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Chapter 1

Introduction

1.1 History and motivation

The subject of this dissertation is the interplay between regularity properties
and definability in the real number continuum. By “regularity properties”, we
are referring to certain desirable properties of sets of real numbers, something
that makes them well-behaved, conforming to our intuition, or easy to study;
by “definability”, we are referring to the logical description that determines the
composition of such sets, given in some specified formal or informal language.

Real numbers are ubiquitous in nearly all areas of science and mathematics.
They are indispensable for calculations involving the physical world, and we use
them to describe reality and to model our three-dimensional Euclidean space.

Although real numbers were known since antiquity, their exact nature was
not clearly understood and their use was limited to concrete cases, such as the
number π in geometry. The first use of the concept of a real number in its full
and unbridled form was the development of calculus in the late 17th century,
which required an abstract treatment of convergent sequences and limit processes
rather than individual numbers. Even then, the precise nature of these numbers
was left undefined, and it was not until the late 19th century that the real number
continuum was given a proper mathematical definition and recognized as a unique
and extremely important concept.

As 19th century mathematics progressed and its methods became more ad-
vanced, increasingly complex and counter-intuitive aspects of the continuum were
being discovered. It became commonplace for mathematicians to construct ob-
jects that were highly irregular, paradoxical or otherwise bizarre. In this light,
regularity properties provided a counterweight, a way of saying when a certain
object was not too unnatural. At the turn of the century, three particular proper-
ties were isolated, and in the decades that followed the study of these properties
would become crucial in the search for structure in the real number continuum.

1



2 Chapter 1. Introduction

The first such property arose from the need for a more rigorous definition
of the integral. As the formerly used Riemann integral did not suffice to deal
with the complexity of late 19th century analysis, Henri Lebesgue, in his thesis
[Leb02] from 1902, introduced the Lebesgue integral which is still widely in use
today. His definition depended crucially on what we now call Lebesgue measure, a
mathematical concept capturing the intuition of “size” or “volume” of an object.
Accordingly, a set is called Lebesgue measurable if it admits such a notion of size.

The second property was isolated by René-Louis Baire [Bai99] in his study of
topological properties of the continuum. With the notions of open and closed sets
having already been established as central to analysis and topology, Baire looked
at sets which are “almost” open, that is, open except for a (in a topologically
precise sense) negligible component. Such sets are now said to have the property
of Baire.

The last notion of regularity came out of foundational concerns. After Georg
Cantor establishing that the set of real numbers was uncountable in 1874, a
considerable amount of effort was devoted to trying to prove the Continuum
Hypothesis, the statement that any uncountable set has at least the cardinality
of the continuum. One approach involved perfect sets, i.e., sets of reals that are
closed and contain no isolated points, which always have the cardinality of the
continuum. If one could prove that every uncountable subset of the continuum
contains a perfect set, then one would have established the Continuum Hypothesis
at least within the realm of the real numbers. This dichotomy (which, of course,
no one was able to prove) became known as the perfect set property.

Not long after these three properties were isolated, counterexamples were
produced. The earliest example was due to Giuseppe Vitali [Vit05] in 1905, who
constructed an object that could not be Lebesgue measurable or have the property
of Baire (the Vitali set). Shortly afterwards, Felix Bernstein [Ber08] produced
an object which, additionally, did not satisfy the perfect set property either (the
Bernstein set). Other, more involved constructions were soon discovered, some
of them leading to outright bizarre results such as the Banach-Tarski paradox,
which draws crucially on the existence of non-measurable sets.

Of course, it was becoming clear that all such proofs were non-constructive,
in the sense that they did not provide a concrete example of the irregular object
whose existence they proved. Rather, this existence was established indirectly,
using an evocation of the Axiom of Choice, a fundamental principle of set the-
ory. It was, in part, due to these paradoxical consequences that this axiom was
considered problematic and viewed with a great deal of skepticism at the time.

