
Lecture Notes Recursion Theory

Form
Homework once or twice a week. The deadline is generally almost a

week later: either Monday 15 hours sharp, or Thursday 9. You are not sup-
posed to miss anything because you are still writing up homework. The best
80% (thereabouts) of the grades count. Cooperation is absolutely not forbid-
den; however, we prefer to have things written up in your own words. Writ-
ten exam in December. Final grade is the average of homework grade and
exam, as long as the exam grade is at least 5. Special arrangements will be
made whenever this seems reasonable.

1 Algorithms
Examples. Adding a list of integers in decimal notation (Renaissance): 1234
+ 5678 + 9012 = …. Euclid’s Algorithm for finding the g.c.d (± 300 b.C.):
(1234, 5678) = 2. Sieve of Eratosthenes, finding the prime numbers below a
given number n (± 240 b.C.).

An algorithm is a procedure specified by a finite set of instructions that
can be applied in a deterministic fashion. We have an algorithm for function
f if for any x ∈  Dom f, we end up, starting from x, with f(x) after a finite
number of steps.

Before 1930, no need was felt for a definition of the algorithmically (or
effectively) calculable functions. Rather, it as assumed that clearly stated
problems, such as whether a Diophantine equation

P(x0,…, xn–1) = 0,

where P is a polynomial with integer coefficients, or whether a given for-
mula of first order logic is universally valid, would have general solutions
that one would recognize as algorithmic.

In 1931, Gödel proved that any effectively axiomatized formal system T
that includes elementary number theory is either inconsistent, or incomplete
(first incompleteness theorem). In fact, one can code formulas into numbers,
and thus find a formula ϕ which says ‘T is consistent’; and this ϕ cannot be
proved in T — unless it is false (second incompleteness theorem). A fortiori
there is no effective system that can decide whether a first order statement
on number theory is true or not.

This signal failure of a research project of Hilbert’s suggested to some
mathematicians that other problems might fail to have algorithmic solutions
as well. But to prove such things, one would need a definition.
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2 Partial functions
We could describe algorithms for functions ω —› ω in some formalism,

e.g. the English language; by ordering them alphabetically we would effec-
tively get a list ( fn)n of unary functions. Now we could define a function g
by: g(n) = fn(n) + 1. How can we have forgotten g? — This is a variant of
Richard’s Paradox.

We insist that we will succeed in inventing an unambiguous formalism in
which we can effectively describe all algorithms. Then the above argument
shows that we will not be able to see if the function defined by a given algo-
rithm is total. We must admit partial functions.

3 λ-definability
Assume we have certain things that we can apply to each other, as a

function to an argument; write x · y for ‘the result of applying x to y’. If M =
M(x) is an expression, the meaning of which may be supposed to depend on
the denotation of the variable x, write λx.M to denote the function that, ap-
plied to some thing a, returns M(a). Church invented this notation, with
some rules for its use, around 1930. In 1931, few functions had been shown
to be definable in it.

4 Primitive recursion
One can define functions by recursion: making use of their values for

smaller arguments. For example, the inductive definition of addition runs

 0 + x = x,
(y + 1) + x = (y + x) + 1;

this, in view of the fact that 0 and adding 1 will get you every natural
number, says it all.

Definition. The primitive recursive functions are the elements of the least
class C of functions containing
(I) the successor function λx. x + 1;
(II) the constant function λx. 0;
(III) the projection functions en

i, for n ≥ 1 and 1 ≤ i ≤ n, defined by

en
i(x1,…, xn) = xi;

and closed under the schemes of
(IV) composition, which takes functions f, g1,…, gn , where n is the arity of f
and g1,…, gn  have the same arity, and produces the function h =
f(g1,…, gn) defined by

h(x–) = f(g1(x–),…, gn(x–));
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(V) primitive recursion, which takes functions g and h, where the arity of h
is 2 + the arity of g, and produces the function f = P(g, h) defined by

f(0,  x–) = g(x–),
f(y + 1,  x–) = h(y, f(y,  x–),  x–).

Examples. (i) Instead of f(g) we may write f o g; we abbreviate λx. x + 1 to
S . Then λ(x1,…, xn).m  = S  o… o  S  o  (λx .0) o  en

1. We can prove
λ(x1,…, xn).m primitive recursive by induction on m, as follows:
(m = 0) en

1 is prim. by (III); hence (λx.0) o en
1 is prim. by (IV); and this is

the intended function, for ((λx.0) o en
1)(x1,…, xn) = (λx.0)(x1) = 0.

(m = k + 1) If f = λ(x1,…, xn).k, then λ(x1,…, xn).m = S o f.
(ii) λ(x, y). x + y = P(e1

1, S o e3
2). Derivation: e3

2 is prim. by (III); hence f =
S o en

1 is prim. by (IV); e1
1 is prim. by (III); so P(e1

1, f ) is prim. by (V).

Likewise, x ·y (multiplication), xy (exponentiation), x! (x factorial, x! =
x · (x – 1) ·…· 1, 0! = 1) , x –· y (monus, x – y if x > y and 0 otherwise).

A predicate (relation) R is primitive recursive if its characteristic function
χR is.

Example. The set of primes is primitive recursive.

Let p0, p1,… be the primes in increasing order. Every positive integer x
has a unique representation

(*) x = 

€ 

p0
n0 ⋅ ...⋅ pk

nk ⋅ ...

The function (x)k = nk (the exponent of pk in (*)) is primitive recursive. This
sort of thing will enable us to code things as natural numbers.

5 Exercises
:1 Check the examples after ‘Likewise’ above. Conclude that the primitive
recursive relations are closed under conjunction.
:2. Use monus to show that s–g–(x) := 0 < (x > 0) > 1 is primitive recursive.
Conclude that the primitive recursive relations are closed under negation,
and hence under all the Boolean operations.
:3 (Definition by cases). If g1,…, gn  are primitive recursive functions, and
R1,…, Rn  mutually exclusive primitive recursive relations, all of the same
arity, then f, defined by

f(x–) = g1(x–) if R1(x–),
…
f(x–) = gn(x–) if Rn(x–),

is primitive recursive.
:4 If f is primitive recursive, then so are ∏y<x f(y, x–) and ∑y<x f(y, x–).
:5 If R is primitive recursive, then so are ∀y<z R(y, x–) and ∃y<z R(y, x–). If
R is primitive recursive, then so is µy<z R(y, x–).
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:6 Conclude from :5 that the set of primes and the function (x)k are primitive
recursive.
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