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Queues as a mathematical model

Queueing system

attendance of employee
has a break / is present

finite buffer
packets in buffer

maintenance status
maintained / ready to use

abstract process
countable state space

Environment

Figure: Queueing system examples.
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Stochastic model

countable system states E = N0×K

N0 queue states (number of customers)
K environment state space

time t ∈ [0,∞]

stochastic process (X (t),Y (t)) ∈ E

X (t) number of customers at time t
Y (t) environment state at time t

exponential sojourn times
transition rates
Find: limiting distribution (long term behavior)
π(n,k) := limt→∞ P ((X (t),Y (t)) = (n,k))
Ansatz: solve πQ = 0 with generator matrix Q containing the
transition rates.
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Problem settings

Given: states (n,k) ∈ E and transition rates Q(n,k),(i ,m) ∈ R+
0

Find: π(n,k) := limt→∞ P ((X (t),Y (t)) = (n,k))
Solve: πQ = 0, ||π||1 = 1
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Challenges

Solve: πQ = 0, ||π||1 = 1
Problem: matrix Q is large.

For a queue with 99 places and 7 environment states (state space
{0, ...,99}×{1, ...,7}) we have Q ∈ R700x700.
For a queue with ∞ capacity we have Q ∈ R∞×∞. Analytically it can be
easier to solve than one with finite capacity!

Help through special structure of Q.
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Toy problem

Queue at a soft drink vending machine
Service time is stochastic. Includes: feeding the machine with coins,
fetching the can, and so on.
Service according to FCFS policy.
Capacity of the machine is limited (maximal two cans).
As soon as the machine is empty, replenishment is ordered.
Customer behavior during replenishment period:

Customers that were already in the queue, are waiting until
replenishment will be finished.
New customers go somewhere else =̂ are lost.

Find:
Limiting distribution of customers and cans in the vending machine.
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Mathematical model

States (n,k): n persons in queue, k cans in vending machine. That is
E = N0×{0,1,2}

Figure: State (persons, cans) = (n,k) = (4,2)

Stochastic process (X (t),Y (t) : t ∈ [0,∞)), where X (t) describes the
queue and Y (t) describes the environment.
Customer arrival stream is Poisson with rate λ .
Service time is exponential with rate µ .
Replenishment lead time is exponential with rate ν .

Krenzler, Daduna (Uni HH) Queues in rnd. environment OR 2013 7 / 20



Construction of Q

µ λ

Figure: Possible system changes from (persons, cans)= (X (t),Y (t)) = (4,2)


. . . (3,0) (3,1) (3,2) (4,0) (4,1) (4,2) (5,0) (5,1) (5,2) . . .

...
(4,0)
(4,1)
(4,2) µ λ

...


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Construction of Q

µ λ

Figure: Changes from (X (t),Y (t)) = (4,1)


. . . (3,0) (3,1) (3,2) (4,0) (4,1) (4,2) (5,0) (5,1) (5,2) . . .

...
(4,0)
(4,1) µ λ

(4,2) µ λ

...


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Construction of Q

ν

Figure: Changes from (X (t),Y (t)) = (4,0)


. . . (3,0) (3,1) (3,2) (4,0) (4,1) (4,2) (5,0) (5,1) (5,2) . . .

...
(4,0) ν

(4,1) µ λ

(4,2) µ λ

...


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Diagonal of Q


. . . (3,0) (3,1) (3,2) (4,0) (4,1) (4,2) (5,0) (5,1) (5,2) . . .

.

.

.
(4,0) −ν ν

(4,1) µ −(µ +λ) λ

(4,2) µ −(µ +λ) λ

.

.

.



Krenzler, Daduna (Uni HH) Queues in rnd. environment OR 2013 11 / 20



Q-structure

Structure of the Q matrices for M/M/1/∞-queues with environment states
K .

Q =



B0 B1
A−1 A0 A1

A−1 A0 A1
A−1 A0 A1

. . . . . . . . .


Bi , Ai ∈ RK×K

See M.F. Neuts. Matrix Geometric Solutions in Stochastic Models - An
Algorithmic Approach. 1981.
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Solution

Figure: (n,k) = (4,2)

λ - arrival rate
µ - service rate
ν - replenishment rate

For the limiting distribution π(n,k) := limn→∞ P (X (t) = n,Y (t) = k) it
holds

Product form!

