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Overview

abc-conjecture.

Let € > 0, then there exists a k. € R such that for any coprime
a,b,c € N with a+ b= c we have

c < fﬂle( H p)HE.

p|abc
p prime

In this talk we report on Mochizuki's work on

Part I: the transfer of the abc-conjecture into an inequality for the
height of points in P!\ {0,1, 00} and its equivalent refinement for
points in compactly bounded subsets of P!\ {0, 1, 00}.

Part |l: a criterion for the surjectivity of the /-adic Galois
representation of elliptic curves without complex multiplication
given in terms of the Faltings height.

2/30



arithmetic degree
K number field with ring of integers O.

arithmetic divisor:

Z app + Z ly O, ay € L, ry € R
pESpec Ok o:K—=C

principal arithmetic divisor:

div(f):= Y ordy(F)p+ Y —log|flloo,  feK
pESpec Ok o:K—C

arithmetic degree:

deg : {arith.div.} /{pr.arith.div.} — R

1
SNooapt Y rga=>[K:Q](ZaplongH—l— 3 r(,)

pESpec Ok o:K—C
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Arakelov height function

X,k smooth projective curve and L a line bundle on X
X — Spec Ok regular model for X, i.e. "arithmetic surface”

L = (L,]|-]|]) hermitian line bundle for L on X, i.e. a line bundle
with smooth hermitian metric

P € X(K) determines a section

P :SpecOx — X

height function w.r.t. £ and X:

htz:  X(K)—R
P deg(P*L)

(here P*L determines via the choice of a section an arithmetic

—_—

divisor and deg anihilates the dependence of that choice)
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Fact: Other choices for the models X', £ and || - | change the
height by a bounded function, i.e. the bounded discrepancy
class of the height function ht is well-defined.

Proposition(Northcott+¢)

Let L be an ample line bundle on X. For any ¢ € R we have

1{P € X(Q)|[K(P):Q] =d, htz(P) < ¢} < 0.

Example. Take X =P, £ = (O(1),]| - ||r.s.) and
P = [r: s] € P}(Q) with coprime r,s € Z, then we have

htz(P) = log (\/MZ -+ \5\2).

Observe
og (max(|r],|s|)) < hez(P).
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log different, log conductor

logarithmic discriminant: P € X(Q) has a minimal field of
definition K(P), then

| 1
og-diff(P) := emy 7 198 [ Oxeial

logarithmic conductor relative to a divisor D C X: Choose
extensions X and D, then for P € X(K) it is given by

log-cond(P) := d/eE((P*D)red)

Observe that, in both log-diff and log-cond the archimedean
primes will not contribute.

Fact: Other choices for X and D change log-condp by a bounded
function.
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Example. Take X =P}(Q), D=0+ 1+ oo and P = [r : 5] with
coprime r,s € Z, then its logarithmic conductor w.r.t. D equals

log-condp(P) = Z log(p).
plr(s—r)s
Indeed, a prime number p contributes, if and only if
(0:1] mod p if p|r
[r:s]=q[1:1] modp if p|(s—r)

1:0] mod p if p|s

\

uniform abc-conjecture.

On PY(Q) \ D with D = 0+ 1 + co we have for all € > 0 the
inequality of bounded discrepancy classes

hto) < (1+ e)( log-cond , + log-diff )

Fact: implies abc-conjecture: take for a4+ b = ¢ the point [a : c].
7/30



abc-conjecture <= Vojta's height inequality

X,k smooth, proper, geometrically connected curve

Ux := X \ D with D C X a reduced divisor

wx the canonical sheaf on X.

hyperbolic pair: (X, D) s.t. deg(wx(D)) > 0, called trivial if D = ()

Ux(Q)=9 C Ux(Q) the subset of Q-rational points defined over a
finite extension field of Q of degree < d, for d a positive integer.
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Theorem.(Bombieri, Elkies, Frankenhuysen, Vojta)

The following conjectures are equivalent
1) Uniform abc-conjecture

2) Vojta's height inequality (VHI): For any hyperbolic pair (X, D)
and any € > 0 we have on Ux(Q)=9 the inequality of bounded
discrepancy classes

ht,, (D) < (1 + €) ( log-condp + log-diff )

Proof: 2) = 1): just take the hyperbolic pair (P1,0 4 1 + oo)

1) = 2): need two steps
first step: abc = VHI for trivial hyperbolic pairs
second step: VHI for trivial hyperbolic pairs = VHI
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Claim. abc = VHI for trivial hyperbolic pairs.

