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Overview

abc-conjecture.

Let ✏ > 0, then there exists a ✏ 2 R such that for any coprime
a, b, c 2 N with a+ b = c we have

c  ✏
⇣

Y

p|abc
p prime

p
⌘

1+✏
.

In this talk we report on Mochizuki’s work on

Part I: the transfer of the abc-conjecture into an inequality for the
height of points in P1 \ {0, 1,1} and its equivalent refinement for
points in compactly bounded subsets of P1 \ {0, 1,1}.
Part II: a criterion for the surjectivity of the `-adic Galois
representation of elliptic curves without complex multiplication
given in terms of the Faltings height.

2 / 30



arithmetic degree
K number field with ring of integers OK .

arithmetic divisor:
X

p2SpecOK

ap p+
X

�:K ,!C

r� �, ap 2 Z, r� 2 R

principal arithmetic divisor:

cdiv(f ) :=
X

p2SpecOK

ordp(f ) p+
X

�:K ,!C

� log kf k��, f 2 K ⇤

arithmetic degree:

ddeg : {arith.div.}/{pr.arith.div.} ! R
X

p2SpecOK

ap p+
X

�:K ,!C

r�� 7! 1

[K : Q]

⇣

X

ap log kpk+
X

�:K ,!C

r�
⌘
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Arakelov height function

X/K smooth projective curve and L a line bundle on X

X ! SpecOK regular model for X , i.e. ”arithmetic surface”

L̄ = (L, k · k) hermitian line bundle for L on X , i.e. a line bundle
with smooth hermitian metric

P 2 X (K ) determines a section

P : SpecOK ! X

height function w.r.t. L̄ and X :

htL : X (K ) ! R

P 7! ddeg(P⇤L )

(here P⇤L determines via the choice of a section an arithmetic

divisor and ddeg anihilates the dependence of that choice)
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Fact: Other choices for the models X ,L and k · k change the
height by a bounded function, i.e. the bounded discrepancy

class of the height function htL is well-defined.

Proposition(Northcott+✏)

Let L be an ample line bundle on X . For any c 2 R we have

]
�

P 2 X (Q)
�

� [K (P) : Q] = d , ht
¯L(P) < c

 

< 1.

Example. Take X = P1, L̄ = (O(1), k · kF .S .) and
P = [r : s] 2 P1(Q) with coprime r , s 2 Z, then we have

ht
¯L(P) = log

�

q

|r |2 + |s|2�.

Observe
log

�

max( |r |, |s| )�  ht
¯L(P).
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log di↵erent, log conductor

logarithmic discriminant: P 2 X (Q) has a minimal field of
definition K (P), then

log-di↵(P) :=
1

[K (P) : Q]
log

�

�DK(P)|Q
�

�

logarithmic conductor relative to a divisor D ⇢ X : Choose
extensions X and D, then for P 2 X (K ) it is given by

log-condD(P) := ddeg((P⇤D)red)

Observe that, in both log-di↵ and log-cond the archimedean
primes will not contribute.

Fact: Other choices for X and D change log-condD by a bounded
function.
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Example. Take X = P1(Q), D = 0 + 1 +1 and P = [r : s] with
coprime r , s 2 Z, then its logarithmic conductor w.r.t. D equals

log-condD(P) =
X

p|r(s�r)s

log(p).

Indeed, a prime number p contributes, if and only if

[r : s] ⌘

8

>

<

>

:

[0 : 1] mod p if p|r
[1 : 1] mod p if p|(s � r)

[1 : 0] mod p if p|s

uniform abc-conjecture.

On P1(Q) \ D with D = 0 + 1 +1 we have for all ✏ > 0 the
inequality of bounded discrepancy classes

htO(1)

<
⇠
(1 + ✏)

�

log-condD + log-di↵
�

.

Fact: implies abc-conjecture: take for a+ b = c the point [a : c].
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abc-conjecture () Vojta’s height inequality

X/K smooth, proper, geometrically connected curve

UX := X \ D with D ✓ X a reduced divisor

!X the canonical sheaf on X .

hyperbolic pair: (X ,D) s.t. deg(!X (D)) > 0, called trivial if D = ;
UX (Q)d ✓ UX (Q) the subset of Q-rational points defined over a
finite extension field of Q of degree  d , for d a positive integer.
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Theorem.(Bombieri, Elkies, Frankenhuysen, Vojta)

The following conjectures are equivalent

1) Uniform abc-conjecture

2) Vojta’s height inequality (VHI): For any hyperbolic pair (X ,D)
and any ✏ > 0 we have on UX (Q)d the inequality of bounded
discrepancy classes

ht!X (D)

<
⇠
(1 + ✏)

�

log-condD + log-di↵
�

Proof: 2) ) 1): just take the hyperbolic pair (P1, 0 + 1 +1)

1) ) 2): need two steps
first step: abc ) VHI for trivial hyperbolic pairs
second step: VHI for trivial hyperbolic pairs ) VHI
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Claim. abc ) VHI for trivial hyperbolic pairs.

