Symplectic Geometry

Problem Set 4

1. Prove that for every point $x \in B^{2 n}(0,1)$ there exists a Hamiltonian diffeomorphism $\varphi:\left(\mathbb{R}^{2 n}, \omega_{\mathrm{rs}}\right) \rightarrow\left(\mathbb{R}^{2 n}, \omega_{\mathrm{st}}\right)$ with $\operatorname{supp} \varphi \subseteq B^{2 n}(0,1)$ such that $\varphi(0)=x$.
2. Give examples of closed submanifolds of $T^{4}=\mathbb{R}^{4} / \mathbb{Z}^{4}$ which are isotropic or coisotropic or Lagrangian or symplectic with respect to the standard symplectic structure $\omega_{\text {st }}=d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}$ on T^{4} ! Can you find some that are not tori?
3. Let (M, ω) be a symplectic manifold and $S \subset M$ a closed oriented hypersurface.
a) Prove that

$$
L:=T S^{\perp_{\omega}}=\{v \in T S \mid \omega(v, w)=0 \text { for all } w \in T S \text { with } \pi(v)=\pi(w)\}
$$

is a 1-dimensional subbundle of $T S \xrightarrow{\pi} S$ which inherits an orientation from S.
b) Prove that if $S=H^{-1}(c)$ for a regular value $c \in \mathbb{R}$ of a function $H: M \rightarrow \mathbb{R}$, then the restriction of X_{H} to S is a section of L.

Any one-dimensional subbundle of the tangent bundle of a manifold S is integrable, i.e. it is tangent to a family of 1-dimensional submanifolds of S. In the situation above, this family consists of the flow lines of X_{H} as in b). It is called the characteristic foliation of the hypersurface $S \subset(M, \omega)$.
c) Describe the subbundle L and the characteristic foliation for

$$
S_{a, b}=\left\{\left(z_{1}, z_{2}\right) \left\lvert\, \frac{\left|z_{1}\right|^{2}}{a^{2}}+\frac{\left|z_{2}\right|^{2}}{b^{2}}=1\right.\right\} \subset \mathbb{C}^{2} \cong\left(\mathbb{R}^{4}, \omega_{\mathrm{st}}\right)
$$

where $a, b>0$ (Consider the three cases: $a=b, \frac{a}{b} \in \mathbb{Q} \backslash\{1\}$ and $\left.\frac{a}{b} \notin \mathbb{Q}\right)$.
d) Conclude that there is no symplectomorphism $\varphi:\left(\mathbb{R}^{4}, \omega_{\text {st }}\right) \rightarrow\left(\mathbb{R}^{4}, \omega_{\text {st }}\right)$ which maps the standard sphere $S^{2 n-1}=S_{1,1}$ onto $S_{a, b}$ for $(a, b) \neq(1,1)$.