But while for some mathematicians it was the Axiom of Choice that was the
main culprit, with the existence of irregularities and the corresponding paradoxes
providing sufficient evidence for the eviction of this particular axiom from the
domain of mathematics, others preferred to focus on the definability of subsets
of the continuum, to make precise what “non-constructive” or “non-definable”
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meant, and to pay attention to the definable sets while admitting that non-
definable ones existed, too. A clear case for definability was provided by Émile
Borel, who defined a natural algebra of sets, the Borel sets, as those obtained from
the open ones using the operations of countable union, countable intersection and
complementation. Each Borel set comes along with a description, a definition, a
recipe for its construction, so to say. Thus, Borel sets are quite the opposite of
the non-constructive objects given to us by an abstract principle like the Axiom
of Choice. Indeed, as was already implicit in the original definitions, all Borel sets
are Lebesgue measurable and satisfy the property of Baire. In 1916, it was proved
by Felix Hausdorff [Hau16] and independently by Pavel Aleksandrov [Ale16] that
all Borel sets satisfy the perfect set property as well. This was a satisfactory
situation as it meant that irregularities, even if they did exist, would not show
up on the level of the Borel sets. Since the Borel algebra is closed under certain
set-theoretic operations, one might attempt to squeeze all mathematical practice
into the realm of Borel sets, thus avoiding any anomalies or irregularities.

But while the Borel algebra is fairly rich, there are natural mathematical
operations that transcend its boundaries. This was first noticed by Mikhail Suslin
in 1917, who, while studying [Leb02], found that Lebesgue had made a remarkable
mistake: he had claimed that the projection of a Borel set (in a higher dimension)
was itself Borel. Suslin constructed a counterexample to Lebesgue’s claim, and,
motivated by this discovery, introduced the class of analytic sets as those obtained
from Borel sets by the operation of projection. As the analytic sets were still
easily definable but lay beyond the Borel level, Suslin proceeded to investigate
their properties, particularly in relation to their regularity. In [Sus17] he was
able to prove that all analytic sets are Lebesgue measurable, have the property of
Baire and the perfect set property. So no irregularity could occur on the analytic
level, either.

As the class of analytic sets is not closed under complements, one may con-
sider, as a separate definability class, the co-analytic sets, i.e., those sets whose
complement is analytic. Suslin’s result implied that co-analytic sets are also
Lebesgue measurable and have the property of Baire, although no such conclu-
sion could be drawn regarding the perfect set property. Of course, there is no
reason to stop here, either, and if one considers the projections of co-analytic
sets one gets to a strictly higher definability level, the Σ1

2 sets in contemporary
terminology. The sets whose complement is a Σ1

2 set are called Π1
2, and the pro-

jections of Π1
2 sets lead to an even higher definability level, the Σ1

3 sets, etc. In
this fashion one obtains the projective hierarchy, and a set is called projective if
it appears at some finite level in it, i.e., if it is Σ1

n or Π1
n for some n.

The projective hierarchy was understood to be a very natural measure of
definability, and the investigation of it led to a distinct area of mathematics
now called descriptive set theory (the study of “descriptions”, or “definitions”, of
sets). The next challenge was to show that the projective sets satisfied all the
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regularity properties. However, efforts in this direction already grounded on the
first level beyond Suslin’s result: it was impossible to determine whether all Σ1

2

sets were Lebesgue measurable or had the property of Baire, and whether all co-
analytic sets satisfied the perfect set property. The obstacles encountered in this
problem were so severe that some mathematicians were prompted to speculate
on its potential “unsolvability”. Nikolai Luzin, an early proponent of descriptive
set theory, described the state of affairs in 1925 thus:

“The theory of analytic sets presents a perfect harmony: any ana-
lytic set is either countable or of the cardinality of the continuum;
an analytic set is never a set of the third category [satisfies the Baire
property] . . . finally, an analytic set is always measurable.

There remains but one significant gap: one does not know whether
every complementary analytic (that is, the complement of an analytic)
uncountable set has the cardinality of the continuum.

The efforts that I exerted on the resolution of this question led me
to the following totally unexpected discovery: there exists a family
. . . consisting of effective [definable] sets, such that one does not know
and one will never know whether every set from this family, if un-
countable, has the cardinality of the continuum, nor whether it is of
the third category, nor whether it is measurable. . . . This is the family
of the projective sets of Mr. H. Lebesgue. It remains but to recognize
the nature of this new development.” [Luz25, p 1572]

At the time, people were not yet aware of the “incompleteness phenomenon”
in mathematics, so it is unlikely that Luzin had any rigorous notion in mind
when saying “one will never know”. Nevertheless, his predictions turned out
to be correct, and the next step towards a clarification of this problem came
in 1938 from Kurt Gödel’s foundational work. By then, the axiomatization of
mathematics using ZFC (Zermelo-Fraenkel with Choice) in first order logic had
become standard and Gödel’s incompleteness theorem had already been proved.
In [Göd38], Gödel defined the constructible universe L, a so-called “inner model”,
a “sub-universe” within the universe of all sets, which was itself a model of all
the axioms of ZFC as well as additional axioms, most notably the Continuum
Hypothesis. In [Göd38] Gödel announced that in L there is a Σ1

