Talk on Mochizuki's paper

"Arithmetic elliptic curves in general position"

CMI Workshop in Oxford, December 2015 Ulf Kühn, Universität Hamburg

Overview

abc-conjecture.

Let $\epsilon > 0$, then there exists a $\kappa_{\epsilon} \in \mathbb{R}$ such that for any coprime $a, b, c \in \mathbb{N}$ with a + b = c we have

$$c \leq \kappa_\epsilon \Big(\prod_{\substack{p \mid abc \ p ext{ prime}}} p \Big)^{1+\epsilon}.$$

In this talk we report on Mochizuki's work on

Part I: the transfer of the abc-conjecture into an inequality for the height of points in $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ and its equivalent refinement for points in compactly bounded subsets of $\mathbb{P}^1 \setminus \{0, 1, \infty\}$.

Part II: a criterion for the surjectivity of the ℓ -adic Galois representation of elliptic curves without complex multiplication given in terms of the Faltings height.

arithmetic degree

K number field with ring of integers \mathcal{O}_K .

arithmetic divisor:

$$\sum_{\mathfrak{p}\in\mathsf{Spec}\,\mathcal{O}_{K}}a_{\mathfrak{p}}\,\mathfrak{p}+\sum_{\sigma:K\hookrightarrow\mathbb{C}}r_{\sigma}\,\sigma,\qquad a_{\mathfrak{p}}\in\mathbb{Z},\ r_{\sigma}\in\mathbb{R}$$

principal arithmetic divisor:

$$\widehat{\operatorname{div}}(f) := \sum_{\mathfrak{p} \in \operatorname{Spec} \mathcal{O}_K} \operatorname{ord}_{\mathfrak{p}}(f) \mathfrak{p} + \sum_{\sigma: K \hookrightarrow \mathbb{C}} -\log \|f\|_{\sigma} \sigma, \qquad f \in K^*$$

arithmetic degree:

$$\widehat{\deg} : \{\operatorname{arith.div.}\} / \{\operatorname{pr.arith.div.}\} \to \mathbb{R}$$
$$\sum_{\mathfrak{p}\in\operatorname{Spec}\mathcal{O}_{\mathcal{K}}} a_{\mathfrak{p}}\mathfrak{p} + \sum_{\sigma:\mathcal{K}\hookrightarrow\mathbb{C}} r_{\sigma}\sigma \mapsto \frac{1}{[\mathcal{K}:\mathbb{Q}]} \Big(\sum a_{\mathfrak{p}}\log\|\mathfrak{p}\| + \sum_{\sigma:\mathcal{K}\hookrightarrow\mathbb{C}} r_{\sigma}\Big)$$

Arakelov height function

 $X_{/K}$ smooth projective curve and L a line bundle on X

 $\mathcal{X} \to \operatorname{Spec} \mathcal{O}_K$ regular model for X, i.e. "arithmetic surface"

 $\overline{\mathcal{L}} = (\mathcal{L}, \|\cdot\|)$ hermitian line bundle for L on \mathcal{X} , i.e. a line bundle with smooth hermitian metric

 $P \in X(K)$ determines a section

$$P: \operatorname{Spec} \mathcal{O}_K \to \mathcal{X}$$

height function w.r.t. $\overline{\mathcal{L}}$ and \mathcal{X} :

$$\begin{array}{ccc} \mathsf{ht}_{\overline{\mathcal{L}}} : & X(K) \to \mathbb{R} \\ & P \mapsto \widehat{\mathsf{deg}}(P^*\overline{\mathcal{L}}) \end{array} \end{array}$$

(here $P^*\overline{\mathcal{L}}$ determines via the choice of a section an arithmetic divisor and $\widehat{\text{deg}}$ anihilates the dependence of that choice)

Fact: Other choices for the models \mathcal{X}, \mathcal{L} and $\|\cdot\|$ change the height by a bounded function, i.e. the **bounded discrepancy class** of the height function $ht_{\overline{\mathcal{L}}}$ is well-defined.

