Further dense properties of the space of circle diffeomorphisms with a Liouville rotation number

Philipp Kunde
Department of Mathematics, University of Hamburg, Hamburg, Germany

April 6, 2017

Abstract

In continuation of Matsumoto's paper [Ma12] we show that various subspaces are C^{∞} _ dense in the space of orientation-preserving C^{∞}-diffeomorphisms of the circle with rotation number α, where $\alpha \in \mathbb{S}^{1}$ is any prescribed Liouville number. In particular, for every odometer \mathcal{O} of product type we prove the denseness of the subspace of diffeomorphisms which are orbit-equivalent to \mathcal{O}.

Key words: circle diffeomorphisms, orbit equivalence, rotation number, approximation by conjugation-method, odometer

AMS subject classification: 37 E 10 (primary), 37A20, 37C05, 37E45 (secondary).

Introduction

Let F be the group of orientation-preserving C^{∞}-diffeomorphisms of the circle. Furthermore, for $\alpha \in \mathbb{S}^{1}$ we consider the subspace F_{α} of F consisting of all the C^{∞}-diffeomorphisms of the circle with rotation number α. If α is irrational, for any $f \in F_{\alpha}$ there is a unique orientationpreserving homeomorphism H_{f} of the circle such that $f=H_{f} \circ R_{\alpha} \circ H_{f}^{-1}$ and $H_{f}(0)=0$, where R_{α} denotes the rotation by α on \mathbb{S}^{1}. J.-C. Yoccoz proved that the subspace O_{α} of F_{α} of all the diffeomorphisms, for which H_{f} are C^{∞}-diffeomorphisms, is C^{∞}-dense in F_{α} (Yo95]).
In the following, let α be a Liouville number. By [He79], chapter IV, section 6, the unique f-invariant probability measure μ_{f} is given by $\mu_{f}=\left(H_{f}\right)_{*} m$, where m is the Lebesgue measure on \mathbb{S}^{1}, and μ_{f} is either equivalent to m (then H_{f} maps any Lebesgue null set to a null set and H_{f} is called absolutely continuous) or singular to m (then H_{f} maps some Lebesgue null set to a conull set and H_{f} is called singular). In [Ma12] S. Matsumoto considered several subspaces of F_{α} according to the regularity of H_{f} :

- $G_{0, \text { sing }}: H_{f}$ is singular and is not d-Hölder for any $d \in(0,1)$.
- $G_{0, \mathrm{ac}}: H_{f}$ is absolutely continuous and is not d-Hölder for any $d \in(0,1)$.
- For $\beta \in(0,1) G_{\beta}: H_{f}$ is bi- β-Hölder, but is not d-Hölder for any $d \in(\beta, 1)$.
- $G_{1, \text { sing }}: H_{f}$ is singular and is bi- d-Hölder for any $d \in(0,1)$.
- $G_{1, \text { ac }}: H_{f}$ is absolutely continuous and is d-Hölder for any $d \in(0,1)$, but is not bi-Lipschitz.
- For $k \in \mathbb{N} G_{k}: H_{f}$ is a C^{k}-diffeomorphism, but is not a C^{k+1}-diffeomorphism.

Then Matsumoto proved that $G_{0, \text { sing }}$ is C^{∞}-dense in F_{α} in Ma13. In Ma12, Theorem 1, the C^{∞}-denseness of all the other spaces is shown. In this paper we examine the subsequent subspaces of G_{β} :

Theorem 1. For any Liouville number α and for any $\beta \in(0,1)$ the subspaces

- $G_{\beta, \text { sing }}: H_{f}$ is singular, bi- β-Hölder, but is not d-Hölder for any $d \in(\beta, 1)$
- $G_{\beta, a c}: H_{f}$ is absolutely continuous, bi- β-Hölder, but is not d-Hölder for any $d \in(\beta, 1)$
are C^{∞}-dense in F_{α}.
This statement was conjectured in Ma12, Remark 1.6, but not pursued.
In the second part of this paper we study odometers of product type.
Definition 1. Let $\left(d_{k}\right)_{k \in \mathbb{N}}$ be a sequence of positive integers. We consider the compact metrisable space $X=\prod_{k \in \mathbb{N}}\left\{0, \ldots, d_{k}-1\right\}$ with Borel algebra \mathcal{B} on it. For $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in X$ we set $r(x):=\inf \left\{k: x_{k}<d_{k}-1\right\}$. Hereby, we define the transformation $T: X \rightarrow X, T x=\left(y_{k}\right)_{k \in \mathbb{N}}$, where

$$
y_{k}= \begin{cases}0 & \text { for } k<r(x) \\ x_{k}+1 & \text { for } k=r(x) \\ x_{k} & \text { for } k>r(x)\end{cases}
$$

- Let μ be a continuous measure on (X, \mathcal{B}) which is ergodic and quasi-invariant with respect to T. Then (X, \mathcal{B}, μ, T) is called a measured odometer and we will denote it by $\mathcal{O}\left(\left(d_{k}\right)_{k \in \mathbb{N}}, \mu\right)$.
- Let $\mathcal{O}\left(\left(d_{k}\right)_{k \in \mathbb{N}}\right)$ be a measured odometer and assume that for every $k \in \mathbb{N} \nu_{k}$ is a probability measure on $\left\{0,1, \ldots, d_{k}-1\right\}$ such that the probability of every digit is positive and the product measure $\nu=\prod_{k \in \mathbb{N}} \nu_{k}$ is non-atomic on $\mathcal{O}\left(\left(d_{k}\right)_{k \in \mathbb{N}}\right)$. Then ν is ergodic and quasiinvariant under T. We call $\mathcal{O}\left(\left(d_{k}\right)_{k \in \mathbb{N}}, \nu\right)$ an odometer of product type and denote it also by $\mathcal{O}\left(\left(d_{k}\right)_{k \in \mathbb{N}},\left\{\nu_{k}\right\}\right)$. We also use the notation $\nu_{k}^{(i)}=\nu_{k}(\{i-1\})$.
Moreover, we recall the notion of orbit equivalence (also referred to as "weak-equivalence" or "Dye-equivalence"): The non-singular systems ($X_{1}, \mathcal{B}_{1}, \mu_{1}, T_{1}$) and ($X_{2}, \mathcal{B}_{2}, \mu_{2}, T_{2}$) are orbitequivalent if there is an isomorphism ψ of $\left(X_{1}, \mathcal{B}_{1}, \mu_{1}\right)$ onto $\left(X_{2}, \mathcal{B}_{2}, \mu_{2}\right)$ such that $\psi\left(\left\{T_{1}^{i} x\right\}_{i \in \mathbb{Z}}\right)=$ $\left\{T_{2}^{i} \psi(x)\right\}_{i \in \mathbb{Z}}$ almost everywhere. Y. Katznelson proved that for every odometer of product type the set of C^{∞}-diffeomorphisms of the circle, which are orbit equivalent to this odometer, is $C^{\infty}{ }_{-}$ dense in the set of all C^{∞}-diffeomorphisms with irrational rotation number ($\boxed{K a 79}$, Theorem 2.7). We obtain such a statement in the restricted space F_{α} for any Liouville number α :

Theorem 2. Let $\alpha \in \mathbb{S}^{1}$ be a Liouville number. For every odometer of product type $\mathcal{O}=$ $\mathcal{O}\left(\left(d_{k}\right)_{k \in \mathbb{N}},\left\{\nu_{k}\right\}\right)$ the set of C^{∞}-diffeomorphisms of the circle which are orbit-equivalent to \mathcal{O} is C^{∞}-dense in F_{α}.

We point out that it is still an open problem to find a smooth realization of an odometer (cf. [FK04, Problem 7.10).

1 Proof of Theorem 1

The proof bases upon the "approximation by conjugation"-method developed by D. Anosov and A. Katok (AK70]): We construct the desired diffeomorphisms as limits of conjugates $f_{n}=$ $H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$, where $\alpha_{n+1}=\frac{p_{n+1}}{q_{n+1}} \in \mathbb{Q},\left(p_{n+1}, q_{n+1}\right)=1$ and $H_{n}=H_{n-1} \circ h_{n}$ with an orientation-preserving circle diffeomorphism h_{n} satisfying $h_{n} \circ R_{\frac{1}{q_{n}}}=R_{\frac{1}{q_{n}}} \circ h_{n}$.

