Queueing systems in a random environment with applications

Ruslan Krenzler, Hans Daduna

Universität Hamburg

OR 2013 3.-6. September 2013

Queues as a mathematical model

Figure: Queueing system examples.

- countable system states $\mathscr{E} = \mathbb{N}_0 \times K$
 - \mathbb{N}_0 queue states (number of customers)
 - K environment state space
- time $t \in [0,\infty]$
- stochastic process $(X(t), Y(t)) \in \mathscr{E}$
 - X(t) number of customers at time t
 - Y(t) environment state at time t
- exponential sojourn times
- transition rates
- Find: limiting distribution (long term behavior) $\pi(n,k) := \lim_{t\to\infty} P((X(t),Y(t)) = (n,k))$
- Ansatz: solve $\pi Q = 0$ with generator matrix Q containing the transition rates.

- Given: states $(n,k) \in \mathscr{E}$ and transition rates $Q_{(n,k),(i,m)} \in \mathbb{R}_0^+$
- Find: $\pi(n,k) := \lim_{t \to \infty} P((X(t), Y(t)) = (n,k))$
- Solve: $\pi Q = 0$, $||\pi||_1 = 1$

Solve: $\pi Q = 0$, $||\pi||_1 = 1$

- Problem: matrix Q is large.
 - For a queue with 99 places and 7 environment states (state space $\{0,...,99\} \times \{1,...,7\}$) we have $Q \in \mathbb{R}^{700 \times 700}$.
 - For a queue with ∞ capacity we have Q ∈ ℝ^{∞×∞}. Analytically it can be easier to solve than one with finite capacity!
- Help through special structure of Q.

Queue at a soft drink vending machine

- Service time is stochastic. Includes: feeding the machine with coins, fetching the can, and so on.
- Service according to FCFS policy.
- Capacity of the machine is limited (maximal two cans).
- As soon as the machine is empty, replenishment is ordered.
- Customer behavior during replenishment period:
 - Customers that were already in the queue, are waiting until replenishment will be finished.
 - New customers go somewhere else $\hat{=}$ are lost.

Find:

Limiting distribution of customers and cans in the vending machine.

• States (n,k): *n* persons in queue, *k* cans in vending machine. That is $\mathscr{E} = \mathbb{N}_0 \times \{0,1,2\}$

Figure: State (persons, cans) = (n, k) = (4, 2)

- Stochastic process $(X(t), Y(t) : t \in [0, \infty))$, where X(t) describes the queue and Y(t) describes the environment.
- Customer arrival stream is Poisson with rate λ .
- Service time is exponential with rate μ .
- Replenishment lead time is exponential with rate v.

Construction of Q

Figure: Possible system changes from (persons, cans) = (X(t), Y(t)) = (4, 2)

1.			(3,0)	(3,1)	(3,2)	(4,0)	(4, 1)	(4,2)	(5,0)	(5,1)	(5,2)	···· \
-	÷											
_	(4,0) (4,1) (4,2)										λ	
	<u>(,,_)</u>			~~~)

Construction of Q

Figure: Changes from (X(t), Y(t)) = (4, 1)

1-			(3,0)	(3,1)	(3,2)	(4,0)	(4, 1)	(4,2)	(5,0)	(5,1)	(5,2)	\
-	•											
-	. (4,0)											
	(4,1)		μ							λ		
-	(4,2)			μ							λ	
	÷)

Construction of Q

Figure: Changes from (X(t), Y(t)) = (4, 0)

1-			(3,0)	(3,1)	(3,2)	(4,0)	(4,1)	(4,2)	(5,0)	(5,1)	(5,2)	···· \
-	:											
-	. (4,0)							v				
	(4, 1)		μ							λ		
-	(4,2)			μ							λ	
	÷											

/_			(3,0)	(3,1)	(3,2)	(4,0)	(4,1)	(4,2)	(5,0)	(5,1)	(5,2)	\
-												
	:											
	(4,0)					-v	-(n+2)	v		2		
	(4,2)		μ	μ			$-(\mu + \pi)$	$-(\mu + \lambda)$		Л	λ	
-												
	:											

Structure of the Q matrices for $M/M/1/\infty$ -queues with environment states K.

$$B_i, A_i \in \mathbb{R}^{K \times K}$$

See M.F. Neuts. *Matrix Geometric Solutions in Stochastic Models - An Algorithmic Approach.* 1981.

Solution

- λ arrival rate
- μ service rate
- v replenishment rate

Figure:
$$(n, k) = (4, 2)$$

For the limiting distribution $\pi(n,k) := \lim_{n \to \infty} P(X(t) = n, Y(t) = k)$ it holds

Product form!

$$\pi(n,k) = \xi(n)\theta(k)$$

with
$$\xi(n) = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^n$$
 and $\theta(k) = \begin{cases} \frac{1}{2 + \frac{\lambda}{\nu}} \left(\frac{\lambda}{\nu}\right), & k = 0\\ \frac{1}{2 + \frac{\lambda}{\nu}}, & k \in \{1, 2\} \end{cases}$

Nice properties of the solution

Figure: (n, k) = (4, 2)

The limiting distribution $\pi(n,k) := \lim_{n \to \infty} P(X(t) = n, Y(t) = k)$

Nice properties of π

• product form
$$\pi(n,k) = \xi(n)\theta(k)$$

• $\xi(n) = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^n$ stochastically independent from environment

• heta(k) easy to solve and independent from service intensity μ

Can we keep these properties in more general settings? YES, WE CAN Krenzler, Daduna (Uni HH) Queues in rnd. environment OR 2013 14 / 20

