Summer 2023

Universität Hamburg Janko Latschev Pavel Hajek

Symplectic Geometry

Problem Set 2

1. Let $W_0 \subseteq (\mathbb{R}^{2n}, \omega_{st})$ be a Lagrangian subspace, and set $W_1 := JW_0 \subseteq \mathbb{R}^{2n}$. Let (e_1, \ldots, e_n) be an orthonormal (with respect to the standard euclidean inner product g_{st}) basis for W_0 , and set $f_k = Je_k$, so that (f_1, \ldots, f_k) is an orthonormal basis for W_1 and $(e_1, \ldots, e_n, f_1, \ldots, f_n)$ is a symplectic basis for \mathbb{R}^{2n} .

Prove that the graph of a linear map $B: W_0 \to W_1$ is a Lagrangian subspace of \mathbb{R}^{2n} if and only if the matrix of B with respect to the basis (e_1, \ldots, e_n) of W_0 and (f_1, \ldots, f_n) of W_1 is symmetric.

- **2.** As in the lecture we denote by $\mathcal{L}(n)$ the space of Lagrangian subspaces of $(\mathbb{R}^{2n}, \omega_{st})$
 - a) Prove that the loop $\Psi : \mathbb{R}/\mathbb{Z} \to \operatorname{Sp}(4,\mathbb{R})$ defined in the lecture by setting

$$\Psi(t) := e^{\pi i t} \begin{pmatrix} \cos(\pi t) & -\sin(\pi t) \\ \sin(\pi t) & \cos(\pi t) \end{pmatrix} \in U(2) \subset \operatorname{Sp}(4, \mathbb{R})$$

has Maslov index 1.

b) Prove that with $\Lambda_0(t) = e^{\pi i t} \cdot \mathbb{R} \in \mathcal{L}(1)$ and $\Lambda(t) := \Lambda_0(t) \oplus \Lambda_0(t) \in \mathcal{L}(2)$ we have

 $\Lambda(t) = \Psi(t) \cdot (\mathbb{R}^2 \oplus \{0\}).$

As discussed in the lecture, this proves that $\mu(\Lambda_0) = 1$.

- c) Prove that the Maslov index for Lagrangian subspaces is characterized uniquely by the (homotopy), (product), (direct sum) and (zero) axioms.
- d) Prove that the Maslov index for Lagrangian loops has the concatenation property: If Λ_1 and Λ_2 are two loops in $\mathcal{L}(n)$ with $\Lambda_1(0) = \Lambda_2(0)$, then

$$\mu(\Lambda_1 \star \Lambda_2) = \mu(\Lambda_1) + \mu(\Lambda_2).$$

- e) The space $\mathcal{L}^{\text{or}}(n)$ of oriented Lagrangian subspaces of $(\mathbb{R}^{2n}, \omega_{\text{st}})$ is a double cover (two-sheeted covering space) of $\mathcal{L}(n)$. It can be identified with U(n)/SO(n). Prove that if $p : \mathcal{L}^{\text{or}}(n) \to \mathcal{L}(n)$ is the covering projection map, then $p_*(\pi_1(\mathcal{L}^{\text{or}}(n)) = 2\mathbb{Z} \subset \mathbb{Z} \cong \pi_1(\mathcal{L}(n))$. In other words: the Maslov index of a loop of oriented Lagrangian subspaces is even.
- **3.** a) Prove that the linear map $A : \mathbb{R}^2 \to \mathbb{R}^2$ associated to the matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

satisfies $A^2 = -1$ if and only if d = -a and ad - bc = 1.

- **b)** Deduce that the subset $\mathcal{J} \subseteq \mathrm{SL}(2,\mathbb{R}) \cong \mathrm{Sp}(2,\mathbb{R})$ of all such maps has two connected components, one containing J_{st} and the other containing $-J_{\mathrm{st}}$.
- c) What is the condition on a map A as above to be tamed by ω_{st} ? To be compatible with ω_{st} ?
- 4. Let g be any euclidean inner product on \mathbb{R}^{2n} .
 - a) Prove that there exists a basis $(e_1, \ldots, e_n, f_1, \ldots, f_n)$ which is both symplectic with respect to ω_{st} and g-orthogonal. Moreover, one can require $g(e_k, e_k) = g(f_k, f_k)$ (but this need not be equal to 1). Hint: Write $g(u, v) = \omega(u, Av)$ for a linear map $A : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$. Prove that $B = iA \in \text{Mat}(2n, \mathbb{C})$ is hermitian (i.e. satisfies $\overline{B}^T = B$) and so it has purely imaginary eigenvalues and can be diagonalized. Now build the required basis from real and imaginary parts of suitable eigenvectors of B.

In a finite dimensional real vector space V, any euclidean inner product g determines an open *ellipsoid* via

$$E_g = \{ v \in V : g(v, v) < 1 \}.$$

b) Prove that for any ellipsoid $E \subset (\mathbb{R}^{2n}, \omega_{st})$ there exists a symplectic linear map $\Phi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ such that $\Phi(E)$ is a standard symplectic ellipsoid, meaning it is of the form

$$E(r_1, \dots, r_n) := \{ (z_1, \dots, z_n) \in \mathbb{C}^n \cong \mathbb{R}^{2n} : \sum_j \frac{|z_j|^2}{r_j^2} < 1 \}.$$

Here the numbers $0 < r_1 \leq r_2 \leq \cdots \leq r_n$ are uniquely determined by E.

c) What does this mean geometrically for n = 1?