2 non-Lebesgue-
measurable set of reals and a co-analytic set without the perfect set property (a
Σ1

2 set without the property of Baire can be derived from the same proof). In
meta-mathematical terms, it meant that these assertions were consistent with the
axioms of set theory, i.e., one would never be able to prove that all Σ1

2 sets (and
therefore, all projective sets) are Lebesgue measurable and satisfy the property
of Baire, nor that all co-analytic sets have the perfect set property, at least,
assuming only the basic axioms of set theory. So at least one half of Luzin’s
conjecture turned out to be correct.
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Was it, perhaps, possible to prove the opposite statement, namely that there
are irregularities on some given level of the projective hierarchy? That this could
not be done, either, was shown by a celebrated result of Robert Solovay, but had to
wait until 1970. Using a then recently discovered method called forcing, Solovay
[Sol70] constructed a model of set theory in which all projective sets were Lebesgue
measurable, had the property of Baire and the perfect set property. Thus, if one
interprets Luzin’s “one will never know” as “it is not provable from ZFC”, then
this is indeed correct: the regularity of all projective sets is undecidable by the
fundamental axioms of set theory.

An even more exciting consequence of [Sol70] was the existence of a model
of ZF (without Choice) in which every subset of the continuum was Lebesgue
measurable, had the property of Baire and the perfect set property. This meant
that the original use of the Axiom of Choice in constructing counterexamples
to regularity properties was perfectly justified, as it would simply have been
impossible to construct such counterexamples without it.

Using the method of forcing, models of set theory could be extended to pro-
duce larger models, in which the truth of a certain mathematical statements could
be controlled to some degree. While the forcing used to construct the Solovay
model was rather strong, requiring an inaccessible cardinal to work properly and
yielding an extension very much larger than Gödel’s constructible universe L,
this was not the case for the Σ1

2 level. To obtain a model where all Σ1
2 sets were

measurable, it sufficed to use a relatively mild extension. In fact, a characteriza-
tion result was proved in [Sol70] stating that all Σ1

2 sets are Lebesgue measurable
if and only if the set-theoretic universe is at least as large as a certain forcing
extension of L (for a precise statement, see Theorem 1.3.9). In other words, there
was a minimal way to extend L in order to obtain a model in which every Σ1

2

set was Lebesgue measurable. A similar characterization was shown for the Baire
property. With this at hand, one could have direct control over the truth of the
statements “all Σ1

2 sets are Lebesgue measurable” and “all Σ1
2 sets satisfy the

Baire property” in different models of set theory.

Until the 1980s, the Lebesgue measure and Baire property were considered
virtually analogous, and results proved for one could be translated to yield the
same result for the other. The first change to this was brought on by Saharon
Shelah’s [She84], which showed that the Baire property of all projective sets
could also be established by a forcing not requiring an inaccessible cardinal to
begin with, whereas this was not true for Lebesgue measure. In terms of consis-
tency strength, the statement “all projective sets are Lebesgue measurable” was
stronger than the statement “all projective sets satisfy the property of Baire”.
Shortly afterwards, Jean Raisonnier and Jacques Stern [RS85], and independently
Tomek Bartoszyński [Bar84], uncovered an asymmetry already inherent at the Σ1

2

level—namely, if all Σ1
2 sets are Lebesgue measurable then all Σ1

2 sets satisfy the
property of Baire. The converse implication, on the other hand, does not hold
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(by [Iho88]). Here, too, measurability turned out to be stronger than the Baire
property.

By this time, the concept of a “regularity property” had been extended far
beyond the three classical cases we have been discussing so far. For one, the Baire
property could be generalized to other topological spaces, and even to partial
orders in general. A number of statements in infinitary combinatorics gave rise
to natural notions of regularity, from which the Ramsey property is probably the
most well-known. Even the perfect set property turned out to be one in a line
of similar “dichotomy-style” properties. In each case, the same pattern emerged:
with the Axiom of Choice one can construct counterexamples, but this axiom is
provably necessary; all Borel and analytic sets are regular; there are Σ1

2 or even
co-analytic counterexamples in L, but not if sufficient forcing over L has been
done, etc.

