} \to \varphi_1(S^{n-1} \times S^1)$, given by $\gamma_1(t) = \varphi_1((1, 0, \dots, 0), e^{2\pi i t}).$

b) For $n \geq 2$, consider the Lagrangian submanifold $Q \subseteq \mathbb{R}^{2n}$ given as the image of the immersion

$$\varphi_2: S^{n-1} \times S^1 \to \mathbb{C}^n \cong \mathbb{R}^{2n}$$
$$(\xi, \lambda) \mapsto \lambda \cdot \xi,$$

and compute the Maslov index of the loop $\gamma_2 : \mathbb{R}/\mathbb{Z} \to Q$, given by $\gamma_2(t) =$ $\varphi_1((\cos(\pi t), \sin(\pi t), 0, \dots, 0), e^{i\pi t}).$

- **2.** Suppose $Q \subseteq (\mathbb{R}^{2n}, \omega_{st})$ is a Lagrangian submanifold.
 - **a)** Prove that if $u: D^2 \times [0,1] \to \mathbb{R}^{2n}$ is a family of maps connecting $u_0 = u(.,0)$ to $u_1(.,1)$ such that $u(x,t) \in Q$ for all $(x,t) \in S^1 \times [0,1]$, then

$$\int_{D^2} u_0^* \omega_{\rm st} = \int_{D^2} u_1^* \omega_{\rm st},$$

so that the symplectic area is indeed well-defined on $\pi_2(\mathbb{R}^{2n}, Q)$.

b) Prove that if $\varphi : (\mathbb{R}^{2n}, \omega_{st}) \to (\mathbb{R}^{2n}, \omega_{st})$ is a Hamiltonian diffeomorphism, then for any map $u : (D^2, S^1) \to (R^{2n}, Q)$ we have

$$\int_{D^2} (\varphi \circ u)^* \omega_{\rm st} = \int_{D^2} u^* \omega_{\rm st}.$$

So if $\varphi_* : \pi_2(\mathbb{R}^{2n}, Q) \to \pi_2(\mathbb{R}^{2n}, \varphi(Q))$ is the map induced by φ , we have $A = A \circ \varphi_* : \pi_2(\mathbb{R}^{2n}, Q) \to \mathbb{R}.$

Hint: Compute the derivative of $A(\varphi_t \circ u)$ *along a Hamiltonian isoptopy* φ_t .

Please turn!

- **3.** Prove that a contact manifold of dimension 2n + 1 with n odd (i.e. of dimension 4m 1 for some $m \in \mathbb{N}$) has a preferred orientation determined by the contact structure.
- 4. Consider the following three contact forms on \mathbb{R}^3 :
 - $\lambda_1 = dz ydx$, where (x, y, z) are cartesian coordinates,
 - $\lambda_2 = dz + xdy$, where (x, y, z) are cartesian coordinates,
 - $\lambda_3 = dz + r^2 d\varphi$, where (r, φ) are polar coordinates in \mathbb{R}^2 , and z is the third coordinate.
 - a) Picture these contact structures and their Reeb vector fields (these will be defined on Tuesday).
 - b) Prove that $(\mathbb{R}^3, \text{Ker } \lambda_i)$ are pairwise contactomorphic, i.e. there are diffeomorphisms $\Phi_{ij} : \mathbb{R}^3 \to \mathbb{R}^3$ and functions $\rho_{ij} : \mathbb{R}^3 \to \mathbb{R}$ such that $\Phi_{ij}^*(\lambda_i) = \rho_{ij}\lambda_j$.
 - c) Prove that for each $i \in \{1, 2, 3\}$ there is a contactomorphism of $(\mathbb{R}^3, \text{Ker } \lambda_i)$ with a bounded subset $B \subset (\mathbb{R}^3, \text{Ker } \lambda_i)$.
- 5. Let (M^{2n}, ω) be symplectic and let $W \subset M$ be a smooth hypersurface.
 - a) Prove that every point $x \in W$ has a neighborhood $U \subset M$ such that $W' = W \cap U$ is a hypersurface of contact type, i.e. there exists a vector field Y defined on a neighborhood $U' \subseteq U$ of W' such that Y is transverse to W' and $L_Y \omega = \omega$.
 - b) In fact, if U is sufficiently small, the normal bundle of $W' = W \cap U$ is trivial, and one can find such a vector field Y giving the normal bundle either of the two possible orientations.
- 6. Let (M^{2n}, ω) be symplectic and let $H : M \to \mathbb{R}$ be a function. Suppose $W := H^{-1}(0) \subset M$ is a smooth **closed** oriented hypersurface of contact type, i.e. there is a vector field Y defined near W and transverse to W such that $L_Y \omega = \omega$. As we have seen in class, this means that $\alpha := (\iota(Y)\omega)|_W$ is a contact form on W.
 - **a)** Assuming n > 1, prove that there is no closed 1-form β on W such that $\beta(X_H) > 0$ at all points of W. Hint: You may want to use Stokes' Theorem.
 - b) Use this to prove that, if n > 1, any other vector field Z also transverse to W and satisfying $L_Z \omega = \omega$ defines the same normal orientation of W as Y.
 - c) What happens for n = 1?