Proof: Let Y be a hyperbolic curve, ¢ : Y — P! a Belyi map and
set E = ¢~ 1(D) with D = 0+ 1 + oo, then wy(E) = ¢*(wp(D)).
Well-known functorialies and a generalised Chevalley-Weil theorem

log-diffp1 + log-condp < log-diffy 4 log-cond g

imply
htwy = Wt (£) — te = htpi(p) — hte
< (1 + €)( log-diffp + log-condp ) — htg (abc)
(1+ €)(log-diffy + log-condg ) — htg
< (1 + €)(log-diffy + htg) — htg
< (14 0) log-diffy

in the last step we replaced htg by a multiple of ht,,, . []

10/30



Claim. VHI for trivial hyperbolic pairs = VHI.

Proof. Let (X, D) be a hyperbolic pair and choose ¢ : Y — X to
be a Galois cover, s.t. Y is hyperbolic, ¢ is etale over X \ D and
the ramification index equals a "large” p at each point of
ramification. Then using well-known functorialities and a
generalised Chevalley-Weil theorem

ht, (D) < (1+0)hty, "large”
(14 0)%log-diffy,  (VHI)

A

AN

(1 + 6)(log-diffx + log-condy )

Finally we replace (1 +8)? by 1+ . ]
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Mochizuki: abc-conjecture for compactly bounded subsets

X/ smooth projective curve

V C V(Q) a finite subset of absolute values including the
archimedean absolute values. For each v € V choose ¢, : Q — Q,, .

Assume for each v € V we have a non-empty Gal(Q,|Q, )-stable
subset K, C X(Q,), s.t. for every finite extension K|Q,, the set
IC, N X(K) is a compact domain.

With the above data a compactly bounded subset is defined as

Ky = U {X e X(L) “v’a c Gal(L|Q) : ,(x?) e K, Vv € V}.
[L:Q] <0

y

Observe Ky C X(Q).
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Theorem. (Mochizuki)

The following conjectures are equivalent:
1) Vojta's height inequality holds for hyperbolic pairs.

2) For compactly bounded subsets of P! \ {0, 1,00} the
abc-conjecture holds.

Proof: 1)=2): easy, VHI = abc = abc for compactly bounded
subsets.

2)=1): follows by contradiction using the following application of
non-critical Belyi maps.
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Lemma.

Let > be a finite set of prime numbers, Y a hyperbolic curve such
that for some § > 0 the inequality ht,, < (1 + ¢) log-diffy is false

Y

on Y(Q)=? for some d’ € N. Then there exists

(i) a positive integer d € N and a sequence (&5,)nen, Whose
underlying set = is contained in Y(Q)Y such that

lim_ | hto,y (&) — (14 6) - log-diffy (£n)| = oo

i.e. the Vojta height inequality is false on =.
(ii) a Belyi map ¢ : Y — P!, non-critical at the points of =

(iii) a compactly bounded subset K\, C P!\ {0,1, 00}, whose
support contains X, such that

6(=) € Kv () (P*\ {0,1,00}(@))=".
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Proof: i) is clear

i) + iii) Idea: w.l.o.g. the sequence &, has finitely many v-adic
accumulation point. Now, since further technical conditions are
satisfied, there is a non-critical Belyi map, i.e. ¢(=) 2 {0,1,00},
whose image is contained in a compactly bounded subset. []

If we consider P!\ {0,1, 00} via the Legendre family as the moduli
of elliptic curves with rational 2-torsion, then the abc-conjecture
for compactly bounded subsets is nothing else than a variant of the
Szpiro conjecture.