One of the more interesting aspects of these properties is their asymmetry,
and the low levels of the projective hierarchy are very well suited to study it.
Just like the asymmetry between Lebesgue measure and the Baire property, a
similar phenomenon tends to appear with other notions of regularity. Thus,
the hypothesis that, say, all Σ1

2 or all co-analytic sets are regular in one sense
may directly imply that the analogous hypothesis concerning another notion of
regularity holds. In other cases, this direct implication is (consistently) false.
For proving such results, a characterization theorem relating regularity to some
forcing-theoretic statement, like the one proved by Solovay in [Sol70], is always
very useful. Research in this direction has been done by Haim Judah, Saharon
Shelah, Jörg Brendle, Benedikt Löwe and Lorenz Halbeisen among others (see
[IS89, Iho88, BL99, BHL05, BL11]), and a general theorem unifying many kinds
of regularity properties was proved by Daisuke Ikegami in [Ike10a, Ike10b].

All the questions studied in this dissertation concern this basic relationship
between regularity and definability, which has been established throughout the
course of the 20th century. Of particular importance are the asymmetry, the
implications and non-implications between the various notions of regularity and
the characterization of it using transcendence over L. Another, relatively distinct,
interest of ours is the study of special kinds of irregular objects. The Vitali set
and the Bernstein set were already mentioned as counterexamples to regularity;
another one would be a non-principal ultrafilter on the natural numbers, which,
if considered from a topological point of view, gives rise to a set that is both non-
measurable and doesn’t satisfy the Baire property. Thus, there are no analytic
non-principal ultrafilters, and there are no Σ1

2 non-principal ultrafilters in models
where all Σ1

2 sets are measurable or have the Baire property; and in the Solovay
model, there are no non-principal ultrafilters at all. In a similar way, one can look
at other objects (whose existence is usually established by the Axiom of Choice)
from the point of view of descriptive set theory.
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Before concluding this historical account, we should mention the role of large
cardinals in the study of the real number continuum. Large cardinal axioms
are additions to the standard set theoretic axioms postulating the existence of
certain very large objects. Such postulates cannot be proved, but are generally
considered natural enough to be taken up alongside the standard axioms. In the
last few decades of the 20th century, much effort has been exerted into providing
a connection between large cardinal axioms and the regularity of sets in the
projective hierarchy. From Solovay’s original result it already follows that if there
exists a measurable cardinal, then all Σ1

2 sets are Lebesgue measurable and satisfy
the Baire property, and this proof can easily be adapted to show that, under
this assumption, all regularity properties are satisfied on the Σ1

2 level. Further
results followed, attempting to use ever stronger assumption in order to derive
the regularity of sets higher up in the projective hierarchy. The culmination of
this effort was the result of Donald A. Martin and John Steel [MS89] showing that
if there are infinitely many Woodin cardinals then all projective sets are regular
(via the so-called axiom of Projective Determinacy).

In spite of the beautiful structure provided by large cardinals, there is one
substantial drawback: they blur the distinction between the different notions of
regularity, by treating them all in the same way, putting them all in one basket, so
to say. For instance, the fact that Lebesgue measure is, in various ways, stronger
than the Baire property, becomes completely concealed if one considers models
with large cardinals, and the same applies to other properties. Characterization
theorems, which seem highly informative as such, become redundant if sufficiently
large cardinals are assumed to exist. In this dissertation we will focus on the
individuality of each regularity property, and on subtle ways to make the property
hold without necessarily affecting other regularity properties. As a result, we shall
not be assuming the existence of any large cardinals (with the exception of an
inaccessible when proving something about the Solovay model), and most of the
set-theoretic models making their appearance here are going to be relatively mild
extensions of L obtained by an iteration of proper forcing, and will all lie within
the realm of ZFC in terms of consistency strength.

1.2 Preliminaries

1.2.1 Set theory

Our basic axiomatic framework is ZFC, the Zermelo-Frankel axioms of set theory
together with the Axiom of Choice.