Proof: Let Y be a hyperbolic curve, � : Y ! P1 a Belyi map and
set E = ��1(D) with D = 0 + 1 +1, then !Y (E ) = �⇤(!P1

(D)).
Well-known functorialies and a generalised Chevalley-Weil theorem

log-di↵P1

+ log-condD <
⇠
log-di↵Y + log-condE

imply

ht!Y
=⇠ ht!Y (E)

� htE =⇠ htP1

(D)

� htE

<
⇠
(1 + ✏)

�

log-di↵P1

+ log-condD
�� htE (abc)

<
⇠
(1 + ✏)

�

log-di↵Y + log-condE
�� htE

<
⇠
(1 + ✏)

�

log-di↵Y +htE )� htE

<
⇠
(1 + �) log-di↵Y

in the last step we replaced htE by a multiple of ht!Y
. ⇤
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Claim. VHI for trivial hyperbolic pairs ) VHI.

Proof. Let (X ,D) be a hyperbolic pair and choose � : Y ! X to
be a Galois cover, s.t. Y is hyperbolic, � is etale over X \ D and
the ramification index equals a ”large” p at each point of
ramification. Then using well-known functorialities and a
generalised Chevalley-Weil theorem

ht!X (D)

<
⇠
(1 + �) ht!Y

”large”

<
⇠
(1 + �)2 log-di↵Y (VHI )

<
⇠
(1 + �)2

�

log-di↵X + log-condD
�

Finally we replace (1 + �)2 by 1 + ✏. ⇤
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Mochizuki: abc-conjecture for compactly bounded subsets

X/Q smooth projective curve

V ⇢ V(Q) a finite subset of absolute values including the
archimedean absolute values. For each v 2 V choose ◆v : Q ,! Qv .

Assume for each v 2 V we have a non-empty Gal(Qv |Qv )-stable
subset Kv ( X (Qv ), s.t. for every finite extension K |Qv , the set
Kv \ X (K ) is a compact domain.

Definition

With the above data a compactly bounded subset is defined as

KV :=
[

[L:Q]<1

n

x 2 X (L)
�

�

�

8� 2 Gal(L|Q) : ◆v (x
�) 2 Kv , 8v 2 V

o

.

Observe KV ⇢ X (Q).
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Theorem. (Mochizuki)

The following conjectures are equivalent:

1) Vojta’s height inequality holds for hyperbolic pairs.

2) For compactly bounded subsets of P1 \ {0, 1,1} the
abc-conjecture holds.

Proof: 1))2): easy, VHI ) abc ) abc for compactly bounded
subsets.
2))1): follows by contradiction using the following application of
non-critical Belyi maps.
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Lemma.

Let ⌃ be a finite set of prime numbers, Y a hyperbolic curve such
that for some � > 0 the inequality ht!Y

<
⇠
(1 + �) log-di↵Y is false

on Y (Q)d 0
for some d 0 2 N. Then there exists

(i) a positive integer d 2 N and a sequence (⇠n)n2N, whose
underlying set ⌅ is contained in Y (Q)d such that

lim
n!1

�

� ht!Y
(⇠n)� (1 + �) · log-di↵Y (⇠n)

�

� = 1

i.e. the Vojta height inequality is false on ⌅.

(ii) a Belyi map � : Y ! P1, non-critical at the points of ⌅

(iii) a compactly bounded subset KV ⇢ P1 \ {0, 1,1}, whose
support contains ⌃, such that

�(⌅) ⇢ KV

\

�

P1 \ {0, 1,1}(Q)
�d

.
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Proof: i) is clear
ii) + iii) Idea: w.l.o.g. the sequence ⇠n has finitely many v -adic
accumulation point. Now, since further technical conditions are
satisfied, there is a non-critical Belyi map, i.e. �(⌅) 6� {0, 1,1},
whose image is contained in a compactly bounded subset. ⇤
If we consider P1 \ {0, 1,1} via the Legendre family as the moduli
of elliptic curves with rational 2-torsion, then the abc-conjecture
for compactly bounded subsets is nothing else than a variant of the
Szpiro conjecture.