Proposition(Northcott+ ϵ)

Let *L* be an ample line bundle on *X*. For any $c \in \mathbb{R}$ we have

 $\sharp \big\{ P \in X(\overline{\mathbb{Q}}) \, \big| \, [K(P) : \mathbb{Q}] = d, \, \operatorname{ht}_{\bar{\mathcal{L}}}(P) < c \big\} < \infty.$

Example. Take $X = \mathbb{P}^1$, $\overline{\mathcal{L}} = (\mathcal{O}(1), \|\cdot\|_{F.S.})$ and $P = [r : s] \in \mathbb{P}^1(\mathbb{Q})$ with coprime $r, s \in \mathbb{Z}$, then we have

$$\operatorname{ht}_{\bar{\mathcal{L}}}(P) = \log \left(\sqrt{|r|^2 + |s|^2} \right).$$

Observe

$$\log (\max(|r|, |s|)) \leq \operatorname{ht}_{\overline{\mathcal{L}}}(P).$$

log different, log conductor

logarithmic discriminant: $P \in X(\overline{\mathbb{Q}})$ has a minimal field of definition K(P), then

$$\mathsf{log-diff}(P) := rac{1}{[K(P):\mathbb{Q}]} \mathsf{log} \left| D_{K(P)|\mathbb{Q}} \right|$$

logarithmic conductor relative to a divisor $D \subset X$: Choose extensions \mathcal{X} and \mathcal{D} , then for $P \in X(K)$ it is given by

$$\mathsf{log-cond}_D(P) := \widehat{\mathsf{deg}}((P^*\mathcal{D})_{\mathrm{red}})$$

Observe that, in both log-diff and log-cond the archimedean primes will not contribute.

Fact: Other choices for \mathcal{X} and \mathcal{D} change log-cond_D by a bounded function.

Example. Take $X = \mathbb{P}^1(\mathbb{Q})$, $D = 0 + 1 + \infty$ and P = [r : s] with coprime $r, s \in \mathbb{Z}$, then its logarithmic conductor w.r.t. D equals

$$\log$$
-cond_D(P) = $\sum_{p|r(s-r)s} \log(p)$.

Indeed, a prime number p contributes, if and only if

$$[r:s] \equiv \begin{cases} [0:1] \mod p & \text{if } p | r \\ [1:1] \mod p & \text{if } p | (s-r) \\ [1:0] \mod p & \text{if } p | s \end{cases}$$

uniform abc-conjecture.

On $\mathbb{P}^1(\overline{\mathbb{Q}}) \setminus D$ with $D = 0 + 1 + \infty$ we have for all $\epsilon > 0$ the inequality of bounded discrepancy classes

$$\mathsf{nt}_{\mathcal{O}(1)} < (1+\epsilon) (\mathsf{log-cond}_D + \mathsf{log-diff}).$$

Fact: implies abc-conjecture: take for a + b = c the point [a : c].

abc-conjecture \iff Vojta's height inequality

 $X_{/K}$ smooth, proper, geometrically connected curve $U_X := X \setminus D$ with $D \subseteq X$ a reduced divisor ω_X the canonical sheaf on X. hyperbolic pair: (X, D) s.t. $\deg(\omega_X(D)) > 0$, called trivial if $D = \emptyset$ $U_X(\overline{\mathbb{Q}})^{\leq d} \subseteq U_X(\overline{\mathbb{Q}})$ the subset of $\overline{\mathbb{Q}}$ -rational points defined over a

finite extension field of \mathbb{Q} of degree $\leq d$, for d a positive integer.

Theorem.(Bombieri, Elkies, Frankenhuysen, Vojta)

The following conjectures are equivalent

1) Uniform abc-conjecture

2) Vojta's height inequality (VHI): For any hyperbolic pair (X, D)and any $\epsilon > 0$ we have on $U_X(\overline{\mathbb{Q}})^{\leq d}$ the inequality of bounded discrepancy classes

$$\mathsf{ht}_{\omega_X(D)} < (1+\epsilon) (\mathsf{log-cond}_D + \mathsf{log-diff})$$

Proof: 2) \Rightarrow 1): just take the hyperbolic pair ($\mathbb{P}^1, 0 + 1 + \infty$)

1) \Rightarrow 2): need two steps first step: abc \Rightarrow VHI for trivial hyperbolic pairs second step: VHI for trivial hyperbolic pairs \Rightarrow VHI **Claim.** abc \Rightarrow VHI for trivial hyperbolic pairs.