We will not assume any additional axioms, e.g., large cardinal axioms, with
the exception of a few times when proving theorems about the Solovay model; the
Axiom of Choice will have to be dropped in a few instances when investigating
consequences of determinacy.
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We will assume complete familiarity with notions of naive set theory, such as
the formalization of ordered pairs, relations, functions etc. as sets, as well as the
formalization of natural numbers as von Neumann ordinals, and the definitions
of the rational and real numbers as derived from the natural ones. We will also
assume familiarity with ordinals, cardinals and concepts involving these, such as
successor/limit ordinal, successor/limit cardinal, cofinality, regular and singular
cardinals, and elementary properties of ordinal and cardinal arithmetic.

Moreover, we will assume some knowledge of elementary topology, in partic-
ular the concepts open, closed, dense, nowhere dense and compact, as well as
notions of convergence, continuity and limits.

Basic logical tools and concepts will also be assumed, such as the syntax and
semantics of first order logic and its application in the formalization of set theory.
In particular, (class) models of set theory and truth of formulas in such models
via relativization will be assumed as known.

Our notation mostly follows standard set theoretic convention, as found in
textbooks such as [Jec03] and [Kan03]. As finite and infinite sequences play a
prominent role, we briefly review the corresponding notation. If X is any set, Xω

denotes the set of all functions from ω to X and X<ω =
⋃
n∈ωX

n denotes the set
of finite sequences of elements from X. The length of a finite sequences s ∈ X<ω

is denoted by |s|. For s ∈ X<ω and n < |s|, s�n refers to the initial segment
of s consisting of n elements; likewise for f�n if f ∈ Xω. For two sequences
s, t ∈ X<ω, s_t is the concatenation of s with t; likewise for s_f if f ∈ Xω. One
convention follows: if f ∈ Xω and we write “s ⊆ f”, then this is assumed to
imply that s ∈ X<ω, i.e., s is an initial segment of f , rather than some arbitrary
subset. In most of our applications, X will be ω or 2 = {0, 1}.

Other shorthand notation that we will often use is “∀∞” and “∃∞” to abbre-
viate “for all but finitely many” and “there are infinitely many”, respectively.

1.2.2 Real numbers

In mathematics, the set of real numbers R is usually defined from the rational
numbers using Dedekind cuts, equivalence classes of Cauchy sequences, or some
such method. However, this object is somewhat cumbersome for foundational
investigations, and in set theory it is usually preferable to work with simpler
objects, which share all the essential logical, topological and structural properties
of R but are more straightforward to study and easier to manipulate.

The most frequent incarnation of the real numbers in set theory is ωω, the set
of functions from ω to ω. If, for every s ∈ ω<ω, we define [s] := {x ∈ ωω | s ⊆ x}
to be the set of all functions extending s, then the collection {[s] | s ∈ ω<ω}
forms a topology base for ωω, and the resulting topological space is called the
Baire space. Clearly ωω has cardinality 2ℵ0 and shares many other properties
inherent to the real numbers. For example, it has a countable base of open sets,
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and each x ∈ ωω can be approximated by a sequence of open neighbourhoods
{[s] | s ⊆ x}. A metric, consistent with the topology, can be defined on ωω,
by d(x, y) := 1/2n for the least n such that x(n) 6= y(n) and d(x, y) = 0 if
x = y. Convergence in the Baire space can be conveniently formulated as follows:
limn→∞ xn = x iff ∀s ⊆ x∀∞n (s ⊆ xn). Following common practice, we shall call
elements of ωω “real numbers” or simply “reals”. In this context, we can define
the rationals as those x ∈ ωω which are eventually 0. It is clear that every real is
a limit of a countable sequence of rationals. The Baire space can be shown to be
homeomorphic to the set of irrational numbers R \Q (in the standard sense).

In complete analogy, we define the Cantor space 2ω to be the set of functions
from ω to 2. The topology, metric, limit etc. are all defined similarly. This space
is homeomorphic to Cantor’s standard “1

3
set”. Likewise, we can define nω for

any n ∈ ω or even
∏

i ni for any sequence of natural numbers ni.
Another incarnation of the real numbers is [ω]ω := {x ⊆ ω | |x| = ω}, the

set of all infinite subsets of ω. The space [ω]ω can either be identified with the
Cantor space via characteristic functions, or with a subset of ωω via increasing
enumerations. In either case, it gives rise to the same notion of a topology on
[ω]ω.

Many-dimensional real number spaces are defined in a standard way, with
(ωω)n equipped with the product topology.

More information about basic topological and structural properties of the
Baire and Cantor spaces can be found in classical textbooks such as [Kec95] and
[Mos80].