Szpiro conjecture on compactly bounded subsets.

Let
�

E , �(2)
�

/K
be a semi-stable elliptic curve with K -rational

2-torsion that is contained in KV , then

1

6
log |�E | <⇠ (1 + ")

�

log-di↵(K ) + log-cond(E )
�

.

Indeed we just used that on any compactly bounded subset KV we
have 1

6

log |�E | =⇠ ht1(E ). The bounded functions may depend on

KV .
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Resume on part I of this talk

– The techniques to prove all the results so far are standard.

– ”VHI () abc conjecture”, was known before. The consequent
use of the generalised Chevalley-Weil theorem significantly
improved the presentation of proof.

– The idea to study the abc-conjecture for compactly bounded
subsets is new. The notion non-critical Belyi map is due to
Mochizuki.

– additional references:
Bombieri-Gubler: Heights in Diophantine Geometry
Vojta: Diophantine Approximations and Value distributions
Matthes: Master thesis, Hamburg 2013
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Motivation for part II
Full Galois action

Let E/K be an elliptic curve without complex multiplication and
consider its `-adic Galois representation

⇢` : Gal(Q|K ) �! GL2(Z`).

1) (Serre) There exists `
0

s.t. ⇢` is surjective for all ` > `
0

.

2) (Masser-Wüstholz, ..., Le Fourn) If ` 6 |DK |Q and

` > 107[K : Q]2
⇣

max( htFal(E ), 985) + 4 log[K : Q]
⌘

2

,

then ⇢` is surjective.

3) (Mochizuki) There is an explicit constant C✏ s.t., if

` > 23040 · 100 · [K : Q]
⇣

htFal(E ) + C✏ + [K : Q]✏
⌘

,

` 6 |DK |Q and if SL
2

(Z`) 6✓ Im(⇢`), then E belongs to finite set.
17 / 30



Elliptic curves
E/K elliptic curve over a number field K

For each � : K ,! C we have

E�(C) ⇠= C/
�

Z+ Z⌧�
� ⇠= C⇤/qZ� ,

where Im(⌧�) > 0 and q� = exp(2⇡i⌧�).

After replacing K by a finite extension we can assume that E has
semi-stable reduction, i.e. for each p 2 OK the reduction of E is
either an elliptic curve or a node.

MEll moduli space of semi-stable elliptic curves (if possible we
supress that it is a stack). We have

MEll(C) = SL
2

(Z)\H [ {1} = P1(C).

!E := e⇤⌦E/MEll
Hodge bundle, i.e. the modular form bundle since

!12

E
⇠= O(1).

The fiberwise flat metric k · k on !E given by integration has a
logarithmic singularity at the cusp 1.
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Faltings height
Faltings height is the logarithmically singular height function given
by

htFal : MEll !R

E 7!ddeg
�

E ⇤(!E , k · k)
�

.

One shows that

htFal(E ) =
1

[K : Q]
·
⇣

log
�

��min
E

�

��
X

�:K ,!C

log k�(⌧�)k1/12Pet

⌘

,

where �min
E is the minimal discriminant of E and �(⌧) is the

modular discriminant function.

Comparison.

We have with the abreviation ht1 = htOMEll
(1)

,

ht1(E ) <
⇠
12 · (1 + ✏) htFal(E ) <⇠

(1 + ✏) ht1(E )

Proof: Follows from 12 · htFal <⇠ ht1(E )� log
�

ht1(E )
�

⇤
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For the following we scale the metrics such that we have

ddeg(1⇤E ) =
1

[K : Q]
(E ,1)fin  ht1(E )

and such that with a positive constant C1 2 R

ht1  13 · � htFal+C1
�

.

Proposition.

Let � : A ! B be an isogeny of elliptic curves, then

htFal(B)  htFal(A) +
1

2
log(deg(�)).

Proof: Ignore the finite contributions in the general formula

htFal(B)�htFal(A) = ”finite contributions”+”metric contributions”.

⇤
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Tate curve
Near the cusp 1 the universal elliptic curve E over MEll is
described by the Tate curve:

Eq : y2 + xy = x3 + a
4

(q)x + a
6

(q)

with explicit power series a
4

, a
6

2 q Z[[q]] and q a local coordinate.