1.1 Denseness of $G_{\beta, \text { sing }}$

Fix $\beta \in(0,1)$. We use a C^{∞}-function $\psi: \mathbb{R} \rightarrow[0,1]$ satisfying $\psi((-\infty, 0])=0, \psi\left(\left[\frac{1}{4}, \infty\right)\right)=1$ and ψ is strictly monotone increasing on $\left[0, \frac{1}{4}\right]$. For any $t \in(0,1)$ we define the orientationpreserving diffeomorphism \hat{h}_{t} of the circle as follows
$\hat{h}_{t}(x)= \begin{cases}\left(1-\psi\left(t^{-1} x\right)\right) t x+\psi\left(t^{-1} x\right) t^{-1} x & \text { if } x \in\left[0, \frac{t}{4}\right] \\ t^{-1} x & \text { if } x \in\left[\frac{t}{4}, \frac{t}{1+t}\right] \\ \left(1-\psi\left(t^{-1} x-\frac{1}{t+1}\right)\right) t^{-1} x+\psi\left(t^{-1} x-\frac{1}{t+1}\right) \cdot(t(x-1)+1) & \text { if } x \in\left[\frac{t}{1+t}, \frac{t}{1+t}+\frac{t}{4}\right] \\ t \cdot(x-1)+1 & \text { if } x \in\left[\frac{t}{1+t}+\frac{t}{4}, 1\right]\end{cases}$
See figure 1 for a visualisation of such a map. In particular, \hat{h}_{t} is a smooth joining of the two affine functions $x \mapsto t^{-1} x$ and $x \mapsto t \cdot(x-1)+1$, which coincide at $x=\frac{t}{1+t}$. Moreover, we observe for any $r \in \mathbb{N}$

$$
\begin{equation*}
\left\|\hat{h}_{t} \mid\right\|_{r} \leq C_{r} \cdot t^{-m(r)} \tag{1}
\end{equation*}
$$

with some constant $C(r)>0$ and an integer $m(r) \geq r-1$ which are independent of t. The notation $\|\|\cdot\|\|_{r}$ is the same as in Ma12.
We present step n of the inductive process of our construction. Hence, we have already defined the orientation-preserving diffeomorphism $H_{n-1}=h_{1} \circ \ldots \circ h_{n-1}$ as well as the numbers $\alpha_{n-1}=$ $\frac{p_{n-1}}{q_{n-1}} \in \mathbb{Q}, t_{n-1}=\frac{c_{n-1}}{d_{n-1}} \in \mathbb{Q}$ and $Q_{n-1} \in \mathbb{N}$. We put

$$
\begin{equation*}
Q_{n}=12 \cdot d_{n-1} \cdot\left(d_{n-1}+c_{n-1}\right) \cdot Q_{n-1} \cdot q_{n} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{n}=Q_{n}^{1-\beta_{n}^{-1}} \tag{3}
\end{equation*}
$$

where the numbers q_{n} and $\beta_{n} \in\left[\beta, \beta_{n-1}\right]$ will be determined later (see Lemma 1.5). In particular, part 4 of Lemma 1.5 shows $t_{n} \in \mathbb{Q}$. Note that

$$
\begin{equation*}
Q_{n}^{-1}=\left(t_{n} Q_{n}^{-1}\right)^{\beta_{n}} \tag{4}
\end{equation*}
$$

Let h_{n} be the lift of $\hat{h}_{t_{n}}$ by the cyclic Q_{n}-fold covering map $\pi_{Q_{n}}$ such that $\operatorname{Fix}\left(h_{n}\right) \neq \emptyset$. In particular, we have $h_{n} \circ R_{\frac{1}{Q_{n}}}=R_{\frac{1}{Q_{n}}} \circ h_{n}$. Since Q_{n} is a multiple of q_{n}, this yields $h_{n} \circ R_{\frac{1}{q_{n}}}=$ $R_{\frac{1}{q_{n}}} \circ h_{n}$ as well as

$$
\left\|H_{n}^{-1}-H_{n-1}^{-1}\right\|_{0}=\left\|\left(h_{n}^{-1}-\mathrm{id}\right) \circ H_{n-1}^{-1}\right\|_{0}=\left\|h_{n}^{-1}-\mathrm{id}\right\|_{0} \leq Q_{n}^{-1}
$$

Then we obtain

$$
\left\|H_{n+k}^{-1}-H_{n-1}^{-1}\right\|_{0} \leq \sum_{l=0}^{k}\left\|H_{n+l}^{-1}-H_{n+l-1}^{-1}\right\|_{0} \leq \sum_{l=0}^{k} Q_{n+l}^{-1}
$$

Figure 1: Qualitative shape of the function \hat{h}_{t}.

Since $\sum_{n=1}^{\infty} Q_{n}^{-1}<\infty$ by Lemma $1.5\left(H_{n}^{-1}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. This shows the uniform convergence of $\left(H_{n}^{-1}\right)_{n \in \mathbb{N}}$ to a continuous map $H^{-1}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$. Additionally, H^{-1} is monotone as a uniform limit of homeomorphisms. Due to Lemma 1.6 the sequence of C^{∞}-diffeomorphisms $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$ converges to a diffeomorphism f in the Diff ${ }^{\infty}$-topology. Hereby, we conclude $H^{-1} \circ f=R_{\alpha} \circ H^{-1}$. Hence, H^{-1} is a homeomorphism.

Moreover, we introduce the intervals

$$
\hat{I}_{t_{n}}=\left[\frac{1}{1+t_{n}}+\frac{t_{n}^{2}}{4}, 1\right], \hat{J}_{t_{n}}=\left[\frac{t_{n}}{1+t_{n}}+\frac{t_{n}}{4}, 1\right] \text { and } \hat{K}_{t_{n}}=\left[\frac{t_{n}}{4}, \frac{7 t_{n}}{12}\right]
$$

By construction $\left.\hat{h}_{t_{n}}\right|_{\hat{J}_{t_{n}}}$ is an affine transformation with slope t_{n}. Due to $t_{n}<1$ we have $\hat{I}_{t_{n}} \subset \hat{J}_{t_{n}}$. Additionally, we observe $\hat{h}_{t_{n}}\left(\hat{J}_{t_{n}}\right)=\hat{I}_{t_{n}}$ and $\hat{K}_{t_{n}} \subset\left[\frac{t_{n}}{4}, \frac{t_{n}}{1+t_{n}}\right]$.
Finally, we define $I_{n}=\pi_{Q_{n}}^{-1}\left(\hat{I}_{t_{n}}\right)$, $J_{n}=\pi_{Q_{n}}^{-1}\left(\hat{J}_{t_{n}}\right)$ as well as $K_{n}=\pi_{Q_{n}}^{-1}\left(\hat{K}_{t_{n}}\right)$. By direct computation, $m\left(J_{n}\right)=\frac{1}{1+t_{n}}-\frac{t_{n}}{4} \geq 1-2 t_{n}, m\left(I_{n}\right)=\frac{t_{n}}{1+t_{n}}-\frac{t_{n}^{2}}{4} \leq t_{n}$ (where m stands for the Lebesgue measure) and every component of K_{n} has length $\frac{t_{n}}{3 Q_{n}}$.
Now we are able to prove the singularity of H by an approach similar to Ma12, section 3:
Lemma 1.1. H is singular.

Proof. Let $C_{n}=\bigcap_{i=1}^{n} J_{i}$ and $C=\bigcap_{i=1}^{\infty} J_{i}$. By construction of the number Q_{n} any component of J_{n-1} is a $\left(Q_{n}^{-1} \mathbb{Z}\right) / \mathbb{Z}$-interval. Then

$$
m\left(C_{n}\right) \geq \prod_{i=1}^{n}\left(1-2 t_{i}\right)
$$

Note that $\prod_{n=1}^{\infty}\left(1-a_{n}\right), a_{n} \geq 0$, converges to a positive number if and only if $\sum_{n=1}^{\infty} a_{n}$ converges (【Kn64, section 28, Theorem 4). Since

$$
\sum_{n=1}^{\infty} t_{n}=\sum_{n=1}^{\infty} Q_{n}^{1-\beta_{n}^{-1}} \leq \sum_{n=1}^{\infty} Q_{n}^{1-\beta_{n-1}^{-1}}<\infty
$$

by part 3 of Lemma 1.5 we obtain $m(C)>0$. This yields

$$
\mu_{f}(H(C))=\left(H_{*} m\right)(H(C))=m(C)>0
$$

By construction of h_{j} with the aid of the Q_{j}-fold covering map $\left(Q_{n+1}^{-1} \mathbb{Z}\right) / \mathbb{Z}$ is pointwise fixed under $h_{j}, j>n$. Since any component of J_{n} is a $\left(Q_{n+1}^{-1} \mathbb{Z}\right) / \mathbb{Z}$-interval, we get $h_{j}\left(J_{n}\right)=J_{n}$ for $j>n$. Then we obtain for any $j>n$:

$$
H_{j}\left(J_{n}\right)=H_{n}\left(J_{n}\right)=H_{n-1} h_{n}\left(J_{n}\right)=H_{n-1}\left(I_{n}\right)
$$

which yields $J_{n}=H_{j}^{-1} H_{n-1}\left(I_{n}\right)$, where $H_{0}=\mathrm{id}$. This shows that the uniform limit H^{-1} of H_{j}^{-1} satisfies $J_{n}=H^{-1}\left(H_{n-1}\left(I_{n}\right)\right)$ for any $n \in \mathbb{N}$. Hereby, we observe

$$
H\left(C_{n}\right)=H\left(\bigcap_{i=1}^{n} J_{i}\right)=\bigcap_{i=1}^{n} H\left(J_{i}\right)=\bigcap_{i=1}^{n} H_{i-1}\left(I_{i}\right) .
$$

In order to have $H_{i-1}(A) \subset H_{i-2}\left(I_{i-1}\right)$ a set $A \subset \mathbb{S}^{1}$ has to satisfy $h_{i-1}(A) \subset I_{i-1}$ which implies the condition $A \subset J_{i-1}$. Since $m\left(I_{i}\right) \leq t_{i}$ and the slope of $\left.h_{i-1}\right|_{J_{i-1}}$ is equal to t_{i-1}, this yields $m\left(H\left(C_{n}\right)\right) \leq \prod_{i=1}^{n-1} t_{i}$ which converges to 0 as $n \rightarrow \infty$. Therefore, $m(H(C))=0$.
Finally, we note that μ_{f} is not equivalent to m because $\mu_{f}(H(C))>0$ and $m(H(C))=0$. Hence, H is a singular map.