	Vending machine	$M/M/1/\infty$ -loss system
arrival	$Poisson(\lambda)$	$Poisson(\lambda)$
service, FCFS	$\textit{Exp}(\mu)$	$Exp(\mu(n)), X(t) = n$
environment states	$\mathcal{K} = \{0,1,2\}$	K - countable
env. states with no service and new customer loss	{0} (empty machine)	$K_B \subset K$
env. changes after service $n \ge 1$	$(n,k) ightarrow (n-1,k-1) = \mu, \ k \ge 1$	$(n,k) ightarrow (n-1,m) = \mu R_{km}$, with stochastic matrix R
env. change independent from queue	(n,0) ightarrow (n,2) = v (replenishment)	$(n,k) ightarrow (n,m) = V_{km},$ with generator matrix V

Figure: Loss systems with parameters λ , $\mu(n)$, K_B (resp. I_W), R, V.

Krenzler, Daduna (Uni HH)

Queues in rnd. environment

 $M/M/1/\infty$ -loss system: Solution

Let (X(t), Y(t)) be an ergodic $M/M/1/\infty$ -loss system with environment states K and system parameters: λ , $\mu(n)$, K_B (resp. I_W), R, V. Then for the limiting distribution it holds

$$\pi(n,k) := \lim_{t \to \infty} P(X(t) = n, Y(t) = k)$$

$$\pi(n,k) = \xi(n)\theta(k)$$

with

$$\boldsymbol{\xi}(n) = C^{-1} \prod_{i=1}^{n} \left(\frac{\lambda}{\mu(i)} \right), \qquad C := \sum_{n=0}^{\infty} \left(\prod_{i=1}^{n} \left(\frac{\lambda}{\mu(i)} \right) \right)$$

and θ the unique stochastic solution of

$$\theta\underbrace{(\lambda I_W(R-I)+V)}_{\in \mathbb{R}^{K \times K}} = 0 \qquad \text{(easier to solve than } \pi Q = 0)$$

- inventory systems
- unreliable systems
- sensor networks
- tests of simulations

- queueing systems without lost customer in random environment
- network of queues in random environment
- mathematical properties of the stationary distribution of the systems
- modeling of specific systems

Thank you for your attention!

Krenzler, Daduna (Uni HH)

Queues in rnd. environment

OR 2013 20 / 20

The matrix $I_W \in \{0,1\}^{K \times K}$ is a special way to write the blocking states K_B in a matrix form.

$$(I_W)_{km} := \delta_{km} \mathbb{1}_{[k \notin K_B]}$$

Example $K=\{0,1,2\},~\mathcal{K}_B=\{0\}$								
$I_W =$	$\begin{pmatrix} 0\\ 1\\ 2 \end{pmatrix}$	0 0 0 0	1 0 1 0	$\begin{pmatrix} 2\\ 0\\ 0\\ 1 \end{pmatrix}$				

Soft drink vending machine: θ -solution

$$\theta(\lambda I_W(R-I)+V) = 0$$

$$\iff (\theta(0), \theta(1), \theta(2)) \begin{pmatrix} 0 & 1 & 2 \\ 0 & -v & 0 & v \\ 1 & \lambda & -\lambda & 0 \\ 2 & 0 & \lambda & -\lambda \end{pmatrix} = 0$$

$$\implies \theta(0)\nu = \theta(1)\lambda \implies \theta(0) = \frac{\lambda}{\nu}\theta(1)$$
$$\implies \theta(1)\lambda = \theta(2)\lambda \implies \theta(1) = \theta(1)$$

Normalization:

$$1 = \sum_{k=0}^{2} \theta(k) = \left(\frac{\lambda}{\nu} + 2\right) \theta(1) \Longrightarrow \theta(1) = \frac{1}{\frac{\lambda}{\nu} + 2}$$

Krenzler, Daduna (Uni HH)

Queues in rnd. environment

Embedded Markov Chains

If we observe a loss system $(X(t), Y(t) : t \in [0, \infty])$ at departure times, we obtain a Markov-chain $(\hat{X}(i), \hat{Y}(i) : i \in \mathbb{N}_0)$.

It is a well known result, that for an $M/M/1/\infty$ queue without environment, the limiting distributions

$$\xi(n) := \lim_{t \to \infty} P(X(t) = n), \qquad \hat{\xi}(n) = \lim_{i \to \infty} P(\hat{X}(i) = n)$$

are the same

$$\xi = \hat{\xi}$$

In contrast to this fact, we could show that for loss systems, the limiting distribution may differ

$$\pi(n,k) := \lim_{t \to \infty} P(X(t) = n, Y(t) = k), \hat{\pi}(n,k) = \lim_{i \to \infty} P(\hat{X}(i) = n, \hat{Y}(i) = k)$$

$$\pi
eq \hat{\pi}$$
 (possible)

M.F. Neuts.

Matrix Geometric Solutions in Stochastic Models - An Algorithmic Approach.

Johns Hopkins University Press, Baltimore, MD, 1981.

M. Schwarz, C. Sauer, H. Daduna, R. Kulik and R. Szekli. M/M/1 Queueing systems with inventory. QUESTA, 2006.

Ruslan Krenzler und Hans Daduna.

Loss systems in a random environment - steady state analysis. November 2012. http://preprint.math.uni-hamburg.de/public/papers/prst/

prst2012-04.pdf

Ruslan Krenzler und Hans Daduna. *Ruslan Krenzler and Hans Daduna. Loss systems in a random environment - embedded markov chains analysis.* May 2013. http://preprint.math.uni-hamburg.de/public/papers/prst/ prst2013-02.pdf