Proof: Let Y be a hyperbolic curve, $\phi : Y \to \mathbb{P}^1$ a Belyi map and set $E = \phi^{-1}(D)$ with $D = 0 + 1 + \infty$, then $\omega_Y(E) = \phi^*(\omega_{\mathbb{P}^1}(D))$. Well-known functorialies and a generalised Chevalley-Weil theorem

$$\mathsf{log-diff}_{\mathbb{P}^1} + \mathsf{log-cond}_D \underset{\sim}{<} \mathsf{log-diff}_Y + \mathsf{log-cond}_E$$

imply

$$\begin{split} \mathsf{ht}_{\omega_Y} &= \mathsf{ht}_{\omega_Y(E)} - \mathsf{ht}_E = \mathsf{ht}_{\mathbb{P}^1(D)} - \mathsf{ht}_E \\ &\leq (1+\epsilon) \big(\mathsf{log-diff}_{\mathbb{P}^1} + \mathsf{log-cond}_D \big) - \mathsf{ht}_E \\ &\leq (1+\epsilon) \big(\mathsf{log-diff}_Y + \mathsf{log-cond}_E \big) - \mathsf{ht}_E \\ &\leq (1+\epsilon) \big(\mathsf{log-diff}_Y + \mathsf{ht}_E \big) - \mathsf{ht}_E \\ &\leq (1+\delta) \mathsf{log-diff}_Y \end{split}$$

in the last step we replaced ht_E by a multiple of ht_{ω_Y} .

Claim. VHI for trivial hyperbolic pairs \Rightarrow VHI.

Proof. Let (X, D) be a hyperbolic pair and choose $\phi : Y \to X$ to be a Galois cover, s.t. Y is hyperbolic, ϕ is etale over $X \setminus D$ and the ramification index equals a "large" p at each point of ramification. Then using well-known functorialities and a generalised Chevalley-Weil theorem

$$egin{aligned} \mathsf{ht}_{\omega_X(D)} &\lesssim (1+\delta)\,\mathsf{ht}_{\omega_Y} & ext{"large"} \ &\lesssim (1+\delta)^2\,\mathsf{log-diff}_Y & (VHI) \ &\lesssim (1+\delta)^2ig(\,\mathsf{log-diff}_X+\mathsf{log-cond}_Dig) \end{aligned}$$

Finally we replace $(1 + \delta)^2$ by $1 + \epsilon$.

Mochizuki: abc-conjecture for compactly bounded subsets

 $X_{/\mathbb{Q}}$ smooth projective curve

 $V \subset \mathbb{V}(\mathbb{Q})$ a finite subset of absolute values including the archimedean absolute values. For each $v \in V$ choose $\iota_v : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_v$.

Assume for each $v \in V$ we have a non-empty $\operatorname{Gal}(\overline{\mathbb{Q}}_v | \mathbb{Q}_v)$ -stable subset $\mathcal{K}_v \subsetneq X(\overline{\mathbb{Q}}_v)$, s.t. for every finite extension $K | \mathbb{Q}_v$, the set $\mathcal{K}_v \cap X(K)$ is a compact domain.

Definition

With the above data a compactly bounded subset is defined as

$$\mathcal{K}_{V} := \bigcup_{[L:\mathbb{Q}]<\infty} \Big\{ x \in X(L) \, \Big| \, \forall \sigma \in \operatorname{Gal}(L|\mathbb{Q}) \, : \, \iota_{v}(x^{\sigma}) \in \mathcal{K}_{v}, \, \forall v \in V \Big\}.$$

Observe $\mathcal{K}_V \subset X(\overline{\mathbb{Q}})$.

Theorem. (Mochizuki)

The following conjectures are equivalent:

1) Vojta's height inequality holds for hyperbolic pairs.

2) For compactly bounded subsets of $\mathbb{P}^1\setminus\{0,1,\infty\}$ the abc-conjecture holds.

Proof: 1) \Rightarrow 2): easy, VHI \Rightarrow abc \Rightarrow abc for compactly bounded subsets.

2) \Rightarrow 1): follows by contradiction using the following application of non-critical Belyi maps.

Lemma.