1.2.3 Trees

The word “tree” in set theory can refer to many things. In descriptive set theory,
however, a tree on a set X is a subset of X<ω closed under initial segments.
If T is a tree then [T ] denotes the set of all branches through T , defined as
[T ] := {f ∈ Xω | ∀n (x�n ∈ T )}. If X = ω then [T ] is a subset of the Baire
space. It is easy to see that every set [T ] is topologically closed (contains all
its limit points) and, conversely, any closed set C ⊆ ωω is of the form [T ] for
some tree T ; thus there is a one-to-one correspondence between trees on ω and
closed subsets of ωω. More generally, if for an arbitrary set A ⊆ ωω we define
TA := {x�n | x ∈ A, n ∈ ω} then the operation A 7→ [TA] is the topological
closure of A. The same thing can be said of X = 2 and the Cantor space.

The following notation and terminology is used in the context of trees:

• For t ∈ T , the set of immediate successors of t is defined as

SuccT (t) := {s ∈ T | ∃n (t_ 〈n〉 = s)}.

• A node t ∈ T is called splitting if |SuccT (t)| > 1 and non-splitting otherwise.
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• The stem of T is the longest t ∈ T such that all s ⊆ t, s 6= t are non-
splitting.

• For t ∈ T , T ↑ t is the sub-tree {s ∈ T | s ⊆ t or t ⊆ s}.
It is not hard to verify that [T ] is compact (in the topological sense) if and

only if T is everywhere finitely branching, i.e., for every t ∈ T , |SuccT (t)| < ω.
In particular, the Cantor space, and any space of the form nω or

∏
i ni where the

ni are finite, is compact, whereas the Baire space is not.
Trees can also be defined in n dimensions. An n-dimensional tree on X0×· · ·×

Xn−1 can interchangeably be viewed either as a subset of (X0×· · ·×Xn−1)<ω, or as
a subset of {(t0, . . . , tn−1) | ti ∈ X<ω

i and |t0| = · · · = |tn−1|}, pointwisely closed
under initial segments. For such an n-dimensional tree T , the set of branches
through T is a subset of Xω

0 × · · · ×Xω
n−1. As before, in the n-dimensional Baire

space a set C ⊆ (ωω)n is closed if and only if there is an n-dimensional tree T
such that C = [T ]; the same applies for the Cantor space.

There are some specific trees that will be of importance.

Definition 1.2.1.

1. A tree T on ω (or 2) is called a perfect tree if every node t ∈ T has an
extension s ⊇ t, s ∈ T , which is splitting.

2. A tree T on ω is called a super-perfect tree, or a Miller tree, if every node
t ∈ T has an extension s ⊇ t, s ∈ T which is infinitely branching, i.e., such
that |SuccT (s)| = ω.

3. A tree T on ω is called a Laver tree if for every s ∈ T longer than the stem
of T , s is infinitely branching.

In topology, a perfect set is a set C which is closed and contains no isolated
points. It is easy to verify that in the Baire and Cantor spaces, [T ] is a perfect
set if and only if T is a perfect tree. Perfect sets have cardinality 2ℵ0 since the set
of branches through the corresponding perfect tree can be put into a one-to-one
correspondence with 2ω.

1.2.4 Descriptive set theory

Classical descriptive set theory is the study of definable sets of reals, primarily the
Borel and the projective hierarchy stemming from the work of Borel, Lebesgue,
Luzin and Suslin in the early 20th century. We now give a systematic account
of the main definitions. For convenience of the exposition, we will work with the
Baire space ωω, but all definitions and results apply also to the Cantor space, as
well as to the n-dimensional versions of the Baire and Cantor spaces.

The collection of the Borel sets B is defined to be the smallest collection of
sets of reals satisfying the following properties:
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1. every open set is in B,

2. if B ∈ B then (ωω \B) ∈ B, and

3. if Bi ∈ B for every i ∈ ω, then
⋃
iBi ∈ B.

In other words, B is the σ-algebra generated by the open sets, and every Borel set
is recursively built up from the open sets using the operations of complementation
and countable union (or intersection). A more detailed look at the Borel sets
allows us to define the Borel hierarchy, a stratification of the Borel algebra, by
induction on α < ℵ1.