Let K be a local field and let q 2 K ⇤ with 0 < |q| < 1. Then the
analytic torus K ⇤/qZ is isomorphic to the elliptic curve given by
the Tate curve Eq.

Theorem.

Let E be an elliptic curve over a local field K. After finite extension
of the ground field there are two possibilities:

(a) If |j(E )|  1, then E has good reduction.

(b) If |j(E )| > 1, then E is isomorphic to K ⇤/qZ for a unique
q 2 K ⇤ with 0 < |q| < 1. The j-invariant bijectively depends on q
by j(q) = 1

q + f (q) with a power series f (q) 2 Z[[q]].
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Relating Galois theory to heights
Crucial observation

Let E/K
⇠= K ⇤/qZ be an elliptic curve curve with |j(E )| > 1 over a

p-adic field K with normalised valuation ordv , then ordv (q) equals
the intersection multiplicity of E/R with 1/R in the arithmetic
surface MEll ,R over the valuation ring R of K , i.e. the local height
of E in the sense of Mochizuki

Let K be a p-adic field with normalized valuation ordv , let E/K be
an elliptic curve with |j(E )| = 1/|q| > 1, and let ` > 3 be a prime
not dividing ordv (q). Then there is an element � in the inertia
subgroup of Gal(K̄ |K ) which acts on the `-torsion subgroup E [`]
of E via a matrix of the form ( 1 1

0 1

). In other words, there is a basis
P
1

,P
2

2 E [`] s. t.

�(P
1

) = P
1

+ P
2

and �(P
2

) = P
2

.

Proof: Use the description E/ ¯K [`] =
⌦

⇣`, q
1

`
↵

. ⇤
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Lemma. (rational �
0

(`)-structure)

Let E/K be a semi-stable elliptic curve over a number field K and
let ` be a prime, which is prime to all local heights of E . If E has a
�
0

(`)-structure, i.e. a K�rational subgroup H ⇠= Z/`Z, then there
exist a positive constant C1 2 R s.t.

`ddeg(1⇤E )  13
�

htFal(E ) +
1

2
log(`) + C1

�

. (1)

Proof: Apply the height inequality

ddeg(1⇤E 0)  13
�

htFal(E
0) + C1

�

to the elliptic curve E 0 = E/H. The claim follows since at each
prime of bad reduction E 0 ⇠= Eq0 with q0 = q` and therefore

ddeg(1⇤E 0) = `ddeg(1⇤E )

and since the isogeny E ! E/H has degree |H| = `

htFal(E
0) = htFal(E ) +

1

2
log(`)

⇤
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Proposition.

Let E/K be a non-CM semi-stable elliptic curve over a number field
K with d = [K : Q]. Let ` be a prime such that

` >
2d

log(2)

⇣

14 htFal(E ) + 13 log(d) + 13C1
⌘

. (2)

If E has a �
0

(`)-structure, then E belongs to a Galois-finite subset
of Mell(Q).

Proof. Let v be the local height at a prime of bad reduction, then

v
log(2)

d
 ddeg(1⇤E )  13

�

htFal(E ) + C1
�

.

i.e.

v  13d

log(2)

�

htFal(E ) + C1
�

< `.

Thus ` is coprime to all the local heights and the Lemma applies.
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With log(x)  ax � log(a)� 1 (di↵erent to Mochizuki) we then get

`
log(2)

d
 ddeg(1⇤EH)

 13 ·
⇣

htFal(E ) +
1

2
log(`) + C1

⌘

 13 ·
⇣

htFal(E ) +
1

2

log(2)

13d
`+ log

⇣ 13

log(2)
d
⌘

� 1 + C1
⌘

.

Thus we get

`
log(2)

2d
 13 · � htFal(E ) + log(d) + log(13/ log(2))� 1 + C1

�

Replacing ` using assumption (2) we further derive

htFal(E )  13 · � log(13/ log(2))� 1
�

< 38,

which can only hold for finitely many elliptic curves. ⇤
Remark. Mochizuki gets a similar lower bound for ` which
contains d ✏ instead of log(d).
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Mochizuki Theorem 3.8 (a)
Theorem (Full special linear Galois action)

Let L be a number field and d = [L : Q]. Let E/L be an elliptic
curve without complex multiplication. Let ✏ > 0 and with some
constant C 2 R as before we let ` be a prime with

l � 23040 · 100d� htFal +C + d ✏).