Let Σ be a finite set of prime numbers, Y a hyperbolic curve such that for some $\delta > 0$ the inequality $\operatorname{ht}_{\omega_Y} \leq (1 + \delta) \operatorname{log-diff}_Y$ is false on $Y(\overline{\mathbb{Q}})^{\leq d'}$ for some $d' \in \mathbb{N}$. Then there exists

(i) a positive integer $d \in \mathbb{N}$ and a sequence $(\xi_n)_{n \in \mathbb{N}}$, whose underlying set Ξ is contained in $Y(\overline{\mathbb{Q}})^d$ such that

$$\lim_{n\to\infty} \left| \operatorname{ht}_{\omega_Y}(\xi_n) - (1+\delta) \cdot \operatorname{log-diff}_Y(\xi_n) \right| = \infty$$

i.e. the Vojta height inequality is false on Ξ .

(ii) a Belyi map $\phi: Y \to \mathbb{P}^1$, non-critical at the points of Ξ

(iii) a compactly bounded subset $K_V \subset \mathbb{P}^1 \setminus \{0, 1, \infty\}$, whose support contains Σ , such that

$$\phi(\Xi) \subset {\mathcal K}_V igcap igl({\mathbb P}^1 \setminus \{0,1,\infty\}(\overline{\mathbb Q})igr)^{\leq d}$$

Proof: i) is clear

ii) + iii) Idea: w.l.o.g. the sequence ξ_n has finitely many *v*-adic accumulation point. Now, since further technical conditions are satisfied, there is a non-critical Belyi map, i.e. $\phi(\Xi) \not\supseteq \{0, 1, \infty\}$, whose image is contained in a compactly bounded subset.

If we consider $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ via the Legendre family as the moduli of elliptic curves with rational 2-torsion, then the abc-conjecture for compactly bounded subsets is nothing else than a variant of the Szpiro conjecture.

Szpiro conjecture on compactly bounded subsets.

Let $(E, \Gamma(2))_{/K}$ be a semi-stable elliptic curve with *K*-rational 2-torsion that is contained in \mathcal{K}_V , then

$$rac{1}{6}\log|\Delta_{E}| \mathop{<}\limits_{\sim} (1+arepsilon)ig(\log ext{-diff}(K) + \log ext{-cond}(E)ig).$$

Indeed we just used that on any compactly bounded subset \mathcal{K}_V we have $\frac{1}{6} \log |\Delta_E| = \operatorname{ht}_{\infty}(E)$. The bounded functions may depend on \mathcal{K}_V .

Resume on part I of this talk

- The techniques to prove all the results so far are standard.

- "VHI \iff abc conjecture", was known before. The consequent use of the generalised Chevalley-Weil theorem significantly improved the presentation of proof.
- The idea to study the abc-conjecture for compactly bounded subsets is new. The notion non-critical Belyi map is due to Mochizuki.
- additional references:

Bombieri-Gubler: Heights in Diophantine Geometry Vojta: Diophantine Approximations and Value distributions Matthes: Master thesis, Hamburg 2013

Motivation for part II

Full Galois action

Let $E_{/K}$ be an elliptic curve without complex multiplication and consider its ℓ -adic Galois representation

$$\rho_{\ell}: \operatorname{Gal}(\overline{\mathbb{Q}}|K) \longrightarrow \operatorname{GL}_2(\mathbb{Z}_{\ell}).$$

- 1) (Serre) There exists ℓ_0 s.t. ρ_ℓ is surjective for all $\ell > \ell_0$.
- 2) (Masser-Wüstholz, ..., Le Fourn) If $\ell \not\mid D_{K|\mathbb{Q}}$ and

$$\ell > 10^7 [K : \mathbb{Q}]^2 \Big(\max(\operatorname{ht}_{\operatorname{Fal}}(E), 985) + 4 \log[K : \mathbb{Q}] \Big)^2,$$

then ρ_ℓ is surjective.

3) (Mochizuki) There is an explicit constant C_{ϵ} s.t., if

$$\ell > 23040 \cdot 100 \cdot [K:\mathbb{Q}] \Big(\operatorname{ht}_{\operatorname{Fal}}(E) + C_{\epsilon} + [K:\mathbb{Q}]^{\epsilon} \Big),$$

 $\ell \not| D_{K|\mathbb{Q}}$ and if $SL_2(\mathbb{Z}_\ell) \not\subseteq Im(\rho_\ell)$, then *E* belongs to finite set.

