Riemannian geometry

Winter term 2015/16

Klaus Kröncke

Exercise sheet 4

Exercise 1

Let M, N be Riemannian manifolds and $M \times N$ the product manifold. For any vector field X on $M \times N$, we write $X = (X_1, X_2)$ according to the canonical decomposition $T_{(p,q)}(M \times N) = T_p M \oplus T_q N$. We equip $M \times N$ with the product metric, given by $\langle X, Y \rangle_{M \times N} = \langle X_1, Y_1 \rangle_M + \langle X_2, Y_2 \rangle_N$. Show that

$$R^{M \times N}(X,Y)Z = R^M(X_1,Y_1)Z_1 + R^N(X_2,Y_2)Z_2.$$

$$\operatorname{Ric}^{M \times N}(X,Y) = \operatorname{Ric}^M(X_1,Y_1) + \operatorname{Ric}^N(X_2,Y_2),$$

$$\operatorname{scal}^{M \times N} = \operatorname{scal}^M + \operatorname{scal}^N.$$

Prove that if the sectional curvatures on M and N both satisfy $K \ge 0$ (resp. $K \le 0$) then the same holds for the sectional curvature on $M \times N$. Show that a product manifold always has planes of zero sectional curvature.

Exercise 2

Let $M \times N$ be as above.

- a) Show that a curve $\gamma = (\gamma_1, \gamma_2) : [0, a] \to M \times N$ is a geodesic if and only if γ_1 and γ_2 are geodesics in M and N, respectively.
- b) Let $\gamma = (\gamma_1, \gamma_2)$ be a geodesic in $M \times N$. Show that γ is minimizing if and only if γ_1 and γ_2 are minimizing.
- c) Let $p = (p_1, p_2) \in M \times N$ and $C_m(p)$ be the cut locus of p. Show that $C_m(p) = C_m(p_1) \times N \cup M \times C_m(p_2)$
- d) Show that for $p = (p_1, p_2), q = (q_1, q_2) \in M \times N$, the distance is given by

$$d^{M \times N}(p,q) = \sqrt{d^M(p_1,q_1) + d^N(p_2,q_2)}.$$

Exercise 3

In this exercise, \mathbb{R} is always equipped with the standard metric.

- a) Let $f : \mathbb{R} \to \mathbb{R}$, f(x) = |x|. Show that $H(f)_0 \ge C$ in the sense of Definition 4.8 for any $C \in \mathbb{R}$.
- b) Let $f : \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} 0 & x < 0\\ x^2 & x \ge 0. \end{cases}$$

Show that $H(f)_0 \ge 0$ in the sense of Definition 4.8 and that $H(f)_0 \ge C$ does not hold if C > 0.

Exercise 4

Let M^n be a Riemannian manifold such that the sectional curvature K violates the condition $K \geq \kappa$. Show then that there exists a hinge $\{\gamma_1, \gamma_2\}$ and a comparison hinge $\{\tilde{\gamma}_1, \tilde{\gamma}_2\}$ in M^2_{κ} (the simply connected space form of dimension 2 and curvature κ) such that

$$d(\gamma_1(L_1), \gamma_2(L_2)) > d(\tilde{\gamma}_1(L_1), \tilde{\gamma}_2(L_2)).$$

Hint: Let $p \in M$ and $\sigma \subset T_pM$ be a plane such that $K(\sigma) < \kappa$. Let $\{\gamma_1, \gamma_2\}$ be two normalized geodesics starting in p such that span $\{\gamma'_1(0), \gamma'_2(0)\} = \sigma$. Let α the minimizing geodesic joining the endpoints of the hinge and use Proposition 2.9 to construct a comparison hinge $\{\tilde{\gamma}_1, \tilde{\gamma}_2\}$ in M_{κ}^n and a curve $\tilde{\alpha}$ shorter than α connecting the endpoints of this hinge. Why can we descend to M_{κ}^2 ?