Summer 2023

Universität Hamburg Janko Latschev Pavel Hajek

Symplectic Geometry

Problem Set 3

1. A diffeomorphism $\varphi : Q \to Q'$ between manifolds lifts to a diffeomorphism $\Phi: T^*Q \to T^*Q'$ given by the formula

$$\Phi(x,\alpha) := \left(\varphi(x), \alpha \circ (\varphi_{*,x})^{-1}\right),\,$$

where $\varphi_{*,x}: T_x Q \to T_{\varphi(x)} Q'$ is the differential of φ at $x \in Q$.

- a) Prove that $\Phi^*(\lambda'_{can}) = \lambda_{can}$, and so Φ is a symplectomorphism from T^*Q to $T^*Q'!$
- b) Let $Y: Q \to TQ$ be a complete vector field, and denote by ψ_t its flow. Let $X: T^*Q \to T(T^*Q)$ be the vector field generating the corresponding flow Ψ_t on T^*Q . Prove that X is the Hamiltonian vector field associated to the function $H: T^*Q \to \mathbb{R}$ defined as

$$H(x,\alpha) := \alpha(Y(x)).$$

2. Show that if $\varphi : M \to M$ is any symplectomorphism of (M, ω) and $H : M \to \mathbb{R}$ is smooth, then the Hamiltonian vector fields of the functions H and $H \circ \varphi^{-1}$ are related by

$$X_{H \circ \varphi^{-1}}(\varphi(x)) = \varphi_*(X_H(x)),$$

where $\varphi_*: TM \to TM$ is the differential of φ .

3. (Hamiltonian diffeomorphisms)

Let $\varphi_t : (M, \omega) \to (M, \omega)$ be the family of diffeomorphisms determined by the time-dependent Hamiltonian function $H : [0, 1] \times M \to \mathbb{R}$ via

$$\dot{\varphi}_t = X_{H_t} \circ \varphi_t.$$

- a) For each $t \in (0, 1)$, write φ_t as time one map of a family of diffeomorphisms determined by a new Hamiltonian function built from H.
- b) Find a time-dependent Hamiltonian function whose time one map is $(\varphi_1)^{-1}$.

c) Now suppose ψ is the time one map of a second family ψ_t determined by $F: [0,1] \times M \to \mathbb{R}$. Find a time-dependent Hamiltonian function with time one map $\psi \circ \varphi$.

In summary, you have shown that Hamiltonian diffeomorphisms form a connected subgroup $\operatorname{Ham}(M, \omega) \subseteq \operatorname{Symp}_0(M, \omega)$ of the identity component of the group of symplectomorphisms.

- 4. (This exercise implements a suggestion by D. Salamon.) Consider $(\mathbb{R}^2, \omega_{st} = dx \wedge dy).$
 - a) Find explicit autonomous Hamiltonian functions $H_i : \mathbb{R}^2 \to \mathbb{R}$ such that the time-one-maps of the corresponding Hamiltonian flows φ_t^i are

$$\varphi_1^1\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}2x\\\frac{1}{2}y\end{pmatrix}$$
 and $\varphi_1^2\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-x\\-y\end{pmatrix}.$

b) Prove that $\psi = \varphi_2^1 \circ \varphi_1^1$ cannot be generated by an autonomous Hamiltonian function (and in fact is not the time-one-map of any flow!). Hint: Assume the contrary and first argue that 0 must be a fixpoint of the flow, then consider the linearization of the flow at this fixpoint to obtain a contradiction.

This clearly illustrates the need for time-dependent Hamiltonians in the definition of $\operatorname{Ham}(M, \omega)$. In fact, general Hamiltonian diffeomorphisms often behave very differently from those generated by an autonomous function - for example they could have dense orbits, which clearly cannot happen in the autonomous case (why?).

- 5. The goal of this exercise is to gain a little bit of geometric intuition about compactly supported Hamiltonian diffeomorphisms by looking at a specific case. Consider a Hamiltonian function $H : B^2(0, 10) \to \mathbb{R}$ of the form $H(x, y) = y \cdot \rho(r^2)$, where $r^2 = x^2 + y^2$ and $\rho : [0, \infty) \to [0, 1]$ is a smooth function with the following properties:
 - $\rho(t) \equiv 1 \text{ for } 0 \le t \le 5, \quad \rho(t) \equiv 0 \text{ for } 8 \le t, \quad \text{and} \quad \rho'(t) \le 0 \text{ for all } t \in [0, \infty).$
 - a) Compute the Hamiltonian vector field X_H with respect to the symplectic form $\omega = dx \wedge dy$ in terms of x, y, ρ and ρ' , and make a rough sketch of it.
 - b) Give a qualitative description (e.g. give a rough sketch) of the image of the ball $B^2(0, 1)$ under the time-t-map φ_t of the Hamiltonian flow of H for t = 1, t = 10 and $t = 10^5$!