DIFFERENTIALGEOMETRIE

Übungsaufgaben 11

- 1. Sei (M,g) eine Riemannsche Mannigfaltigkeit, und seien (x_1,\ldots,x_n) Koordinaten auf einer offenen Teilmenge $U\subset M$, so dass die Vektorfelder $\frac{\partial}{\partial x_i}$ in jedem Punkt von U eine Orthonormalbasis des Tangentialraumes bezüglich g bilden. Zeigen Sie, dass dann die Krümmung von g auf U verschwindet!
- 2. Sei I ein offenes Intervall und $c: I \to \mathbb{R}^2$, c(t) = (r(t), z(t)) eine glatte Kurve mit r(t) > 0 und $\|\dot{c}(t)\| = 1$ auf ganz I. Wir betrachten c als eine Kurve in der xz-Ebene in \mathbb{R}^3 und definieren die durch c bestimmte Rotationsfläche als das Bild der Abbildung $F: \mathbb{R} \times I \to \mathbb{R}^3$,

$$F(\theta, t) := (r(t)\cos\theta, r(t)\sin\theta, z(t)).$$

- a) Zeigen Sie, dass F eine Immersion ist!
- b) Sei $g := F^*g_{\mathbb{R}^3}$ die induzierte Metrik auf $\mathbb{R} \times I$. Zeigen Sie, dass deren Komponenten bezüglich der Standardkoordinaten (θ, t) folgende Form haben:

$$g_{tt}(\theta, t) = 1$$
, $g_{\theta\theta}(\theta, t) = r(t)^2$, $g_{\theta t}(\theta, t) = g_{t\theta}(\theta, t) = 0$.

- c) Bestimmen Sie die Christoffel-Symbole der Metrik g auf $\mathbb{R} \times I$ in den Koordinaten (θ, t) !
- d) Zeigen Sie, dass eine Kurve $\gamma:(a,b)\to\mathbb{R}\times I$ genau dann eine Geodätische bezüglich der Metrik q ist, falls die Differentialgleichungen

$$\ddot{\gamma}_1(s) = -2 \frac{r'(\gamma_2(s))}{r(\gamma_2(s))} \dot{\gamma}_1(s) \dot{\gamma}_2(s)$$
 und $\ddot{\gamma}_2(s) = r(\gamma_2(s)) r'(\gamma_2(s)) \dot{\gamma}_1(s)^2$

gelten!

- e) Folgern Sie daraus, dass für alle $\theta_0, \alpha, \beta \in \mathbb{R}$ die Kurve $\gamma(s) := (\theta_0, \alpha s + \beta)$ eine Geodätische in $\mathbb{R} \times I$ ist! Auf welchem Intervall ist diese Kurve definiert?
- f) Für welche Werte t_0 ist die Kurve $\gamma: \mathbb{R} \to \mathbb{R} \times I$, $\gamma(s) = (s, t_0)$ eine Geodätische?
- g) Zeigen Sie, dass die Schnittkrümmung der Metrik g auf $\mathbb{R} \times I$ sich als

$$K(\theta, t) = -\frac{r''(t)}{r(t)}$$

berechnen lässt!

3. Sei (M,g) eine pseudo-Riemannsche Mannigfaltigkeit mit Krümmungstensor R. Die $Riccikrümmung\ Ric_p: T_pM \times T_pM \to \mathbb{R}$ ist definiert als

$$Ric_p(u,v) := \operatorname{tr}_g(w \mapsto R(w,u)v) = \sum_{i=1}^n \epsilon_i g(R(e_i,u)v,e_i),$$

wobei (e_1, \ldots, e_n) eine Orthonormalbasis von T_pM und $\epsilon_i = g(e_i, e_i) \in \{\pm 1\}$ ist. Die Skalar-krümmung $s \in C^{\infty}(M)$ ist definiert als

$$s(p) := \operatorname{tr}_g Ric_p = \sum_{i=1}^n \epsilon_i Ric_p(e_i, e_i).$$

Zeigen Sie:

- a) Die Riccikrümmung ist eine symmetrische Bilinearform.
- **b)** Für $n \geq 3, \, \lambda \in \mathbb{R}$ und $k = \frac{2}{2-n}\lambda$ gilt genau dann $Ric = k \cdot g$, falls

$$Ric - \frac{1}{2}s \cdot g - \lambda \cdot g = 0.$$

Bemerkung: Metriken, welche die Gleichung $Ric = k \cdot g$ erfüllen, nennt man in der mathematischen Literatur Einsteinmetriken.