Riemannian geometry

Winter term 2015/16

Klaus Kröncke

Exercise sheet 6

Exercise 1

Let M be a Riemannian manifold. For a vector field X on M, we define the Lie-Derivative of the connection as follows:

- $(L_X \nabla)(Y, Z) = L_X(\nabla_Y Z) \nabla_{L_X Y} Z \nabla_Y L_X Z = [X, \nabla_Y Z] \nabla_{[X, Y]} Z \nabla_Y [X, Z]$
- a) Show that $L_X \nabla$ is $C^{\infty}(M)$ -linear in both arguments.
- b) We say that X is an affine vector field if $L_X \nabla = 0$. Show that for such a field, we have

$$\nabla_{Y,Z}^2 X = -R(X,Y)Z$$

Hint: Show that $R(W,Y)Z + \nabla^2_{Y,Z}W = (L_W \nabla)(Y,Z)$ for all $X, Y, Z \in \mathfrak{X}(M)$.

c) Show that any Killing vector field is affine. Give an example of an affine vector field on \mathbb{R}^n that is not Killing.

Exercise 2

Let $f: M \to \mathbb{R}$ be a continuous function on a complete connected manifold M and suppose that $H(f) \ge 0$ everywhere in the sense of Definition 4.8.

- a) Show that f cannot have a global maximum on M unless it is constant (without using the strong maximum principle). *Hint: Show that* $f \circ \gamma$ *is convex for each geodesic* γ .
- b) Show that if f is linear, we have for each geodesic γ that $f \circ \gamma(t) = at + b$ for some $a, b \in \mathbb{R}$. Prove that for each $p \in M$ there exists a $w_p \in T_pM$ such that $f \circ \exp_p(v) = f(p) + \langle w_p, v \rangle$ for all $v \in T_pM$. Conclude that f is smooth and show that $\operatorname{grad} f_p = w_p$.

Exercise 3

Show the following fact to complete the proof of the Cheeger-Gromoll splitting theorem: If (M,g) is a complete and connected Riemannian manifold and $f: M \to \mathbb{R}$ is linear, then (M,g) splits isometrically as $(N \times \mathbb{R}, h + dt^2)$. Hint: Consider the level sets of the function f. Use the fact that grad f is a Killing field (why?) and therefore generates a one-parameter family of isometries.

Exercise 4

Let M be a complete Riemannian manifold, $p \in M$ and $f : T_1M \to \mathbb{R}_+ \cup \{\infty\}$ be the function introduced in Chapter 10.

a) Show that

$$M \setminus C_m(p) = \{ \exp_p(tv) \mid t < f(p, v), v \in T_pM, ||v|| = 1 \}$$

$$C_m(p) = \{ \exp_p(tv) \mid t = f(p, v) < \infty, v \in T_pM, ||v|| = 1 \}$$

$$M = \{ \exp_p(tv) \mid t \le f(p, v), v \in T_pM, ||v|| = 1 \}$$

- b) Show that $M \setminus C_m(p)$ is contractible.
- c) Show that $C_m(p)$ is closed.