Riemannian geometry

Winter term 2015/16

Klaus Kröncke

Exercise 1

Consider the two ordinary differential equations

f''(t) + K(t)f(t) = 0,	f(0) = 0,	$t\in [0,a]$
$\tilde{f}''(t) + \tilde{K}(t)\tilde{f}(t) = 0,$	$\tilde{f}(0) = 0,$	$t\in [0,a].$

Suppose that $\tilde{K}(t) \ge K(t)$ and $f'(0) = \tilde{f}'(0) = 1$.

a) Show that

$$0 = [\tilde{f}f' - f\tilde{f}']_0^t + \int_0^t (K - \tilde{K})f\tilde{f}dt$$

for any $t \in (0, a]$ and conclude that f > 0 on $(0, t_0]$ if $\tilde{f} > 0$ on $(0, t_0]$, $t_0 \in (0, a]$.

b) Suppose that $\tilde{f} > 0$ on (0, a]. Show that $f \ge \tilde{f}$ on [0, a] and that if $f(t_0) = \tilde{f}(t_0)$ for some $t_0 \in (0, a]$, then $K = \tilde{K}$ on $[0, t_0]$. Show that this implies the Rauch comparison theorem in the case that M and \tilde{M} are both 2-dimensional. *Hint: Use part a) to* conclude $f'/f \ge \tilde{f}'/\tilde{f}$. Then show that the function f/\tilde{f} is nondecreasing

Exercise 2

Let M be a complete manifold whose sectional curvature K satisfies $L \leq K \leq H, L, H \in \mathbb{R}$.

- a) Let $\gamma : [0, a] \to M$ be a normalized geodesic and suppose that $a \leq \frac{\pi}{\sqrt{H}}$ if H > 0. Let J be a Jacobi field along γ such that $\langle J, \gamma' \rangle = 0$. Use Rauch's theorem to show that $\operatorname{sn}_H(t) \|J'(0)\| \leq \|J(t)\| \leq \operatorname{sn}_L(t) \|J'(0)\|$.
- b) Let γ and a be as in part a) and J be a Jacobi field along γ such that $\langle J, \gamma' \rangle$. Show that

$$\frac{\operatorname{cn}_{H}(t)}{\operatorname{sn}_{H}(t)} \|J(t)\|^{2} \le \langle J'(t), J(t) \rangle \le \frac{\operatorname{cn}_{L}(t)}{\operatorname{sn}_{L}(t)} \|J(t)\|^{2}$$

for all $t \in (0, \infty)$ if $H \leq 0$ or $t \in (0, \frac{\pi}{\sqrt{H}})$ if H > 0. Hint: Consider the functions v'/vand \tilde{v}'/\tilde{v} in the proof of Rauch's theorem and use formula (2.6) of the lecture.

Exercise 3

The covariant derivative of a one form ω defined such that the product rule $X(\omega(Y)) = (\nabla_X \omega)(Y) + \omega(\nabla_X Y)$ holds for all vector fields X, Y. This justifies the notion $\nabla_X df$ in Definition 4.4. Let $f: M \to \mathbb{R}$ be a smooth function on the manifold M.

- a) Show that the various definitions of H(f) coincide and that it is symmetric.
- b) Compute coordinate expressions of $\operatorname{grad} f$ and H(f).
- c) Show that for any smooth curve $\alpha : [0, a] \to M$, we have the formula $(f \circ \alpha)''(t) = H(f)(\alpha'(t), \alpha'(t)) + df(\frac{\nabla}{dt}\alpha'(t)).$

Exercise 4

Let M_{κ} be a complete Riemannian manifold of constant curvature κ , $p \in M$ and U be a normal neighbourhood of p in M_{κ} . Let $\varphi_p(q) = \frac{1}{2}d(p,q)^2$ and r(q) = d(p,q) be functions on M_{κ} . Prove that the formulas in Example 4.6 are correct, i.e.

- a) compute the gradient of r on $U \setminus \{p\}$,
- b) compute the Hessian of φ_p on U and,
- c) compute the Hessian of r on $U \setminus \{p\}$.