If the image of the Galois representation

⇢` : Gal(Q|L) ! Gl
2

(Z`)

does not contain SL
2

(Z`), then E belongs to a finite set.

Proof: For allmost all such ` the elliptic curve has no �
0

(`)
structure, thus the Galois representation is irreducible. Since ` is
prime to the local heights, it must contain the transvection ( 1 1

0 1

),
hence it must be the special linear group. ( The factor 23040
eliminates some problems in 3 and 5.) ⇤
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Mochizuki Theorem 3.8 (b)
Theorem (Full special linear Galois action on compactly
bounded subsets)

Let L be a number field and d = [L : Q]. Let KV ⇢ MEll be a
compactly bounded subset. Let E/L 2 KV be an elliptic curve
without complex multiplication. Let ` be a prime which is coprime
to all the local heights of E as well as to 2 · 3 · 5. If the image of
the Galois representation

⇢` : Gal(Q|L) ! Gl
2

(Z`)

does not contain SL
2

(Z`), then E belongs to a finite set.

Proof: Analogous as before one shows: If E/K has a
�
0

(`)� structure for a prime ` which is coprime to all the local
heights, then E belongs to finite set. In fact, since we can neglect
the archimedean contribution it is even simpler.

⇤
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Mochizuki Corollary 4.3

Corollary. (Full Galois Actions for Degenerating Elliptic Curves)

Let Q an algebraic closure of Q; ✏ 2 R>0

. Then there exists a constant C 2 R>0

and a Galois-finite subset

E ✓ MEll which satisfy the following property:

Let E/L be an elliptic curve over a number field L ⇢ Q, where L is a minimal field of definition of the point

[E/L] 2 MEll (Q) , and [E/L] /2 E ; S a finite set of prime numbers. Suppose that E/L has at least one prime of

potentially multiplicative reduction. Write d = [L : Q]; xS
def
=

P
p 2 S log(p). Then there exist prime numbers

`�, `• /2 S which satisfy the following conditions:

(a) `�, `• are prime to the primes of potentially multiplicative reduction, as well as to the local heights, of E/L.

Moreover, `• is prime to the primes of Q that ramify in L, as well as to the ramification indices of primes of Q in L.

(b) The image of the Galois representation Gal(Q|L) ! GL
2

(Z`� ) associated to E/L contains SL
2

(Z`� ). The

Galois representation Gal(Q|L) ! GL
2

(Z`• ) associated to E/L is surjective.

(c) The inequalities

`�  23040 · 900d · htFal ([E/L]) + 2xS + C · d1+✏

`•  23040 · 900d · htfFal ([E/L]) + 6d · log-di↵MEll
([E/L])) + 2xS + C · d1+✏

hold.
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Mochizuki Corollary 4.4

Corollary (Full Galois Actions for Compactly Bounded Subsets)

Let Q an algebraic closure of Q; KV ✓ MEll (Q) a compactly bounded subset.Then there exists a constant

C 2 R>0

and a Galois-finite subset E ✓ MEll which satisfy the following property:

Let E/L be an elliptic curve over a number field L ⇢ Q, where L is a minimal field of definition of the point

[E/L] 2 MEll (Q) , and [E/L] /2 E ; S a finite set of prime numbers. Write d = [L : Q]; xS
def
=

P
p 2 S log(p).

Then there exist prime numbers `�, `• /2 S which satisfy the following conditions:

(a) `�, `• are prime to the primes of potentially multiplicative reduction, as well as to the local heights, of E/L.

Moreover, `• is prime to the primes of Q that ramify in L, as well as to the ramification indices of primes of Q in L.

(b) The image of the Galois representation Gal(Q|L) ! GL
2

(Z`� ) associated to E/L contains SL
2

(Z`� ). The

Galois representation Gal(Q|L) ! GL
2

(Z`• ) associated to E/L is surjective.

(c) The inequalities

`�  23040 · 100d · htFal ([E/L]) + 2xS + C · d

`•  23040 · 100d · htFal ([E/L]) + 6d · log-di↵MEll
+2xS + C · d

hold.
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Resume on Part II of this talk

– The techniques to prove all the results so far are standard.

References:

Cornell-Silverman: Arithmetic geometry
Serre: Abelian `-adic Representations and Elliptic Curves
Silverman: Advanced topics on elliptic curves
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