DIFFERENTIALGEOMETRIE

Übungsaufgaben 2

- 1. Sei M eine 0-dimensionale glatte Mannigfaltigkeit im Sinne der Vorlesung. Zeigen Sie:
 - a) M hat die diskrete Topologie, d.h. jede Teilmenge von M ist offen.
 - **b)** Die Menge M ist abzählbar.
- 2. Für $c \in \mathbb{R}$ betrachten wir die Teilmenge

$$H_c^n := \{x \in \mathbb{R}^{n+1} \mid x_1^2 + \dots + x_n^2 - x_{n+1}^2 = c\} \subset \mathbb{R}^{n+1}.$$

- a) Skizzieren Sie H_1^2 , H_0^2 und H_{-1}^2 !
- b) Geben Sie einen glatten Atlas auf H_1^2 an! Zeigen sie auch, dass die Kartenwechsel glatte Abbildungen sind!
- c) Zeigen Sie, dass H_0^n für n > 0 keine glatte Mannigfaltigkeit ist!
- 3. Sei \mathcal{A}_1 die übliche differenzierbare Struktur auf \mathbb{R} , d.h. die Äquivalenzklasse des Atlasses {(id : $\mathbb{R} \to \mathbb{R}, \mathbb{R}$)}, und sei \mathcal{A}_2 die differenzierbare Struktur, welche durch den Atlas {($\varphi(x) = x^3, \mathbb{R}$)} induziert wird.
 - a) Zeigen Sie, dass diese beiden differenzierbaren Strukturen auf R verschieden sind!
 - **b)** Sind diese beiden differenzierbaren Strukturen auf \mathbb{R} diffeomorph?
- 4. Eine topologischer Raum X heißt zusammenhängend, falls er sich nicht in zwei offene, nichtleere und disjunkte Teilmengen zerlegen lässt, d.h. sind U und V offene, nichtleere Teilmengen von X und gilt $X = U \cup V$, so folgt $U \cap V \neq \emptyset$. Er heißt wegzusammenhängend, falls zu je zwei Punkte $x, y \in X$ eine stetige Abbildung $c : [0, 1] \to X$ mit c(0) = x und c(1) = y existiert.
 - a) Zeigen Sie, dass das Bild eines zusammenhängenden topologischen Raumes unter einer stetigen Abbildung wieder zusammenhängend ist!
 - b) Zeigen Sie, dass eine zusammenhängende glatte Mannigfaltigkeit wegzusammenhängend ist!
 - c) Zeigen Sie, dass es in einer zusammenhängenden glatten Mannigfaltigkeit sogar zu je zwei Punkten $x,y\in M$ ein $\epsilon>0$ und eine glatte Abbildung $c:(-\epsilon,1+\epsilon)\to M$ mit c(0)=x und c(1)=y gibt!