In the next steps, we examine the Hölder continuity of H :
Lemma 1.2. H is not d-Hölder for any $d \in(\beta, 1)$.
Proof. For any component \tilde{K}_{i} of K_{i} there is a component \tilde{K}_{i+1} of K_{i+1} such that $\tilde{K}_{i+1} \subset \tilde{K}_{i}$. This proves the existence of a component \tilde{K}_{n} which is contained in $\bigcap_{i=1}^{n} K_{i}$. By construction, $\left.H_{n}\right|_{\tilde{K}_{n}}$ is an affine transformation of slope $t_{1}^{-1} \cdots \cdot t_{n}^{-1}$. In the following, we denote $\tilde{K}_{n}=\left[x^{\prime}, y^{\prime}\right]$. In particular, we have $\left|y^{\prime}-x^{\prime}\right|=3^{-1} t_{n} Q_{n}^{-1}$.
Moreover, we define $x, y \in \mathbb{S}^{1}$ by $H^{(n+1)}(x)=x^{\prime}$ as well as $H^{(n+1)}(y)=y^{\prime}$ using the notation $H^{(n+1)}=H_{n}^{-1} H$. Its inverse $\left(H^{(n+1)}\right)^{-1}$ is the uniform limit of $h_{n+m}^{-1} \circ \cdots \circ h_{n+2}^{-1} \circ h_{n+1}^{-1}$ as $m \rightarrow \infty$. Since $\sum_{i=n+1}^{\infty} Q_{i}^{-1} \leq 3^{-1} t_{n} Q_{n}^{-1}$ for any $n \in \mathbb{N}$ by Lemma 1.5 and the maps h_{i} are
Q_{i}^{-1}-cyclic, we have

$$
\begin{aligned}
|x-y| & =\left|\left(H^{(n+1)}\right)^{-1}\left(x^{\prime}\right)-\left(H^{(n+1)}\right)^{-1}\left(y^{\prime}\right)\right| \\
& \leq\left|\left(H^{(n+1)}\right)^{-1}\left(x^{\prime}\right)-x^{\prime}\right|+\left|x^{\prime}-y^{\prime}\right|+\left|y^{\prime}-\left(H^{(n+1)}\right)^{-1}\left(y^{\prime}\right)\right| \\
& \leq \sum_{i=n+1}^{\infty} Q_{i}^{-1}+\left|x^{\prime}-y^{\prime}\right|+\sum_{i=n+1}^{\infty} Q_{i}^{-1} \\
& \leq 3^{-1} t_{n} Q_{n}^{-1}+\left|x^{\prime}-y^{\prime}\right|+3^{-1} t_{n} Q_{n}^{-1} \\
& =3\left|x^{\prime}-y^{\prime}\right| .
\end{aligned}
$$

With the aid of $\left|y^{\prime}-x^{\prime}\right|=3^{-1} t_{n} Q_{n}^{-1}$ we estimate

$$
\begin{aligned}
|H(x)-H(y)| & =\left|H_{n}\left(x^{\prime}\right)-H_{n}\left(y^{\prime}\right)\right|=t_{1}^{-1} \cdots \cdot t_{n}^{-1} \cdot\left|x^{\prime}-y^{\prime}\right|=t_{1}^{-1} \cdots \cdots t_{n}^{-1} \cdot 3^{-1} t_{n} Q_{n}^{-1} \\
& =3^{-1} t_{1}^{-1} \cdots \cdot t_{n-1}^{-1} \cdot Q_{n}^{-1}
\end{aligned}
$$

as well as

$$
|x-y|^{d} \leq 3^{d}\left|x^{\prime}-y^{\prime}\right|^{d}=3^{d}\left(3^{-1} t_{n} Q_{n}^{-1}\right)^{d}=t_{n}^{d} Q_{n}^{-d} .
$$

Using equation 3 both estimates together yield in case of $\beta_{n}<d$ (which is fulfilled for sufficiently large $n \in \mathbb{N}$ due to $\left.\beta_{n} \rightarrow \beta<d\right)$:

$$
\begin{aligned}
\frac{|H(x)-H(y)|}{|x-y|^{d}} & \geq 3^{-1} t_{1}^{-1} \cdots \cdot t_{n-1}^{-1} \cdot Q_{n}^{d-1} \cdot t_{n}^{-d} \\
& =3^{-1} t_{1}^{-1} \cdots \cdot t_{n-1}^{-1} \cdot Q_{n}^{d-1} \cdot Q_{n}^{\beta_{n}^{-1} d-d} \\
& =3^{-1} t_{1}^{-1} \cdots \cdots t_{n-1}^{-1} \cdot Q_{n}^{\beta_{n}^{-1} d-1} \\
& \geq 3^{-1} t_{1}^{-1} \cdots \cdots t_{n-1}^{-1} .
\end{aligned}
$$

Since this expression can be arbitrarily large, we conclude that H cannot be d-Hölder for any $d \in(\beta, 1)$.
Lemma 1.3. H^{-1} is β-Hölder.
Proof. For any pair of $x, y \in \mathbb{S}^{1}, x \neq y$, there is $n \in \mathbb{N}$ such that $t_{n+1} Q_{n+1}^{-1} \leq|x-y| \leq t_{n} Q_{n}^{-1}$. Since the Lipschitz constant of h_{i}^{-1} is t_{i}^{-1}, we have

$$
\begin{aligned}
\left|H_{n}^{-1}(x)-H_{n}^{-1}(y)\right| & \leq t_{1}^{-1} \cdots \cdots t_{n}^{-1} \cdot|x-y|=t_{1}^{-1} \cdots \cdot t_{n}^{-1} \cdot|x-y|^{1-\beta} \cdot|x-y|^{\beta} \\
& \leq t_{1}^{-1} \cdots \cdots t_{n}^{-1} \cdot\left(t_{n} Q_{n}^{-1}\right)^{1-\beta} \cdot|x-y|^{\beta} \\
& =t_{1}^{-1} \cdots \cdot t_{n-1}^{-1} \cdot\left(Q_{n}^{1-\beta_{n}^{-1}}\right)^{-\beta} \cdot Q_{n}^{\beta-1} \cdot|x-y|^{\beta} \\
& =t_{1}^{-1} \cdots \cdots t_{n-1}^{-1} \cdot Q_{n}^{-1+\beta \beta_{n}^{-1}} \cdot|x-y|^{\beta}
\end{aligned}
$$

By Lemma 1.5 this shows

$$
\begin{equation*}
\left|H_{n}^{-1}(x)-H_{n}^{-1}(y)\right| \leq|x-y|^{\beta} \tag{5}
\end{equation*}
$$

There are two possible cases

- Case 1: $\left|H_{n}^{-1}(x)-H_{n}^{-1}(y)\right| \geq Q_{n+1}^{-1}$

Since h_{n+1}^{-1} is Q_{n+1}^{-1}-cyclic, we get in this case $\left|H_{n+1}^{-1}(x)-H_{n+1}^{-1}(y)\right| \leq 2\left|H_{n}^{-1}(x)-H_{n}^{-1}(y)\right|$. With the aid of Lemma 1.5 we see that the numbers $Q_{i}, i>n+1$, grow fast enough such that

$$
\left|H^{-1}(x)-H^{-1}(y)\right| \leq 3\left|H_{n}^{-1}(x)-H_{n}^{-1}(y)\right| \leq 3|x-y|^{\beta}
$$

using equation (5) in the last step.

- Case 2: $\left|H_{n}^{-1}(x)-H_{n}^{-1}(y)\right|<Q_{n+1}^{-1}$

Once again, we exploit the fact that h_{n+1}^{-1} is Q_{n+1}^{-1}-cyclic. In the case under consideration, this yields $\left|H_{n+1}^{-1}(x)-H_{n+1}^{-1}(y)\right| \leq Q_{n+1}^{-1}$. With the aid of equation 4 we get

$$
\left|H^{-1}(x)-H^{-1}(y)\right| \leq 2 Q_{n+1}^{-1} \leq 2\left(t_{n+1} Q_{n+1}^{-1}\right)^{\beta} \leq 2|x-y|^{\beta}
$$

Hence, H^{-1} is β-Hölder.
Lemma 1.4. H is β-Hölder.
Proof. As above, for any pair of $x, y \in \mathbb{S}^{1}, x \neq y$, there is $n \in \mathbb{N}$ such that $t_{n+1} Q_{n+1}^{-1} \leq$ $|x-y| \leq t_{n} Q_{n}^{-1}$. Let $x^{\prime}=H^{(n+2)}(x)$ and $y^{\prime}=H^{(n+2)}(y)$. Recall $H^{(n+2)}=H_{n+1}^{-1} H$. Since H is the uniform limit of H_{n} and the maps h_{i} are Q_{i}^{-1}-cyclic and the numbers $Q_{i}, i>n+1$, are sufficiently large due to Lemma 1.5 we have $\left|x^{\prime}-y^{\prime}\right| \leq 2|x-y|$. Once again, we have to examine two cases:

- Case 1: $\left|x^{\prime}-y^{\prime}\right| \geq Q_{n+1}^{-1}$

Since h_{n+1} is Q_{n+1}^{-1}-cyclic, we get in this case $\left|x^{\prime \prime}-y^{\prime \prime}\right| \leq 2\left|x^{\prime}-y^{\prime}\right|$ for $x^{\prime \prime}=h_{n+1}\left(x^{\prime}\right)$ and $y^{\prime \prime}=h_{n+1}\left(y^{\prime}\right)$. Since the Lipschitz constant of h_{i} is t_{i}^{-1}, we obtain by the same calculations as in the first case of the previous Lemma

$$
\begin{aligned}
|H(x)-H(y)| & =\left|H_{n}\left(x^{\prime \prime}\right)-H_{n}\left(y^{\prime \prime}\right)\right| \leq t_{1}^{-1} \cdots \cdot t_{n}^{-1} \cdot\left|x^{\prime \prime}-y^{\prime \prime}\right| \\
& \leq t_{1}^{-1} \cdots \cdots t_{n}^{-1} \cdot 2\left|x^{\prime}-y^{\prime}\right| \\
& \leq t_{1}^{-1} \cdots \cdots t_{n}^{-1} \cdot 4|x-y| \\
& \leq 4|x-y|^{\beta} .
\end{aligned}
$$

- Case 2: $\left|x^{\prime}-y^{\prime}\right|<Q_{n+1}^{-1}$

Since h_{n+1} is Q_{n+1}^{-1}-cyclic, we have

$$
\left|x^{\prime \prime}-y^{\prime \prime}\right|=\left|h_{n+1}\left(x^{\prime}\right)-h_{n+1}\left(y^{\prime}\right)\right| \leq Q_{n+1}^{-1}=\left(t_{n+1} Q_{n+1}^{-1}\right)^{\beta_{n+1}} \leq|x-y|^{\beta_{n+1}}
$$

Hereby, we conclude

$$
\begin{aligned}
|H(x)-H(y)| & =\left|H_{n}\left(x^{\prime \prime}\right)-H_{n}\left(y^{\prime \prime}\right)\right| \\
& \leq t_{1}^{-1} \cdots \cdot t_{n}^{-1} \cdot\left|x^{\prime \prime}-y^{\prime \prime}\right|^{1-\beta \beta_{n+1}^{-1}} \cdot\left|x^{\prime \prime}-y^{\prime \prime}\right|^{\beta \beta_{n+1}^{-1}} \\
& \leq t_{1}^{-1} \cdots \cdot t_{n}^{-1} \cdot\left(Q_{n+1}^{-1}\right)^{1-\beta \beta_{n+1}^{-1}} \cdot\left|x^{\prime \prime}-y^{\prime \prime}\right|^{\beta \beta_{n+1}^{-1}} \\
& \leq|x-y|^{\beta}
\end{aligned}
$$

using Lemma 1.5 part 4, in the last step.

Hence, H is β-Hölder.
Finally, we want to prove convergence of the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\operatorname{Diff}{ }^{\infty}\left(\mathbb{S}^{1}\right)$. For this purpose, we deduce the subsequent statement.

Lemma 1.5. Let $\left(l_{n}\right)_{n \in \mathbb{N}}$ be a strictly increasing sequence of natural numbers with $\sum_{n=1}^{\infty} \frac{1}{l_{n}}<\infty$ and $C_{l_{n}}$ be the constants from [Ma12], Lemma 2.4. For any Liouvillean number α there are sequences $\alpha_{n}=\frac{p_{n}}{q_{n}}$ of rational numbers and $\left(\beta_{n}\right)_{n \in \mathbb{N}}$ of real numbers, such that $\beta_{n} \searrow \beta$ and the following conditions are satisfied:

1. For every $n \in \mathbb{N}$:

$$
\left|\alpha-\alpha_{n}\right|<\frac{1}{2^{n+1} \cdot l_{n} \cdot C_{l_{n}} \cdot\left\|| | H_{n} \mid\right\|_{l_{n}+1}^{l_{n}+1}}
$$

2. For every $n \in \mathbb{N}$:

$$
\sum_{i=n+1}^{\infty} Q_{i}^{-1} \leq 3^{-1} t_{n} Q_{n}^{-1}
$$

3. For every $n \in \mathbb{N}$:

$$
t_{1}^{-1} \cdots \cdot t_{n-1}^{-1} \cdot Q_{n}^{-1+\beta \beta_{n}^{-1}} \leq 1 \text { and } Q_{n}^{1-\beta_{n-1}^{-1}} \leq \frac{1}{n^{2}}
$$

4. $t_{n} \in \mathbb{Q}$ for every $n \in \mathbb{N}$.

Proof. Since the numbers $t_{i}, i<n$, are independent of q_{n} and $1>\beta_{n-1}>\beta$, we can demand the number q_{n} to be sufficiently large such that

$$
\begin{equation*}
t_{1}^{-1} \cdots \cdot t_{n-1}^{-1} \cdot q_{n}^{\frac{1}{2}\left(1-\frac{\beta_{n-1}}{\beta}\right)} \leq 1 \tag{6}
\end{equation*}
$$

as well as

$$
q_{n}^{1-\beta_{n-1}^{-1}} \leq \frac{1}{n^{2}}
$$

Additionally, we can satisfy the second property of the Lemma by choosing the numbers q_{i} sufficiently large in each step.
By equations (1) and (3) we have

$$
\begin{aligned}
\left\|h_{n}\right\| \|_{r} & \leq C_{r} \cdot Q_{n}^{r-1} \cdot\left(Q_{n}^{\beta_{n}^{-1}-1}\right)^{m(r)} \leq C_{r} \cdot Q_{n}^{\beta^{-1} \cdot m(r)} \\
& =C_{r} \cdot\left(12 \cdot d_{n-1} \cdot\left(d_{n-1}+c_{n-1}\right) \cdot Q_{n-1}\right)^{\beta^{-1} m(r)} \cdot q_{n}^{\beta^{-1} m(r)} \\
& \leq C_{r, n-1} \cdot q_{n}^{\beta^{-1} m(r)}
\end{aligned}
$$

for any $r \in \mathbb{N}$ due to the condition $\beta_{n} \geq \beta$. Using Ma12], Lemma 2.3, we obtain

$$
\left\|H_{n}\right\|\left\|_{r}=\right\| H_{n-1} \circ h_{n}\| \|_{r} \leq \tilde{C}_{r} \cdot\| \| H_{n-1}\left\|\left.\right|_{r} ^{r} \cdot\right\|\left\|h_{n}\right\|_{r}^{r} \leq \hat{C}_{r, n-1} \cdot q_{n}^{\beta^{-1} m(r) \cdot r}
$$

where $\hat{C}_{r, n-1}$ is a constant independent of q_{n}. In particular, we can demand $q_{n} \geq \hat{C}_{l_{n}+1, n-1}$. Then we get

$$
\left\|\mid H_{n}\right\| \|_{l_{n}+1} \leq q_{n}^{\beta^{-1} m\left(l_{n}+1\right) \cdot\left(l_{n}+1\right)+1} \leq q_{n}^{A_{n}}
$$

using the notation $A_{n}=\left\lceil\beta^{-1} m\left(l_{n}+1\right) \cdot\left(l_{n}+1\right)+1\right\rceil$.
Since α is a Liouvillean number, we find a rational number $\alpha_{n}=\frac{p_{n}}{q_{n}}, p_{n}, q_{n}$ relatively prime, satisfying the above restrictions and

$$
\left|\alpha-\alpha_{n}\right|=\left|\alpha-\frac{p_{n}}{q_{n}}\right|<\frac{\left|\alpha-\alpha_{n-1}\right|}{2^{n+1} \cdot l_{n} \cdot C_{l_{n}} \cdot q_{n}^{A_{n} \cdot\left(l_{n}+1\right)}} \leq \frac{1}{2^{n+1} \cdot l_{n} \cdot C_{l_{n}} \cdot\left\|\left|H_{n}\right|\right\|_{l_{n}+1}^{l_{n}+1}} .
$$

After the number q_{n} is determined with respect to these restrictions we can choose a number $\beta_{n} \in\left[\beta+\frac{\beta_{n-1}-\beta}{2}, \beta_{n-1}\right)$ such that $t_{n}=Q_{n}^{1-\beta_{n}^{-1}} \in \mathbb{Q}$. Then we have

$$
\begin{aligned}
-1+\beta \beta_{n}^{-1} & =\beta_{n}^{-1} \cdot\left(-\beta_{n}+\beta\right) \leq \beta^{-1} \cdot\left(-\left(\beta+\frac{\beta_{n-1}-\beta}{2}\right)+\beta\right) \\
& =\beta^{-1} \frac{\beta-\beta_{n-1}}{2}=\frac{1}{2}\left(1-\frac{\beta_{n-1}}{\beta}\right)<0 .
\end{aligned}
$$

By condition 6 this yields

$$
t_{1}^{-1} \cdots \cdot t_{n-1}^{-1} \cdot Q_{n}^{-1+\beta \beta_{n}^{-1}}<t_{1}^{-1} \cdots \cdot t_{n-1}^{-1} \cdot q_{n}^{-1+\beta \beta_{n}^{-1}} \leq t_{1}^{-1} \cdots \cdot t_{n-1}^{-1} \cdot q_{n}^{\frac{1}{2}\left(1-\frac{\beta_{n-1}}{\beta}\right)} \leq 1
$$

The previous Lemma shows that the requirements of the following convergence result deduced in Ku16, Lemma 5.8, are fulfilled.