Elliptic curves

 $E_{/K}$ elliptic curve over a number field K

For each $\sigma: {\sf K} \hookrightarrow \mathbb{C}$ we have

$$E_{\sigma}(\mathbb{C})\cong\mathbb{C}/(\mathbb{Z}+\mathbb{Z} au_{\sigma})\cong\mathbb{C}^*/q_{\sigma}^{\mathbb{Z}},$$

where $\text{Im}(\tau_{\sigma}) > 0$ and $q_{\sigma} = \exp(2\pi i \tau_{\sigma})$.

After replacing K by a finite extension we can assume that E has semi-stable reduction, i.e. for each $\mathfrak{p} \in \mathcal{O}_K$ the reduction of E is either an elliptic curve or a node.

 \mathcal{M}_{Ell} moduli space of semi-stable elliptic curves (if possible we supress that it is a stack). We have

$$\mathcal{M}_{\textit{Ell}}(\mathbb{C}) = \mathrm{SL}_2(\mathbb{Z}) \setminus \mathbb{H} \cup \{\infty\} = \mathbb{P}^1(\mathbb{C}).$$

 $\underline{\omega}_E := e^* \Omega_{\mathcal{E}/\mathcal{M}_{E''}}$ Hodge bundle, i.e. the modular form bundle since $\underline{\omega}_E^{12} \cong \mathcal{O}(\infty).$

The fiberwise flat metric $\|\cdot\|$ on $\underline{\omega}_E$ given by integration has a logarithmic singularity at the cusp ∞ .

Faltings height

Faltings height is the logarithmically singular height function given by

$$\begin{aligned} \mathsf{ht}_{Fal} : & \mathcal{M}_{Ell} \to \mathbb{R} \\ & E \mapsto \widehat{\mathsf{deg}} \left(\, E^*(\underline{\omega}_E, \|\cdot\|) \, \right). \end{aligned}$$

One shows that

$$\mathsf{ht}_{\mathsf{Fal}}(E) = \frac{1}{[K:\mathbb{Q}]} \cdot \Big(\log \big| \Delta_E^{\min} \big| - \sum_{\sigma: K \hookrightarrow \mathbb{C}} \log \big\| \Delta(\tau_{\sigma}) \big\|_{\mathsf{Pet}}^{1/12} \Big),$$

where Δ_E^{min} is the minimal discriminant of E and $\Delta(\tau)$ is the modular discriminant function.

Comparison.

We have with the abreviation $ht_{\infty} = ht_{\mathcal{O}_{\mathcal{M}_{E\!/\!/}}(\infty)}$,

$$\mathsf{ht}_\infty(E) < 12 \cdot (1+\epsilon) \,\mathsf{ht}_{\mathrm{Fal}}(E) < (1+\epsilon) \,\mathsf{ht}_\infty(E)$$

Proof: Follows from $12 \cdot ht_{Fal} < ht_{\infty}(E) - \log(ht_{\infty}(E))$

19 / 30

For the following we scale the metrics such that we have

$$\widehat{\operatorname{deg}}(\infty^* E) = \frac{1}{[K:\mathbb{Q}]}(E,\infty)_{\operatorname{fin}} \leq \operatorname{ht}_{\infty}(E)$$

and such that with a positive constant $\mathcal{C}_\infty \in \mathbb{R}$

$$\mathsf{ht}_{\infty} \leq 13 \cdot (\mathsf{ht}_{\mathrm{Fal}} + C_{\infty}).$$

Proposition. Let $\phi : A \to B$ be an isogeny of elliptic curves, then $\operatorname{ht}_{\operatorname{Fal}}(B) \leq \operatorname{ht}_{\operatorname{Fal}}(A) + \frac{1}{2} \log(\operatorname{deg}(\phi)).$

Proof: Ignore the finite contributions in the general formula

 $ht_{Fal}(B) - ht_{Fal}(A) =$ "finite contributions" +" metric contributions".

Tate curve

Near the cusp ∞ the universal elliptic curve ${\cal E}$ over ${\cal M}_{\it EII}$ is described by the Tate curve:

$$E_q: y^2 + xy = x^3 + a_4(q)x + a_6(q)$$

with explicit power series $a_4, a_6 \in q \mathbb{Z}[[q]]$ and q a local coordinate.