π(n,k) = ξ (n)θ(k)

with ξ (n) =
(
1− λ

µ

)(
λ

µ

)n
and θ(k) =


1

2+ λ

ν

(
λ

ν

)
, k = 0

1
2+ λ

ν

, k ∈ {1,2}
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Nice properties of the solution

Figure: (n,k) = (4,2)

The limiting distribution π(n,k) := limn→∞ P (X (t) = n,Y (t) = k)

Nice properties of π

product form π(n,k) = ξ (n)θ(k)

ξ (n) =
(
1− λ

µ

)(
λ

µ

)n
stochastically independent from environment

θ(k) easy to solve and independent from service intensity µ

Can we keep these properties in more general settings?
YES, WE CAN
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Loss system

Vending machine M/M/1/∞-loss system

arrival Poisson(λ ) Poisson(λ )

service, FCFS Exp(µ) Exp(µ(n)), X (t) = n

environment states K = {0,1,2} K - countable

env. states with no
service and new
customer loss

{0} (empty machine) KB ⊂ K

env. changes after
service n ≥ 1

(n,k)→ (n−1,k−1)
= µ , k ≥ 1

(n,k)→ (n−1,m)
= µRkm, with stochastic

matrix R

env. change
independent from

queue

(n,0)→ (n,2) = ν

(replenishment)
(n,k)→ (n,m) = Vkm,
with generator matrix V
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M/M/1/∞-loss system

environment (Y (t))
changes according to V

queueing system (X (t))

λ

lost

serverqueue
µ(n)

blocks/resumes QS
according to KB

changes the environment
according to R

Figure: Loss systems with parameters λ , µ(n), KB (resp. IW ), R, V .

One can describe a loss-system with parameters:

Modellparameter

λ , µ(n), K , KB (IW ), R ,V
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M/M/1/∞-loss system: Solution

Let (X (t),Y (t)) be an ergodic M/M/1/∞-loss system with environment
states K and system parameters: λ , µ(n), KB (resp. IW ), R , V .
Then for the limiting distribution it holds

π(n,k) := lim
t→∞

P(X (t) = n,Y (t) = k)

π(n,k) = ξ (n)θ(k)

with

ξ (n) = C−1
n

∏
i=1

(
λ

µ(i)

)
, C :=

∞

∑
n=0

(
n

∏
i=1

(
λ

µ(i)

))

and θ the unique stochastic solution of

θ (λ IW (R− I )+V )︸ ︷︷ ︸
∈RK×K

= 0 (easier to solve than πQ = 0)
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Applications

inventory systems
unreliable systems
sensor networks
tests of simulations
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Ongoing research

queueing systems without lost customer in random environment
network of queues in random environment
mathematical properties of the stationary distribution of the systems
modeling of specific systems
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Thank you for your attention!

Krenzler, Daduna (Uni HH) Queues in rnd. environment OR 2013 20 / 20



Relation between IW and KB

The matrix IW ∈ {0,1}K×K is a special way to write the blocking states
KB in a matrix form.

(IW )km := δkm1[k /∈KB ]

Example K = {0,1,2}, KB = {0}

IW =

 0 1 2
0 0 0 0
1 0 1 0
2 0 0 1


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Soft drink vending machine: θ -solution

λ , µ , IW =

(
0 1 2

0 0 0 0
1 0 1 0
2 0 0 1

)
, R =

(
0 1 2

0 1 0 0
1 1 0 0
2 0 1 0

)
, V =

(
0 1 2

0 −ν0 0 ν

1 0 0 0
2 0 0 0

)
θ(λ IW (R− I )+V ) = 0

⇐⇒ (θ(0),θ(1),θ(2))

 0 1 2
0 −ν 0 ν

1 λ −λ 0
2 0 λ −λ

= 0

=⇒ θ(0)ν = θ(1)λ =⇒ θ(0) =
λ

ν
θ(1)

=⇒ θ(1)λ = θ(2)λ =⇒ θ(1) = θ(1)

Normalization:

1=
2

∑
k=0

θ(k) =
(

λ

ν
+2
)

θ(1) =⇒ θ(1) =
1

λ

ν
+2
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Embedded Markov Chains

If we observe a loss system (X (t),Y (t) : t ∈ [0,∞]) at departure times, we
obtain a Markov-chain (X̂ (i), Ŷ (i) : i ∈ N0).
It is a well known result, that for an M/M/1/∞ queue without
environment, the limiting distributions

ξ (n) := lim
t→∞

P(X (t) = n), ξ̂ (n) = lim
i→∞

P(X̂ (i) = n)

are the same

ξ = ξ̂

In contrast to this fact, we could show that for loss systems, the limiting
distribution may differ

π(n,k) := lim
t→∞

P(X (t) = n,Y (t) = k), π̂(n,k) = lim
i→∞

P(X̂ (i) = n, Ŷ (i) = k)

π 6= π̂ (possible)
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