Lemma 1.6. Let $\varepsilon>0$ be arbitrary and $\left(l_{n}\right)_{n \in \mathbb{N}}$ be a strictly increasing sequence of natural numbers satisfying $\sum_{n=1}^{\infty} \frac{1}{l_{n}}<\varepsilon$. Furthermore, we assume that in our constructions the following conditions are fulfilled:

$$
\left|\alpha-\alpha_{1}\right|<\varepsilon \quad \text { and } \quad\left|\alpha-\alpha_{n}\right| \leq \frac{1}{2 \cdot l_{n} \cdot C_{l_{n}} \cdot\| \| H_{n}\| \|_{l_{n+1}}^{L_{n}+1}} \text { for every } n \in \mathbb{N},
$$

where $C_{l_{n}}$ are the constants from [Ma12], Lemma 2.4. Then the sequence of diffeomorphisms $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$ converges in the Diff ${ }^{\infty}$-topology to a smooth diffeomorphism f, for which $d_{\infty}\left(f, R_{\alpha}\right)<3 \cdot \varepsilon$ holds.

Hence, the rotation R_{α} is contained in the C^{∞}-closure of $G_{\beta, \text { sing }}$. Since this closure is invariant under conjugation by any $h \in F$ and O_{α} is C^{∞}-dense in F_{α} (Yo95]), we obtain the C^{∞}-denseness of $G_{\beta, \text { sing }}$ in F_{α} by the same reasoning as in Ma12, section 2.1.

1.2 Denseness of $G_{\beta, \text { ac }}$

Fix $\beta \in(0,1)$. We slightly modify the construction of the map \hat{h}_{t} from the previous chapter. Once again, we use a C^{∞}-map $\psi: \mathbb{R} \rightarrow[0,1]$ satisfying $\psi((-\infty, 0])=0, \psi\left(\left[\frac{1}{4}, \infty\right)\right)=1$ and ψ is strictly monotone increasing on $\left[0, \frac{1}{4}\right]$. Then, for any $t \in(0,1)$ we define the orientationpreserving diffeomorphism $\breve{h}_{t}:[0,1] \rightarrow[0,1]$ as follows

$$
\breve{h}_{t}(x)= \begin{cases}\left(1-\psi\left(t^{-1} x\right)\right) x+\psi\left(t^{-1} x\right) t^{-1} x & \text { if } x \in\left[0, \frac{t}{4}\right] \\ t^{-1} x & \text { if } x \in\left[\frac{t}{4}, \frac{t}{1+t}\right] \\ \left(1-\psi\left(t^{-1} x-\frac{1}{t+1}\right)\right) t^{-1} x+\psi\left(t^{-1} x-\frac{1}{t+1}\right) \cdot(t(x-1)+1) & \text { if } x \in\left[\frac{t}{1+t}, \frac{t}{1+t}+\frac{t}{4}\right] \\ t \cdot(x-1)+1 & \text { if } x \in\left[\frac{t}{1+t}+\frac{t}{4}, 1-\frac{t}{4}\right] \\ \left(1-\psi\left(t^{-1}\left(x-1+\frac{t}{4}\right)\right)\right) \cdot(t(x-1)+1)+\psi\left(t^{-1}\left(x-1+\frac{t}{4}\right)\right) x & \text { if } x \in\left[1-\frac{t}{4}, 1\right]\end{cases}
$$

Note that \breve{h}_{t} coincides with the identity in a neighbourhood of the boundary. Using the maps C_{n} : $\left[0, \frac{1}{2^{n+1}}\right] \rightarrow[0,1], C_{n}(x)=2^{n+1} \cdot x$, we construct the orientation-preserving circle diffeomorphism $h_{t_{n}}$ as follows:

$$
h_{t_{n}}(x)= \begin{cases}C_{n}^{-1} \circ \breve{h}_{t_{n}} \circ C_{n}(x) & \text { if } x \in\left[0, \frac{1}{2^{n+1}}\right] \\ x & \text { if } x \in\left[\frac{1}{2^{n+1}}, 1\right]\end{cases}
$$

where we define the numbers $Q_{n}=2^{n} \cdot 12 \cdot d_{n-1} \cdot\left(d_{n-1}+c_{n-1}\right) \cdot Q_{n-1} \cdot q_{n}$ and t_{n} as in the previous section. This time, we demand the additional requirement

$$
\begin{equation*}
t_{n} \leq 2^{-(n+2)} \tag{7}
\end{equation*}
$$

which can be satisfied by choosing q_{n} sufficiently large in the proof of Lemma 1.5 .
Let h_{n} be the lift of $h_{t_{n}}$ by the cyclic Q_{n}-fold covering map $\pi_{Q_{n}}$ such that $\operatorname{Fix}\left(h_{n}\right) \neq \emptyset$. By the same reasoning as above, the sequence $\left(H_{n}^{-1}\right)_{n \in \mathbb{N}}$ converges to a homeomorphism H^{-1}.
First of all, we prove the absolute continuity of H by the same method as in Ma12, section 4:
Lemma 1.7. H is absolutely continuous.
Proof. We introduce the sets

$$
\hat{L}_{n}=\left[2^{-(n+1)}, 1\right] \text { and } L_{n}=\pi_{Q_{n}}^{-1}\left(\hat{L}_{n}\right) .
$$

According to our construction h_{n} is the identity on L_{n}. Let $X=\bigcap_{n=1}^{\infty} L_{n}$. Then we have

$$
m(X) \geq 1-\sum_{n=1}^{\infty} m\left(\mathbb{S}^{1} \backslash L_{n}\right)=1-\sum_{n=1}^{\infty} 2^{-(n+1)}=\frac{1}{2}
$$

Since H is the identity on the positive measure set X, we have for any Borel set $B \mu_{f}(B \cap X)=$ $m(B \cap X)$ and $\mu_{f}(X)=m(X)>0$.
Assume that μ_{f} is not equivalent to m. Then μ_{f} is singular to m and there is a Borel set $B \subset \mathbb{S}^{1}$ such that $m(B)=1$ and $\mu_{f}(B)=0$. But then we obtain the contradiction $m(B \cap X)=m(X)>0$ but $\mu_{f}(B \cap X) \leq \mu_{f}(B)=0$.
Hence, H is absolutely continuous.
We start to examine the Hölder-continuity of H.
Lemma 1.8. H is not d-Hölder for any $d \in(\beta, 1)$.
Proof. Let

$$
K_{t_{n}}=\left[\frac{t_{n}}{4 \cdot 2^{n+1}}, \frac{7 t_{n}}{12 \cdot 2^{n+1}}\right] \text { and } K_{n}=\pi_{Q_{n}}^{-1}\left(K_{t_{n}}\right)
$$

For any component \tilde{K}_{i} of K_{i} there is a component \tilde{K}_{i+1} of K_{i+1} such that $\tilde{K}_{i+1} \subset \tilde{K}_{i}$. This proves the existence of a component \tilde{K}_{n} which is contained in $\bigcap_{i=1}^{n} K_{i}$. By construction, $\left.H_{n}\right|_{\tilde{K}_{n}}$ is an affine transformation of slope $t_{1}^{-1} \cdots \cdots t_{n}^{-1}$. In the following, we denote $\tilde{K}_{n}=\left[x^{\prime}, y^{\prime}\right]$. In particular, we have $\left|y^{\prime}-x^{\prime}\right|=3^{-1} t_{n} Q_{n}^{-1} \cdot 2^{-(n+1)}$.
According to this we modify the second requirement of Lemma 1.5 as follows $\sum_{i=n+1}^{\infty} Q_{i}^{-1} \leq$ $3^{-1} t_{n} Q_{n}^{-1} \cdot 2^{-(n+1)}$. Then we get for $x, y \in \mathbb{S}^{1}$ defined by $H^{(n+1)}(x)=x^{\prime}$ as well as $H^{(n+1)}(y)=$ $y^{\prime}:|x-y| \leq 3\left|x^{\prime}-y^{\prime}\right|$. With the aid of $\left|y^{\prime}-x^{\prime}\right|=3^{-1} t_{n} Q_{n}^{-1} \cdot 2^{-(n+1)}$ we estimate
$|H(x)-H(y)|=\left|H_{n}\left(x^{\prime}\right)-H_{n}\left(y^{\prime}\right)\right|=t_{1}^{-1} \cdots \cdot t_{n}^{-1} \cdot\left|x^{\prime}-y^{\prime}\right|=t_{1}^{-1} \cdots \cdots t_{n-1}^{-1} \cdot 3^{-1} Q_{n}^{-1} \cdot 2^{-(n+1)}$
as well as

$$
|x-y|^{d} \leq 3^{d}\left|x^{\prime}-y^{\prime}\right|^{d}=3^{d}\left(3^{-1} t_{n} Q_{n}^{-1} 2^{-(n+1)}\right)^{d}=t_{n}^{d} Q_{n}^{-d} \cdot 2^{-(n+1) d}
$$

Using equation 3 both estimates together yield in case of $\beta_{n}<d$ (which is fulfilled for sufficiently large $n \in \mathbb{N}$ due to $\left.\beta_{n} \rightarrow \beta<d\right)$:

$$
\begin{aligned}
\frac{|H(x)-H(y)|}{|x-y|^{d}} & \geq 3^{-1} t_{1}^{-1} \cdots \cdot t_{n-1}^{-1} \cdot Q_{n}^{d-1} \cdot t_{n}^{-d} \cdot 2^{(d-1) \cdot(n+1)} \\
& >3^{-1} t_{1}^{-1} \cdots \cdot t_{n-1}^{-1} \cdot Q_{n}^{\beta_{n}^{-1} d-1} \cdot 2^{-(n+1)} \\
& \geq 3^{-1} t_{1}^{-1} \cdots \cdots t_{n-2}^{-1}
\end{aligned}
$$

(where we used the additional requirement $t_{n-1} \leq 2^{-(n+1)}$ from equation 7 in the last step). Since this expression can be arbitrarily large, we conclude that H cannot be d-Hölder for any $d \in(\beta, 1)$.

