Symplectic Geometry

Problem Set 1

1. Prove that a 2 -form ω on a $2 n$-dimensional real vector space V is symplectic if and only if

$$
\omega^{n}=\underbrace{\omega \wedge \cdots \wedge \omega}_{n \text { times }} \neq 0 .
$$

2. Recall that for a linear subspace W of a symplectic vector space (V, ω) we defined the ω-orthogonal complement as

$$
W^{\perp}:=\{v \in V: \omega(u, v)=0 \text { for all } u \in W\}
$$

a) Prove that $\operatorname{dim} W+\operatorname{dim} W^{\perp_{\omega}}=\operatorname{dim} V$!
b) Prove that W is a symplectic subspace if and only if $\left(W,\left.\omega\right|_{W}\right)$ is a symplectic vector space if and only if $V=W \oplus W^{\perp_{\omega}}$!
c) More generally, prove that the quotient space $W /\left(W \cap W^{\perp}\right)$ always inherits a symplectic structure from V.
3. Prove that a linear subspace W of codimension 1 in a symplectic vector space (V, ω) is always coisotropic!
4. Prove that the standard euclidean scalar product $g(., .)_{\text {st }}$, the standard complex structure $J_{\text {st }}$ and the standard symplectic form $\omega_{\text {st }}$ on $\mathbb{R}^{2 n}$ are related by

$$
g(u, v)_{\mathrm{st}}=\omega_{\mathrm{st}}\left(u, J_{\mathrm{st}} v\right)
$$

5. Prove that given two Lagrangian subspaces $L_{0}, L_{1} \subset(V, \omega)$ of a symplectic vector space such that $L_{0} \cap L_{1}=\{0\}$ (i.e. L_{0} and L_{1} are transverse), there exists a symplectic basis $\left(e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right)$ for V such that $L_{0}=\operatorname{span}\left(e_{1}, \ldots, e_{n}\right)$ and $L_{1}=\operatorname{span}\left(f_{1}, \ldots, f_{n}\right)$.
6. Give examples of elements of $\operatorname{SL}(4, \mathbb{R})$ which are not elements of $\operatorname{Sp}(4, \mathbb{R})$!
7. We have seen in class that the eigenvalues of a symplectic matrix come in quadrupels $\lambda, \lambda^{-1}, \bar{\lambda}$ and $\bar{\lambda}^{-1}$. Since a 2×2 symplectic matrix has at most two eigenvalues, these four values cannot all be distinct in this case. Prove that for $A \in \operatorname{Sp}(2, \mathbb{R})$

- $\operatorname{Tr} A>2$ if and only if both eigenvalues are real, positive and different from 1,
- $-2 \leq \operatorname{Tr} A \leq 2$ if and only if both eigenvalues are on the unit circle, and
- $\operatorname{Tr} A<-2$ if and only if both eigenvalues are real, negative and different from -1 .

8. Prove that $\operatorname{Sp}(2, \mathbb{R})$ is diffeomorphic to the open solid torus $S^{1} \times \mathbb{R}^{2}$!