Szpiro conjecture on compactly bounded subsets.

Let (E, F(2))/K be a semi-stable elliptic curve with K-rational
2-torsion that is contained in ICy/, then

1
: log |Ag| < (1 + €)( log-diff(K) + log-cond(E)).

Indeed we just used that on any compactly bounded subset K\ we
have %Iog |Ag| = htoo(E). The bounded functions may depend on

Ky.

y
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Resume on part | of this talk

— The techniques to prove all the results so far are standard.

— "VHI| <= abc conjecture”, was known before. The consequent
use of the generalised Chevalley-Weil theorem significantly
improved the presentation of proof.

— The idea to study the abc-conjecture for compactly bounded
subsets is new. The notion non-critical Belyi map is due to
Mochizuki.

— additional references:
Bombieri-Gubler: Heights in Diophantine Geometry
Vojta: Diophantine Approximations and Value distributions
Matthes: Master thesis, Hamburg 2013
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Motivation for part ||
Let E i be an elliptic curve without complex multiplication and
consider its /-adic Galois representation

pe - Gal(@\K) — GLQ(Zg).

1) (Serre) There exists £y s.t. py is surjective for all £ > /.
2) (Masser-Wiistholz, ..., Le Fourn) If £ /Dy g and

2
0> 107[K : Q2 ( max( htgai(E), 985) + 4 log[K : Q]) ,

then py is surjective.

3) (Mochizuki) There is an explicit constant C; s.t., if

¢ > 23040100 - [K : Q](htFal(E) + C +[K: Q]e),

{ fDk|q and if SLa(Z,) € Im(pg), then E belongs to finite set.
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Elliptic curves
E,k elliptic curve over a number field K

For each 0 : K — C we have
E,(C) = C/(Z+ Zr,) = C*/qy,
where Im(7,) > 0 and q, = exp(27iT,).

After replacing K by a finite extension we can assume that E has
semi-stable reduction, i.e. for each p € Ok the reduction of E is
either an elliptic curve or a node.

M g moduli space of semi-stable elliptic curves (if possible we
supress that it is a stack). We have

MEgi(C) = SLy(Z)\H U {oo} = P(C).
wg = € ¢/, Hodge bundle, i.e. the modular form bundle since
WE =2 O(00).

The fiberwise flat metric || - || on wg given by integration has a

logarithmic singularity at the cusp oc.
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Faltings height
Faltings height is the logarithmically singular height function given
by

htey @ Mgy —R
E —deg (E*(wg. |- 1))-
One shows that

1 min 1/12
ntrai(E) = ey (108 [AE" — D tog [l A() k),
' o:K—C

where A" is the minimal discriminant of E and A(7) is the
modular discriminant function.

Comparison.

We have with the abreviation ht,, = htOME”(OO),

htoo(E) < 12 (1 + €) htpu (E) < (1 + €) htoo(E)

Proof: Follows from 12 - htr, < hteo(E) — log (hteo(E)) ]
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For the following we scale the metrics such that we have

1
- [K:Q

and such that with a positive constant C, € R

deg(co*E) (E,00)sin < htoo(E)

htoo < 13- (htpa +Coo).

Let » : A — B be an isogeny of elliptic curves, then

htpa1(B) < htpa(A) + % log(deg(o)).

Proof: Ignore the finite contributions in the general formula
htga1(B)—htra1(A) = " finite contributions” +" metric contributions”.

]
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Tate curve

Near the cusp oo the universal elliptic curve £ over Mgy is
described by the Tate curve:

Eq:y® +xy = x° + as(q)x + a6(q)
with explicit power series as, as € q Z[[q]] and g a local coordinate.

Let K be a local field and let g € K* with 0 < |g| < 1. Then the
analytic torus K* /g% is isomorphic to the elliptic curve given by
the Tate curve E.