Lemma 1.9. H and H^{-1} are β-Hölder.
Proof. Since the Lipschitz constants of h_{i} and h_{i}^{-1} are equal to t_{i}^{-1}, we can copy the proofs of Lemma 1.3 and Lemma 1.4 .

Then we conclude the C^{∞}-denseness of $G_{\beta, \text { ac }}$ by the same reasoning as in the previous section.

2 Proof of Theorem 2

For any $n \in \mathbb{N}$ we use a $C^{\infty}-\operatorname{map} \psi_{n}: \mathbb{R} \rightarrow[0,1]$ satisfying $\psi_{n}((-\infty, 0])=0, \psi_{n}\left(\left[\frac{1}{4 \cdot 2^{n}}, \infty\right)\right)=1$ and ψ is strictly monotone increasing on $\left[0, \frac{1}{4 \cdot 2^{n}}\right]$. We define the orientation-preserving diffeomorphism \tilde{h}_{n} of the circle as follows

- If $x \in\left[0, \frac{1}{4 \cdot 2^{n} \cdot d_{n}}\right]$

$$
\tilde{h}_{n}(x)=\left(1-\psi_{n}\left(d_{n} x\right)\right) d_{n} \nu_{n}^{\left(d_{n}\right)} x+\psi_{n}\left(d_{n} x\right) d_{n} \nu_{n}^{(1)} x
$$

- For $i=0, \ldots, d_{n}-1$ and $x \in\left[\frac{i}{d_{n}}+\frac{1}{4 \cdot 2^{n} \cdot d_{n}}, \frac{i+1}{d_{n}}\right]$:

$$
\tilde{h}_{n}(x)=d_{n} \nu_{n}^{(i+1)} \cdot\left(x-\frac{i}{d_{n}}\right)+\sum_{k=0}^{i} \nu_{n}^{(k)}
$$

- For $i=1, \ldots, d_{n}-1$ and $x \in\left[\frac{i}{d_{n}}, \frac{i}{d_{n}}+\frac{1}{4 \cdot 2^{n} \cdot d_{n}}\right]$:

$$
\begin{aligned}
\tilde{h}_{n}(x)= & \left(1-\psi_{n}\left(d_{n} \cdot\left(x-\frac{i}{d_{n}}\right)\right)\right) \cdot\left(d_{n} \nu_{n}^{(i)}\left(x-\frac{i}{d_{n}}\right)+\sum_{k=0}^{i-1} \nu_{n}^{(k)}\right) \\
& +\psi_{n}\left(d_{n} \cdot\left(x-\frac{i}{d_{n}}\right)\right) \cdot\left(d_{n} \nu_{n}^{(i+1)}\left(x-\frac{i}{d_{n}}\right)+\sum_{k=0}^{i} \nu_{n}^{(k)}\right)
\end{aligned}
$$

Figure 2: Qualitative shape of the function \tilde{h}_{n}.
using the notation $\nu_{n}^{(0)}=0$. See figure 2 for a visualisation of such a map.
We present step n of the inductive process of our construction. Hence, we have already defined the orientation-preserving diffeomorphism $H_{n-1}=h_{1} \circ \cdots \circ h_{n-1}$ and the numbers $\alpha_{n-1}=\frac{p_{n-1}}{q_{n-1}} \in \mathbb{Q}$.
Let h_{n} be the lift of \tilde{h}_{n} by the cyclic q_{n}-fold covering map $\pi_{q_{n}}$ such that $\operatorname{Fix}\left(h_{n}\right) \neq \emptyset$ where the number q_{n} will be determined later (see Lemma 2.1. In particular, we have $h_{n} \circ R_{\frac{1}{q_{n}}}=R_{\frac{1}{q_{n}}} \circ h_{n}$ and for any $l \in \mathbb{N}$

$$
\begin{equation*}
\left\|\mid h_{n}\right\| \|_{l} \leq C_{n, l} \cdot q_{n}^{l-1} \tag{8}
\end{equation*}
$$

where the constant $C_{n, l}$ is independent of q_{n}. Then we can prove a statement analogous to Lemma 1.5

Lemma 2.1. Let $\left(l_{n}\right)_{n \in \mathbb{N}}$ be a strictly increasing sequence of natural numbers with $\sum_{n=1}^{\infty} \frac{1}{l_{n}}<\infty$ and $C_{l_{n}}$ be the constants from [Ma12], Lemma 2.4. For any Liouvillean number α there are sequences $\alpha_{n}=\frac{p_{n}}{q_{n}}$ of rational numbers, such that the following conditions are satisfied:

1. For every $n \in \mathbb{N}$:

$$
\left|\alpha-\alpha_{n}\right|<\frac{1}{2^{n+1} \cdot l_{n} \cdot C_{l_{n}} \cdot\left\|| | H_{n} \mid\right\|_{l_{n}+1}^{l_{n}+1}}
$$

2. For every $n \in \mathbb{N}$:

$$
\left|\alpha-\alpha_{n}\right|<\frac{1}{4 \cdot 2^{n+1} d_{n} q_{n}^{2}}
$$

As in the previous chapter we prove the denseness of constructed C^{∞}-diffeomorphisms and observe that the sequence $\left(H_{n}^{-1}\right)_{n \in \mathbb{N}}$ converges uniformly to a homeomorphism $H^{-1}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$. In the following, we will consider systems induced on a set A :
Definition 2. Let (X, \mathcal{B}, μ, T) be a non-singular system and $A \in \mathcal{B}$ be a set of positive measure. Then T induces a mapping T^{A} on A by $T^{A}(x)=T^{n(x)}(x)$ where $n(x)$ is the smallest positive integer n for which $T^{n}(x) \in A$. Then $\left(A, \mathcal{B}^{A}, \mu^{A}, T^{A}\right)$ is called the induced system where \mathcal{B}^{A} is the algebra of \mathcal{B}-subsets of A and μ^{A} is the normalized restriction of μ to \mathcal{B}^{A}.

On each interval $\Delta_{1}^{(i)}=\left[\frac{i}{d_{1} q_{1}}+\frac{1}{2 \cdot 2 d_{1} q_{1}}, \frac{i+1}{d_{1} q_{1}}-\frac{1}{4 \cdot 2 d_{1} q_{1}}\right] \subset \mathbb{S}^{1}, i=0, \ldots, d_{1} q_{1}-1$, we choose $\left\lfloor\frac{q_{2} \cdot\left(1-\frac{3}{8}\right)}{d_{1} q_{1}}\right\rfloor$ intervals of type $\left[\frac{t}{q_{2}}, \frac{t+1}{q_{2}}\right]$ contained in $\Delta_{1}^{(i)}$ completely. In case $\alpha_{2}<\alpha_{1}$ the rightmost of these contained in $\Delta_{1}^{(0)}$ is labelled by $B_{1}=\left[\frac{t_{1}}{q_{2}}, \frac{t_{1}+1}{q_{2}}\right]$ (in case $\alpha_{2}>\alpha_{1}$ the leftmost of these contained in $\Delta_{1}^{(0)}$ is labelled by B_{1} analogously). The union of these chosen intervals $\left[\frac{t}{q_{2}}, \frac{t+1}{q_{2}}\right]$ will be denoted by F_{1} and they will be numbered serially by the dynamical order determined by the induced map $f_{1}^{h_{1}\left(F_{1}\right)}$, the first one being $h_{1}\left(B_{1}\right)$. We note that there are $N_{1}:=\left\lfloor\frac{q_{2} \cdot\left(1-\frac{3}{8}\right)}{d_{1} q_{1}}\right\rfloor \cdot d_{1} q_{1}$ numbers on the first level.