Let K be a local field and let $q \in K^*$ with 0 < |q| < 1. Then the analytic torus $K^*/q^{\mathbb{Z}}$ is isomorphic to the elliptic curve given by the Tate curve E_q .

Theorem.

Let E be an elliptic curve over a local field K. After finite extension of the ground field there are two possibilities:

(a) If $|j(E)| \leq 1$, then E has good reduction.

(b) If |j(E)| > 1, then E is isomorphic to $K^*/q^{\mathbb{Z}}$ for a unique $q \in K^*$ with 0 < |q| < 1. The *j*-invariant bijectively depends on q by $j(q) = \frac{1}{q} + f(q)$ with a power series $f(q) \in \mathbb{Z}[[q]]$.

Relating Galois theory to heights

Crucial observation

Let $E_{/K} \cong K^*/q^{\mathbb{Z}}$ be an elliptic curve curve with |j(E)| > 1 over a *p*-adic field *K* with normalised valuation ord_{v} , then $\operatorname{ord}_{v}(q)$ equals the intersection multiplicity of $E_{/R}$ with $\infty_{/R}$ in the arithmetic surface $\mathcal{M}_{EII,R}$ over the valuation ring *R* of *K*, i.e. the local height of *E* in the sense of Mochizuki

Let K be a *p*-adic field with normalized valuation ord_{v} , let $E_{/K}$ be an elliptic curve with |j(E)| = 1/|q| > 1, and let $\ell > 3$ be a prime not dividing $\operatorname{ord}_{v}(q)$. Then there is an element σ in the inertia subgroup of $\operatorname{Gal}(\overline{K}|K)$ which acts on the ℓ -torsion subgroup $E[\ell]$ of *E* via a matrix of the form $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. In other words, there is a basis $P_1, P_2 \in E[\ell]$ s. t.

$$\sigma(P_1) = P_1 + P_2$$
 and $\sigma(P_2) = P_2$.

Proof: Use the description $E_{/\bar{K}}[\ell] = \langle \zeta_{\ell}, q^{\frac{1}{\ell}} \rangle$.

Lemma. (rational $\Gamma_0(\ell)$ -structure)

Let $E_{/K}$ be a semi-stable elliptic curve over a number field K and let ℓ be a prime, which is prime to all local heights of E. If E has a $\Gamma_0(\ell)$ -structure, i.e. a K-rational subgroup $H \cong \mathbb{Z}/\ell\mathbb{Z}$, then there exist a positive constant $C_{\infty} \in \mathbb{R}$ s.t.

$$\ell \widehat{\deg}(\infty^* E) \le 13 \left(\operatorname{ht}_{\operatorname{Fal}}(E) + \frac{1}{2} \log(\ell) + C_{\infty} \right).$$
 (1)

Proof: Apply the height inequality

$$\widehat{\mathsf{deg}}(\infty^* E') \leq 13 (\operatorname{ht}_{\operatorname{Fal}}(E') + C_{\infty})$$

to the elliptic curve E' = E/H. The claim follows since at each prime of bad reduction $E' \cong E_{q'}$ with $q' = q^{\ell}$ and therefore

$$\widehat{\operatorname{deg}}(\infty^* E') = \ell \, \widehat{\operatorname{deg}}(\infty^* E)$$

and since the isogeny $E \rightarrow E/H$ has degree $|H| = \ell$

$$\mathsf{ht}_{\mathrm{Fal}}(E') = \mathsf{ht}_{\mathrm{Fal}}(E) + rac{1}{2} \log(\ell)$$

Proposition.

Let $E_{/K}$ be a non-CM semi-stable elliptic curve over a number field K with $d = [K : \mathbb{Q}]$. Let ℓ be a prime such that

$$\ell > \frac{2d}{\log(2)} \Big(14 \operatorname{ht}_{\operatorname{Fal}}(E) + 13 \log(d) + 13 C_{\infty} \Big).$$
 (2)

If *E* has a $\Gamma_0(\ell)$ -structure, then *E* belongs to a Galois-finite subset of $\mathcal{M}_{ell}(\overline{\mathbb{Q}})$.