Let E be an elliptic curve over a local field K. After finite extension
of the ground field there are two possibilities:

(a) If [j(E)| <1, then E has good reduction.

(b) If [j(E)| > 1, then E is isomorphic to K*/q% for a unique
g € K* with 0 < |g| < 1. The j-invariant bijectively depends on ¢
by j(q) = % + f(q) with a power series f(q) € Z[[q]].
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Relating Galois theory to heights

Crucial observation

Let E/y = K*/q” be an elliptic curve curve with [j(E)| > 1 over a
p-adic field K with normalised valuation ord,, then ord,(q) equals
the intersection multiplicity of E g with oo/ in the arithmetic
surface Mg r over the valuation ring R of K, i.e. the local height
of E in the sense of Mochizuki

v

Let K be a p-adic field with normalized valuation ord,, let E/x be
an elliptic curve with [j(E)| =1/|q| > 1, and let £ > 3 be a prime
not dividing ord,(g). Then there is an element o in the inertia
subgroup of Gal(K|K) which acts on the /-torsion subgroup E[/]

of E via a matrix of the form (3 1). In other words, there is a basis
Pi, Py € E[f] s. t.

O'(Pl) =P+ P> and O'(Pg) = P».

=

Proof: Use the description E,z[(] = (Ce,q7). O

22 /30



Lemma. (rational [4(/)-structure)

Let E i be a semi-stable elliptic curve over a number field K and
let ¢ be a prime, which is prime to all local heights of E. If E has a
[o(¢)-structure, i.e. a K—rational subgroup H = Z/{Z, then there
exist a positive constant C, € R s.t.

(deg(oc”E) < 13(htra(E) + 5 log(f) + Cr). (1)

v

Proof: Apply the height inequality
deg(co*E’) < 13(htpa(E’) + Coo)

to the elliptic curve E’ = E/H. The claim follows since at each
prime of bad reduction E’ & E,, with ¢’ = q° and therefore

deg(o0*E') = ¢ deg(oc*E)
and since the isogeny E — E/H has degree |H| =/

1
htFal(E/) — htFal(E) + 5 |Og(€)
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Let E i be a non-CM semi-stable elliptic curve over a number field
K with d = [K : Q]. Let ¢ be a prime such that

2d
log(2)

If E has a ['g(¢)-structure, then E belongs to a Galois-finite subset
of Men(Q).

0> (14 htpa (E) + 13 log(d) + 13COO). (2)

Proof. Let v be the local height at a prime of bad reduction, then

log(2)
d

v < deg(00*E) < 13(htpa(E) + Coo).

o 13d
%

~ log(2)
Thus ¢ is coprime to all the local heights and the Lemma applies.

(htFal(E) + Coo) < /.
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With log(x) < ax — log(a) — 1 (different to Mochizuki) we then get

| 2 —
ploe2) < deg(co™En)
1
<13 (htFal(E) + > log(f) + Coo>
1 log(2) 13
< . — _ .
<13 (htFal(E)+ S+ log (Iog(2) d) 1+ COO)
Thus we get
log(2
(1082) 5. (htpa(E) + log(d) + log(13/ log(2)) — 1 + Cx)

2d

Replacing ¢ using assumption (2) we further derive
htra(E) < 13- (log(13/log(2)) — 1) < 38,

which can only hold for finitely many elliptic curves. []

Remark. Mochizuki gets a similar lower bound for ¢ which
contains d¢ instead of log(d).
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Mochizuki Theorem 3.8 (a

Theorem (Full special linear Galois action)

Let L be a number field and d = [L: Q]. Let E;; be an elliptic
curve without complex multiplication. Let ¢ > 0 and with some
constant C € R as before we let ¢ be a prime with

[ > 23040 - 100d( htry +C + d°).
If the image of the Galois representation

pe : Gal(Q|L) — Gla(Zy)

does not contain SLy(Z,), then E belongs to a finite set.