We proceed by an inductive process describing the constructions on the level $n \geq 2$ under the induction assumptions that $B_{n-1}=\left[\frac{t_{n-1}}{q_{n}}, \frac{t_{n-1}+1}{q_{n}}\right]$ is the base level of level $n-1$ and that there are

$$
N_{n-1}=q_{1} \cdot \prod_{i=1}^{n-1}\left\lfloor\frac{q_{i+1} \cdot\left(1-\frac{3}{4 \cdot 2^{i}}\right)}{d_{i} q_{i}}\right\rfloor \cdot d_{i}
$$

chosen intervals $\left(f_{n-1}^{H_{n-1}\left(F_{n-1}\right)}\right)^{l}\left(H_{n-1}\left(B_{n-1}\right)\right)$ in $H_{n-1}\left(F_{n-1}\right)$.
We consider $f_{n}=H_{n} \circ R_{\alpha_{n+1}} \circ H_{n}^{-1}$ with $\alpha_{n+1}>\alpha_{n}$ (the proof in the case $\alpha_{n+1}<\alpha_{n}$ is similar). Let $\Delta_{n}^{\left(t_{n-1}, i\right)}=\left[\frac{t_{n-1}}{q_{n}}+\frac{i}{d_{n} q_{n}}+\frac{1}{2 \cdot 2^{n} \cdot d_{n} q_{n}}, \frac{t_{n-1}}{q_{n}}+\frac{i+1}{d_{n} q_{n}}-\frac{1}{4 \cdot 2^{n} \cdot d_{n} q_{n}}\right] \subset B_{n-1}$ for $i=$ $0, \ldots, d_{n}-1$. In each of these we choose $\left\lfloor\frac{q_{n+1} \cdot\left(1-\frac{3}{4 \cdot 2 n}\right)}{d_{n} q_{n}}\right\rfloor$ intervals $\left[\frac{s}{q_{n+1}}, \frac{s+1}{q_{n+1}}\right]$ contained in it and denote their union by $F_{n}^{(1, i)}$. The collective union of these chosen $\frac{1}{q_{n+1}}$-intervals is called $F_{n}^{(1)}$ and the leftmost of all of these is labelled by $B_{n}=\left[\frac{t_{n}}{q_{n+1}}, \frac{t_{n}+1}{q_{n+1}}\right]$.
On each of the other chosen intervals $\left[\frac{t}{q_{n}}, \frac{t+1}{q_{n}}\right] \subset F_{n-1} \backslash B_{n-1}$ we consider the intervals $\Delta_{n}^{(t, i)}=$ $\left[\frac{t}{q_{n}}+\frac{i}{d_{n} q_{n}}+\frac{1}{4 \cdot 2^{n} \cdot d_{n} q_{n}}, \frac{t}{q_{n}}+\frac{i+1}{d_{n} q_{n}}\right]$ of size slightly bigger than $\Delta_{n}^{\left(t_{n-1}, i\right)}$ and on each of these we chose all possible intervals $\left[\frac{s}{q_{n+1}}, \frac{s+1}{q_{n+1}}\right]$ contained in it. Let $F_{n}^{(2)}$ denote their union. Moreover,
we put $\tilde{F}_{n}=F_{n}^{(1)} \cup F_{n}^{(2)}$. Then we consider the iterates of $H_{n}\left(B_{n}\right)$ under $f_{n}^{H_{n}\left(\tilde{F_{n}}\right)}$. Put

$$
l_{0}=0, l_{m}=\min \left\{l \geq l_{m-1}+N_{n-1} \mid\left(f_{n}^{H_{n}\left(\tilde{F_{n}}\right)}\left(H_{n}\left(B_{n}\right)\right)\right)^{l} \subset H_{n}\left(F_{n}^{(1)}\right)\right\} \text { for } m \geq 1
$$

All the iterates $\left(f_{n}^{H_{n}\left(\tilde{F_{n}}\right)}\right)^{i}\left(H_{n}\left(B_{n}\right)\right), i=l_{m}, \ldots, l_{m}+N_{n-1}-1$ are numbered with " m " on the n-th level and their union is denoted by $B_{m}^{(n)}$. Note that $R_{\alpha_{n+1}}^{l}\left(B_{n}\right) \subset \Delta_{n}^{\left(t_{n-1}, i\right)}$ implies $R_{\alpha_{n+1}}^{l+k}\left(B_{n}\right) \subset F_{n}^{(2)} \cap \bigcup_{t \in \mathbb{Z}} \Delta_{n}^{(t, i)}$ for every $k=1, \ldots, N_{n-1}-1$ because

$$
N_{n-1} \cdot\left|\alpha_{n+1}-\alpha_{n}\right| \leq q_{n} \cdot 2\left|\alpha-\alpha_{n}\right| \leq \frac{1}{4 \cdot 2^{n} d_{n} q_{n}}
$$

due to Lemma 2.1. Hence, there are $\left\lfloor\frac{q_{n+1} \cdot\left(1-\frac{3}{4 \cdot 2^{n}}\right)}{d_{n} q_{n}}\right\rfloor \cdot d_{n}$ different numbers of the form l_{m} and we can choose

$$
\left\lfloor\frac{q_{n+1} \cdot\left(1-\frac{3}{4 \cdot 2^{n}}\right)}{d_{n} q_{n}}\right\rfloor \cdot d_{n} \cdot N_{n-1}
$$

iterates of B_{n} from the family \tilde{F}_{n}. The complete union of chosen $\frac{1}{q_{n+1}}$ intervals is called F_{n}. More precisely, we introduce the clusters

$$
\tilde{A}_{i}^{(n)}=\left\{R_{\alpha_{n+1}}^{l}(I) \mid I \in F_{n}^{(1, i)} . l=0, \ldots, N_{n-1}-1\right\} \text { and } A_{i}^{(n)}=H_{n}\left(\tilde{A}_{i}^{(n)}\right)
$$

for $i=0, \ldots, d_{n}-1$. Furthermore, let $\bar{A}_{i}^{(n)}$ denote the set of the corresponding numberings in F_{n}.

Lemma 2.2. We have

$$
m\left(A_{i_{n}}^{(n)}\right)=q_{1} \cdot \frac{\nu_{n}^{\left(i_{n}+1\right)}}{q_{n+1}} \cdot \prod_{i=1}^{n}\left\lfloor\frac{q_{i+1} \cdot\left(1-\frac{3}{4 \cdot 2^{i}}\right)}{d_{i} \cdot q_{i}}\right\rfloor \cdot d_{i}
$$

Proof. In order to compute $m\left(A_{i}^{(n)}\right)$ we point out that

$$
h_{n}\left(\left[\frac{t}{q_{n}}+\frac{i}{d_{n} q_{n}}+\frac{1}{2 \cdot 2^{n} \cdot d_{n} q_{n}}, \frac{t}{q_{n}}+\frac{i+1}{d_{n} q_{n}}-\frac{1}{4 \cdot 2^{n} \cdot d_{n} q_{n}}\right]\right) \subset\left[\frac{t}{q_{n}}, \frac{t+1}{q_{n}}\right]
$$

because h_{n} is a q_{n}-cyclic covering. For every $i=0, \ldots, d_{1}-1$ there are q_{1} intervals of type $\left[\frac{t}{q_{1}}+\frac{i}{d_{1} q_{1}}, \frac{t}{q_{1}}+\frac{i+1}{d_{1} q_{1}}\right]$ and each domain $\left[\frac{t}{q_{k}}+\frac{i}{d_{k} q_{k}}, \frac{t}{q_{k}}+\frac{i+1}{d_{k} q_{k}}\right] \subset F_{k-1}$ contains $\left\lfloor\frac{q_{k+1} \cdot\left(1-\frac{3}{4 \cdot 2^{k}}\right)}{d_{k} q_{k}}\right\rfloor$ many chosen intervals $\left[\frac{s}{q_{k+1}}, \frac{s+1}{q_{k+1}}\right]$. Everyone of these contains one domain of type

$$
\left[\frac{s}{q_{k+1}}+\frac{i}{d_{k+1} q_{k+1}}, \frac{s}{q_{k+1}}+\frac{i+1}{d_{k+1} q_{k+1}}\right]
$$

for each $i=0, \ldots, d_{k+1}-1$. Since for any fixed i the iterates $\left(f_{n}^{H_{n}\left(\tilde{F_{n}}\right)}\right)^{k}\left(H_{n}(I)\right), k=$ $l_{m}, \ldots, l_{m}+N_{n-1}-1$ of $I \in F_{n}^{(1, i)}$ meet every occurring domain $\Delta_{n}^{(t, i)}$ exactly once, we get
for $B_{m}^{(n)}$ in the situation of $\left.R_{\alpha_{n+1}}^{l_{m}}\right|_{\tilde{F}_{n}}\left(B_{n}\right) \subset F_{n}^{\left(1, i_{n}\right)}$:

$$
\begin{aligned}
& m\left(B_{m}^{(n)}\right) \\
= & \sum_{i_{1}=1}^{d_{1}} q_{1} \sum_{i_{2}=1}^{d_{2}}\left\lfloor\frac{q_{2} \cdot\left(1-\frac{3}{4 \cdot 2}\right)}{d_{1} q_{1}}\right\rfloor \cdots \sum_{i_{n-1}=1}^{d_{n-1}}\left\lfloor\frac{q_{n} \cdot\left(1-\frac{3}{4 \cdot 2^{n-1}}\right)}{d_{n-1} q_{n-1}}\right\rfloor \nu_{1}^{\left(i_{1}\right)} d_{1} \cdot \nu_{2}^{\left(i_{2}\right)} d_{2} \cdots \cdots \nu_{n}^{\left(i_{n}+1\right)} d_{n} \cdot \frac{1}{q_{n+1}} \\
= & q_{1}\left\lfloor\frac{q_{2} \cdot\left(1-\frac{3}{4 \cdot 2}\right)}{d_{1} q_{1}}\right\rfloor \ldots\left\lfloor\frac{q_{n} \cdot\left(1-\frac{3}{4 \cdot 2^{n-1}}\right)}{d_{n-1} q_{n-1}}\right\rfloor d_{1} \cdot d_{2} \cdots \cdot d_{n} \cdot \frac{\nu_{n}^{\left(i_{n}+1\right)}}{q_{n+1}}
\end{aligned}
$$