Proof. Let v be the local height at a prime of bad reduction, then

$$v \frac{\log(2)}{d} \leq \widehat{\deg}(\infty^* E) \leq 13(\operatorname{ht}_{\operatorname{Fal}}(E) + C_{\infty}).$$

i.e.

$$v \leq rac{13d}{\log(2)} ig(\operatorname{ht}_{\operatorname{Fal}}(E) + C_{\infty} ig) < \ell.$$

Thus ℓ is coprime to all the local heights and the Lemma applies.

With $log(x) \le ax - log(a) - 1$ (different to Mochizuki) we then get

$$\ell rac{\log(2)}{d} \leq \widehat{\deg}(\infty^* E_H) \ \leq 13 \cdot \Big(\operatorname{ht}_{\operatorname{Fal}}(E) + rac{1}{2} \log(\ell) + C_\infty \Big) \ \leq 13 \cdot \Big(\operatorname{ht}_{\operatorname{Fal}}(E) + rac{1}{2} rac{\log(2)}{13d} \ell + \log\Big(rac{13}{\log(2)} d\Big) - 1 + C_\infty \Big).$$

Thus we get

$$\ell rac{\log(2)}{2d} \leq 13 \cdot \left(\operatorname{ht}_{\operatorname{Fal}}(E) + \log(d) + \log(13/\log(2)) - 1 + C_{\infty}
ight)$$

Replacing ℓ using assumption (2) we further derive

$$ht_{Fal}(E) \le 13 \cdot (\log(13/\log(2)) - 1) < 38,$$

which can only hold for finitely many elliptic curves.

Remark. Mochizuki gets a similar lower bound for ℓ which contains d^{ϵ} instead of $\log(d)$.

Mochizuki Theorem 3.8 (a)

Theorem (Full special linear Galois action)

Let *L* be a number field and $d = [L : \mathbb{Q}]$. Let $E_{/L}$ be an elliptic curve without complex multiplication. Let $\epsilon > 0$ and with some constant $C \in \mathbb{R}$ as before we let ℓ be a prime with

 $l \geq 23040 \cdot 100d (\operatorname{ht}_{\mathit{Fal}} + C + d^{\epsilon}).$

If the image of the Galois representation

 $\rho_{\ell}: \operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}}|L) \to \operatorname{Gl}_2(\mathbb{Z}_{\ell})$

does not contain $SL_2(\mathbb{Z}_\ell)$, then *E* belongs to a finite set.

Proof: For allmost all such ℓ the elliptic curve has no $\Gamma_0(\ell)$ structure, thus the Galois representation is irreducible. Since ℓ is prime to the local heights, it must contain the transvection $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, hence it must be the special linear group. (The factor 23040 eliminates some problems in 3 and 5.)

Mochizuki Theorem 3.8 (b)

Theorem (Full special linear Galois action on compactly bounded subsets)

Let *L* be a number field and $d = [L : \mathbb{Q}]$. Let $\mathcal{K}_V \subset \mathcal{M}_{Ell}$ be a compactly bounded subset. Let $E_{/L} \in \mathcal{K}_V$ be an elliptic curve without complex multiplication. Let ℓ be a prime which is coprime to all the local heights of *E* as well as to $2 \cdot 3 \cdot 5$. If the image of the Galois representation

$$\rho_{\ell}: \operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}}|L) \to \operatorname{Gl}_2(\mathbb{Z}_{\ell})$$

does not contain $SL_2(\mathbb{Z}_\ell)$, then *E* belongs to a finite set.

Proof: Analogous as before one shows: If $E_{/K}$ has a $\Gamma_0(\ell) - structure$ for a prime ℓ which is coprime to all the local heights, then E belongs to finite set. In fact, since we can neglect the archimedean contribution it is even simpler.

Mochizuki Corollary 4.3

Corollary. (Full Galois Actions for Degenerating Elliptic Curves)

Let $\overline{\mathbb{Q}}$ an algebraic closure of \mathbb{Q} ; $\epsilon \in \mathbb{R}_{>0}$. Then there exists a constant $C \in \mathbb{R}_{>0}$ and a Galois-finite subset $\mathfrak{E} \subseteq \mathcal{M}_{Ell}$ which satisfy the following property:

Let $E_{/L}$ be an elliptic curve over a number field $L \subset \mathbb{Q}$, where L is a minimal field of definition of the point $[E_{/L}] \in \mathcal{M}_{Ell}(\overline{\mathbb{Q}})$, and $[E_{/L}] \notin \mathfrak{E}$; S a finite set of prime numbers. Suppose that $E_{/L}$ has at least one prime of potentially multiplicative reduction. Write $d = [L : \mathbb{Q}]$; $x_S \stackrel{\text{def}}{=} \sum p \in S \log(p)$. Then there exist prime numbers $\ell_{\circ}, \ell_{\bullet} \notin S$ which satisfy the following conditions:

(a) ℓ₀, ℓ_● are prime to the primes of potentially multiplicative reduction, as well as to the local heights, of E_{/L}. Moreover, ℓ_● is prime to the primes of Q that ramify in L, as well as to the ramification indices of primes of Q in L.
(b) The image of the Galois representation Gal(Q|L) → GL₂(Z_{ℓ0}) associated to E_{/L} contains SL₂(Z_{ℓ0}). The Galois representation Gal(Q|L) → GL₂(Z_{ℓ0}) associated to E_{/L} is surjective.

(c) The inequalities

$$\ell_{\circ} \leq 23040 \cdot 900d \cdot \operatorname{ht}_{Fal}([E_{/L}]) + 2x_{S} + C \cdot d^{1+\epsilon}$$

$$\ell_{\bullet} \leq 23040 \cdot 900d \cdot \operatorname{htf}_{Fal}([E_{/L}]) + 6d \cdot \operatorname{log-diff}_{\mathcal{M}_{Ell}}([E_{/L}])) + 2x_{S} + C \cdot d^{1+\epsilon}$$

hold.

Mochizuki Corollary 4.4

Corollary (Full Galois Actions for Compactly Bounded Subsets)

Galois representation $\operatorname{Gal}(\overline{\mathbb{Q}}|L) \to \operatorname{GL}_2(\mathbb{Z}_{\ell_{\bullet}})$ associated to $E_{/L}$ is surjective.

Let $\overline{\mathbb{Q}}$ an algebraic closure of \mathbb{Q} ; $\mathcal{K}_V \subseteq \mathcal{M}_{Ell}(\overline{\mathbb{Q}})$ a compactly bounded subset. Then there exists a constant $C \in \mathbb{R}_{>0}$ and a Galois-finite subset $\mathfrak{E} \subseteq \mathcal{M}_{Ell}$ which satisfy the following property: Let $E_{/L}$ be an elliptic curve over a number field $L \subset \overline{\mathbb{Q}}$, where L is a minimal field of definition of the point $[E_{/L}] \in \mathcal{M}_{Ell}(\overline{\mathbb{Q}})$, and $[E_{/L}] \notin \mathfrak{E}$; S a finite set of prime numbers. Write $d = [L : \mathbb{Q}]$; $x_S \stackrel{\text{def}}{=} \sum p \in S \log(p)$. Then there exist prime numbers ℓ_{\circ} , $\ell_{\bullet} \notin S$ which satisfy the following conditions: (a) ℓ_{\circ} , ℓ_{\bullet} are prime to the primes of potentially multiplicative reduction, as well as to the local heights, of $E_{/L}$. Moreover, ℓ_{\bullet} is prime to the primes of \mathbb{Q} that ramify in L, as well as to the ramification indices of primes of \mathbb{Q} in L. (b) The image of the Galois representation $\operatorname{Gal}(\overline{\mathbb{Q}}|L) \to \operatorname{GL}_2(\mathbb{Z}_{\ell_{\circ}})$ associated to $E_{/L}$ contains $\operatorname{SL}_2(\mathbb{Z}_{\ell_{\circ}})$. The

(c) The inequalities

 $\ell_{\circ} \leq 23040 \cdot 100d \cdot \operatorname{ht}_{Fal}([E_{/L}]) + 2x_{S} + C \cdot d$ $\ell_{\bullet} \leq 23040 \cdot 100d \cdot \operatorname{ht}_{Fal}([E_{/L}]) + 6d \cdot \operatorname{log-diff}_{\mathcal{M}_{Fll}} + 2x_{S} + C \cdot d$

hold.

Resume on Part II of this talk

The techniques to prove all the results so far are standard.
 References:

Cornell-Silverman: Arithmetic geometry Serre: Abelian *l*-adic Representations and Elliptic Curves Silverman: Advanced topics on elliptic curves