Proof: For allmost all such ¢ the elliptic curve has no y(¥)
structure, thus the Galois representation is irreducible. Since ¢ is
prime to the local heights, it must contain the transvection (1),
hence it must be the special linear group. ( The factor 23040

eliminates some problems in 3 and 5.) ]
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Mochizuki Theorem 3.8 (b)

Theorem (Full special linear Galois action on compactly

bounded subsets)

Let L be a number field and d = [L : Q]. Let Ky C Mgy be a
compactly bounded subset. Let E/; € Ky be an elliptic curve
without complex multiplication. Let £ be a prime which is coprime
to all the local heights of E as well as to 2-3-5. If the image of
the Galois representation

pe : Gal(Q|L) — Gly(Zy)

does not contain SLy(Z,), then E belongs to a finite set.

Proof: Analogous as before one shows: It E/x has a
[o(¢) — structure for a prime ¢ which is coprime to all the local
heights, then E belongs to finite set. In fact, since we can neglect
the archimedean contribution it is even simpler.

[]
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Mochizuki Corollary 4.3

Corollary. (Full Galois Actions for Degenerating Elliptic Curves)

Let Q an algebraic closure of Q; € € R~ 0. Then there exists a constant C € R~ ¢ and a Galois-finite subset
¢ C Mgy which satisfy the following property:
Let E/L be an elliptic curve over a number field L C Q, where L is a minimal field of definition of the point

[E/,_] € Mgy(Q), and [E/,_] € €& ; S a finite set of prime numbers. Suppose that E /| has at least one prime of

potentially multiplicative reduction. Write d = [L : Q]; xs — > p € Slog(p). Then there exist prime numbers
Lo, Le & S which satisfy the following conditions:

(a) £o, Lo are prime to the primes of potentially multiplicative reduction, as well as to the local heights, of E/L-
Moreover, £ ¢ is prime to the primes of Q that ramify in L, as well as to the ramification indices of primes of Q in L.

(b) The image of the Galois representation Gal(Q|L) — GLo (Zg, ) associated to E,; contains SLa(Zg, ). The
Galois representation Gal(Q|L) — GL2(Zg, ) associated to E/ is surjective.

(c) The inequalities

£o < 23040 - 900d - htpy([E/]) + 2x5 + C - d' €

Ce < 23040 - 900d - htfry([E)]) + 6d - log-diff nq ., ([E/(])) + 2xs + C - d' €

hold.
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Mochizuki Corollary 4.4

Corollary (Full Galois Actions for Compactly Bounded Subsets)

Let Q an algebraic closure of Q; K\, C M £gy(Q) a compactly bounded subset. Then there exists a constant
C € Ry and a Galois-finite subset € C M g which satisfy the following property:

Let E/L be an elliptic curve over a number field L C Q, where L is a minimal field of definition of the point

[E/L] € Mg (Q) , and [E/L] € €S afinite set of prime numbers. Write d = [L : Q]; xs — > p € Slog(p).

Then there exist prime numbers £, £4 & S which satisfy the following conditions:

(a) €5, Lo are prime to the primes of potentially multiplicative reduction, as well as to the local heights, of E/L-
Moreover, £ o is prime to the primes of (Q that ramify in L, as well as to the ramification indices of primes of Q in L.

b) The image of the Galois representation Gal(Q|L) — GLy(Z associated to E,; contains SLy(Z . The
£o /L Lo
Galois representation Gal(Q|L) — GL2(Zy, ) associated to E /| is surjective.

(c) The inequalities

Co < 23040 - 100d - hty([E/f]) + 2x5 + C - d

Lo < 23040 - 100d - htpy([E/(]) + 6d - log-diff nq,, +2x5 + C - d

hold.
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Resume on Part |l of this talk

— The techniques to prove all the results so far are standard.

References:

Cornell-Silverman: Arithmetic geometry
Serre: Abelian ¢-adic Representations and Elliptic Curves
Silverman: Advanced topics on elliptic curves
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