Then we have
$m\left(A_{i_{n}}^{(n)}\right)=q_{1}\left\lfloor\frac{q_{2} \cdot\left(1-\frac{3}{4 \cdot 2}\right)}{d_{1} q_{1}}\right\rfloor \ldots\left\lfloor\frac{q_{n} \cdot\left(1-\frac{3}{4 \cdot 2^{n-1}}\right)}{d_{n-1} q_{n-1}}\right\rfloor d_{1} \cdot d_{2} \cdots \cdots d_{n} \cdot \frac{\nu_{n}^{\left(i_{n}+1\right)}}{q_{n+1}} \cdot\left\lfloor\frac{q_{n+1} \cdot\left(1-\frac{3}{4 \cdot 2^{n}}\right)}{d_{n} q_{n}}\right\rfloor$
recalling that $\left\lfloor\frac{q_{n+1} \cdot\left(1-\frac{3}{4 \cdot \cdot 2 \pi}\right)}{d_{n} q_{n}}\right\rfloor$ numbers belong to this cluster.
By this Lemma we get for the set $E_{n}=H_{n}\left(F_{n}\right)$

$$
\begin{aligned}
m\left(E_{n}\right) & =\sum_{i_{n}=0}^{d_{n}-1} m\left(A_{i_{n}}^{(n)}\right) \\
& =q_{1}\left\lfloor\frac{q_{2} \cdot\left(1-\frac{3}{4 \cdot 2}\right)}{d_{1} q_{1}}\right\rfloor \ldots\left\lfloor\frac{q_{n} \cdot\left(1-\frac{3}{4 \cdot 2^{n-1}}\right)}{d_{n-1} q_{n-1}}\right\rfloor d_{1} \cdot d_{2} \cdots d_{n} \cdot \frac{1}{q_{n+1}} \cdot\left\lfloor\frac{q_{n+1} \cdot\left(1-\frac{3}{4 \cdot 2^{n}}\right)}{d_{n} q_{n}}\right\rfloor
\end{aligned}
$$

In particular, we observe

$$
m\left(E_{n}\right) \geq \prod_{i=1}^{n}\left(1-\frac{1}{2^{i}}\right)
$$

Moreover, we introduce the set

$$
E=\bigcap_{n \in \mathbb{N}} E_{n}
$$

$F_{n} \subset F_{n-1}$ for every $n \in \mathbb{N}$ implies $E_{n} \subset E_{n-1}$ and we conclude

$$
m(E) \geq \prod_{i=1}^{\infty}\left(1-\frac{1}{2^{i}}\right)>0
$$

By Dye's Theorem $\left(E, \mathcal{L}^{E}, m^{E}, f^{E}\right)$ is orbit equivalent to $\left(\mathbb{S}^{1}, \mathcal{L}, m, f\right)$ (Ka79), Theorem 1.5), where \mathcal{L} is the σ-algebra of the Lebesgue measurable subsets of \mathbb{S}^{1}. Hence, it is sufficient to examine the induced system:

Lemma 2.3. The induced system $\left(E, \mathcal{L}^{E}, m^{E}, f^{E}\right)$ is orbit equivalent to the odometer of product type $\mathcal{O}\left(\left(M_{k} d_{k}\right)_{k \in \mathbb{N}},\left\{\nu_{k}^{*}\right\}\right)$, where $M_{k}=\left\lfloor\frac{q_{k+1} \cdot\left(1-\frac{3}{4 \cdot 2^{k}}\right)}{d_{k} q_{k}}\right\rfloor$ and $\nu_{k}^{*}(t)=M_{k}^{-1} \nu_{k}(i)$ for $t \in \bar{A}_{i}^{(k)}$, $i=0, \ldots, d_{k}-1$.

Proof. The element $\left(t_{k}\right)_{k \in \mathbb{N}} \in \prod_{k \in \mathbb{N}}\left\{0, \ldots, M_{k} d_{k}-1\right\}$ corresponds to

$$
\left\{x \in E \mid x \in \bigcap_{k \in \mathbb{N}} H_{k}\left(B_{t_{k}}^{(k)}\right)\right\} .
$$

The domains were introduced and labelled by numbers in such a way that f_{n} imitates the behaviour of the odometer up to level n and for the first q_{n+1} iterates. By the same calculations as above we get for $B_{m}^{(n)}$ in the situation of $\left.R_{\alpha_{n+1}}^{l_{m}}\right|_{\tilde{F}_{n}}\left(B_{n}\right) \subset F_{n}^{\left(1, i_{n}\right)}$:

$$
\frac{m\left(H_{n}\left(B_{m}^{(n)}\right) \cap E\right)}{m(E)}=\frac{\nu_{n}^{\left(i_{n}+1\right)}}{\left\lfloor\frac{q_{n+1} \cdot\left(1-\frac{3}{4 \cdot 2^{n}}\right)}{d_{n} q_{n}}\right\rfloor}
$$

and

$$
\frac{m\left(A_{i_{n}}^{(n)} \cap E\right)}{m(E)}=\nu_{n}^{\left(i_{n}+1\right)}=\nu_{n}\left(\left\{i_{n}\right\}\right)
$$

Moreover, we have for $B_{m_{k}}^{(k)}$ in the situation of $\left.R_{\alpha_{k+1}}^{l_{m_{k}}}\right|_{\tilde{F}_{k}}\left(B_{k}\right) \subset F_{k}^{\left(1, i_{k}\right)}$:

$$
\frac{m\left(\bigcap_{k=1}^{N} H_{k}\left(B_{m_{k}}^{(n)}\right) \cap E\right)}{m(E)}=\prod_{k=1}^{N} \frac{\nu_{k}^{\left(i_{k}+1\right)}}{\left\lfloor\frac{q_{k+1} \cdot\left(1-\frac{3}{4 \cdot 2^{k}}\right)}{d_{k} q_{k}}\right\rfloor}
$$

Finally, we use the subsequent result on orbit equivalence of odometers stated in Ka79, Theorem 1.8:

Lemma 2.4. Let $\mathcal{O}\left(\left(d_{k}\right)_{k \in \mathbb{N}},\left\{\nu_{k}\right\}_{k \in \mathbb{N}}\right)$ be an odometer of product type. For every $k \in \mathbb{N}$ let M_{k} be a positive integer and ν_{k}^{*} be a probability measure on $A=\left\{0,1, \ldots, M_{k} d_{k}-1\right\}$ such that there exists a partition $A=\bigcup_{j} A_{j}$ where $\# A_{j}=M_{k}$ and $\nu_{k}^{*}(n)=M_{k}^{-1} \nu_{k}(j)$ for $n \in A_{j}$, $j=0, \ldots, d_{k}-1$. Then $\mathcal{O}\left(\left(M_{k} d_{k}\right)_{k \in \mathbb{N}},\left\{\nu_{k}^{*}\right\}_{k \in \mathbb{N}}\right)$ is orbit equivalent to $\mathcal{O}\left(\left(d_{k}\right)_{k \in \mathbb{N}},\left\{\nu_{k}\right\}_{k \in \mathbb{N}}\right)$

Hereby, we conclude that $\left(\mathbb{S}^{1}, \mathcal{L}, m, f\right)$ is orbit equivalent to $\mathcal{O}\left(\left(d_{k}\right)_{k \in \mathbb{N}},\left\{\nu_{k}\right\}\right)$.

Acknowledgements

The author would like to thank the referee for careful proofreading and helpful comments.

References

[AK70] D. V. Anosov and A. Katok: New examples in smooth ergodic theory. Ergodic diffeomorphisms. Trudy Moskov. Mat. Obsc., 23: 3-36, 1970.
[FK04] B. Fayad and A. Katok: Constructions in elliptic dynamics. Ergodic Theory Dynam. Systems, 24 (5): 1477-1520, 2004.
[He79] M. R. Herman: Sur la conjugasion différentiable des difféomorphismes du cercle a des rotations. Publ. I. H. E. S., 49: 5-233, 1979.
[Ka79] Y. Katznelson: The action of diffeomorphism of the circle on the Lebesgue measure. Journal d'Analyse Mathématique, 36(1): 156-166, 1979.
[Kn64] K. Knopp: Theorie und Anwendungen der unendlichen Reihe. Springer, Berlin, 1964.
[Ku16] P. Kunde: Smooth diffeomorphisms with homogeneous spectrum and disjointness of convolutions. Journal of Modern Dynamics, 10: 439-481, 2016.
[Ma12] S. Matsumoto: Dense properties of the space of the circle diffeomorphisms with a Liouville number. Nonlinearity, 25: 1495-1511, 2012.
[Ma13] S. Matsumoto: A generic dimensional property of the invariant measures for circle diffeomorphisms. Journal of Modern Dynamics, 7: 553-563, 2013.
[Yo95] J.-C. Yoccoz: Centralisateurs et conjugasion différentiable des difféomorphismes du cercle. Astérisque, 231: 89-242, 1995.

