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6 Nonprimitive recursion 
Not all computable functions are primitive recursive. First, clearly all 

primitive recursive functions are total, and there are partial computable 
functions. Second, not even all total computable functions are primitive re-
cursive. 
(a) We can order primitive recursive derivations, and thus obtain a listing 

f0, f1, f2, … 

of the unary primitive recursive functions which, unlike the listing sug-
gested in §2, is impeccably rigorous. Now define 

g(x) = 1 –·  fx(x). 

Then g is easily computable, and not in the list. 
(b) Simplifying an idea of Ackermann [1928]1, Rosza Péter defined: 

   A(0, y) = y + 1, 
(*)   A(x + 1, 0) = A(x, 1), 
  A(x + 1, y + 1) = A(x, A(x + 1, y)). 

This is clearly a definition by recursion, but A is not primitive recursive: 
λx.A(x, x) can be shown to eventually dwarf any primitive recursive func-
tion. 

7 Systems of equations ; µ -recursion 
In [1934], Gödel defined the general recursive functions. They are the 

functions definable from 0 and S by systems of equations, under certain re-
strictions. (You find the details in Kleene’s book. Péter’s definition (*) 
qualifies.) 

In [1936], Kleene proposed an expansion of the definition of primitive re-
cursive functions: 
Definition. The µ-recursive functions are the elements of the least class C of 
partial functions containing (I-III) the successor and zero functions and the 
projection functions en

i, and closed under the schemes of (IV, V) composi-
tion and primitive recursion, and 
(VI) µ-recursion, which takes a partial function θ, and produces the function 
η = λx– .µy(θ(x– , y) = 0 & ∀z<yθ(x– , z) > 0). 

Conventions. 1º We try to preserve italic letters for total functions, and use 
Greek letters in the more general case. 
2º (Cogito-principle) Since θ above is partial, there is no guarantee that, 
given particular x– , y, θ(x– , y) exists. In principle, however, when I write that 
θ(x– , y) belongs to a relation, I mean to imply that it exists. In particular, 

                                                
1 Square brackets indicate a reference to the year something was published.  
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θ(x– , y) = θ(x– , y) is not meaningless. It is somewhat redundant, of course, so 
I abbreviate it to θ(x– , y)↓. In words: θ(x– , y) converges. The negation is 
θ(x– , y)↑ (θ(x– , y) diverges). 
3º The Cogito-principle extends to complex expressions. In particular, if η = 
θ(γ1,…, γn), then η(x–) exists only if there are y1,…, yn such that 

yi = γi(x–),  1 ≤ i ≤ n 

and θ(y1,…, yn) exists. Similarly, θ = P(γ, η) converges only if all the in-
stances of γ and η that you need according to the equations defining θ con-
verge. 

If you know how to calculate θ in (VI), you will know how to go about 
calculating η. If you come across a divergence of θ, you are stuck, and η di-
verges. Even if θ is total, η may diverge: it will do so if θ(x– , y) > 0 for all y. 
Note the contrast with 5:5 — in (VI), µ does not have a safety valve. On the 
other hand, η may be total even if θ is not. 

8 Turing machines 
In [1936], Church and Kleene proved that the classes of λ-definable func-

tions, of general recursive functions, and of µ-recursive functions are co-ex-
tensive. This might impress you, but Gödel considered all three definitions 
unconvincing. The definition that convinced Gödel that the right concept 
had been caught came from Turing [1936]. 

Definition 1. Let S be a finite set with at least two elements. A Turing ma-
chine over S is a quadruple M = (Q, q0, q1, δ) of a finite set Q, distinct ele-
ments q0 and q1 of Q, and a partial map 

δ : (Q – {q0}) × S ––› Q × S × {R, L}. 

A configuration of M is an element of S* × Q × S+. 

Symbols: 1, B (blank). Tape and reading head. Extending the tape. Inter-
nal states. Halting and initial state. Initial configuration. Right and Left. Pro-
gram and execution. I/O. Definition of δ(s– , q, t–). 

Definition 2. A computation of machine M is a finite sequence (c0,…, cn) of 
configurations in which c0 begins with q1, ci+1 = δ(ci) for 0 ≤ i < n, and cn 
contains q0. 

9 The Church-Turing thesis 

10 Exercises 
:1 Write Turing programs calculating λx. 0, λx. k, 2x, x + y. 
:2 Write a Turing programs calculating x · y. 
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:3 Think of an effective way of coding Turing programs into natural 
numbers; every program is to correspond with a unique number. Can you 
make the coding surjective? 

 