Definition 1.2.2. For each α < ℵ1, the classes Σ0
α, Π0

α and ∆0
α are defined by

induction using the following rules:

1. a set A ⊆ ωω is in Σ0
1 if and only if it is open,

2. a set A is in Π0
α if and only if its complement ωω \ A is in Σ0

α,

3. for α > 1, a set A is in Σ0
α if and only if A =

⋃
n∈ω An, where each An ∈ Π0

β

for β < α, and

4. a set A is in ∆0
α if and only if it is in both Σ0

α and Π0
α.

All these terms are typically used as adjectives, and we say things like “a set
is Σ0

α” or “A is a Σ0
α set”.

It can be shown that this hierarchy is proper, in the sense that for every α
there exists a set A which is Π0

α but not Σ0
α. It is clear that a set B is Borel if

and only if it is Σ0
α or Π0

α for some α < ℵ1, and the least α for which this is the
case is called the Borel rank of B. Sets low in the hierarchy also have classical
names: Σ0

2 sets are called Fσ (countable unions of closed sets) and Π0
2 sets are

called Gδ (countable intersections of open sets).

As mentioned in the introduction, the Borel algebra is not closed under the
natural operation of projection.

Definition 1.2.3.

1. Let A ⊆ (ωω)2 be a two-dimensional set of reals. The projection of A (onto
the first coordinate) is

p[A] := {x | ∃y ∈ ωω ((x, y) ∈ A)}.

2. A set A ⊆ ωω is called analytic if it is the projection of some Borel set
B ⊆ (ωω)2, and co-analytic if its complement is analytic.
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In [Sus17], Suslin showed that there are analytic sets which are not Borel,
that A is analytic if and only if it is the projection of a closed set, and that the
Borel sets are precisely those that are both analytic and co-analytic. Iterating the
operation of projection and complementation, the projective hierarchy is obtained.

Definition 1.2.4. For each n ∈ ω, the classes Σ1
n, Π1

n and ∆1
n are defined by

induction using the following rules:

1. A is Σ1
1 if and only if it is analytic,

2. A is Π1
n if and only if ωω \ A is Σ1

n,

3. A is Σ1
n+1 if and only if A = p[A′] for some Π1

n set A′, and

4. A is ∆1
n if and only if it is both Σ1

n and Π1
n.

Notice that the precise number of dimensions in which the sets and their
projections are defined is not relevant, since any (ωω)n is homeomorphic to ωω.
What matters is that if a set is in (ωω)n then its projection is defined in (ωω)n−1.
Just as the Borel hierarchy, the projective hierarchy is proper, i.e., for every n
there is an A which is Π1

n but not Σ1
n. A set is called projective if it is Σ1

n or Π1
n

for some n.

So far, the Borel and projective hierarchies were presented from a purely topo-
logical point of view, but there is a straightforward connection to logic. Consider
the language of second order number theory consisting of formulas with terms
for natural numbers (first-order objects) as well as real numbers (second-order
objects), and having first-order quantifiers ∃0,∀0 and second-order quantifiers
∃1,∀1. We use the notation N2 |= φ to say that the formula φ in the language
of second-order number theory is true in the standard model. Formulas can use
real numbers r ∈ ωω as parameters, in which case we will write φ(r) to denote
the fact that r appears in φ. A classification of formulas in this language can be
defined according to the number of alternating natural number and real number
quantifiers. Precisely:

Definition 1.2.5.

1. (a) φ is Σ0
0, or Π0

0, if it is quantifier-free,

(b) φ is Σ0
n+1 if it is of the form ∃0k ψ where ψ is Π0

n,

(c) φ is Π0
n if it is of the form ¬ψ where ψ is Σ0

n,

(d) φ is ∆0
n if it is both Σ0

n and Π0
n,

(e) φ is arithmetical if it is Σ0
n or Π0

n for some n.

2. (a) φ is Σ1
1 if it is of the form ∃1xψ where ψ is arithmetical (equivalently,

quantifier-free),
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(b) φ is Π1
n if it is of the form ¬ψ where ψ is Σ1

n,

(c) φ is Σ1
n+1 if it is of the form ∃1x ψ where ψ is Π1

n,

(d) φ is ∆1
n if it is both Σ1

n and Π1
n,

(e) φ is projective if it is Σ1
n or Π1

n for some n.

So a formula is Σ0
n iff it is of the form ∃0k0∀0k1 . . . Q

0knφ, and Π0
n iff it is of the

form ∀0k0∃0k1 . . . Q
0knφ, where φ is quantifier-free. Likewise, it is Σ1

n iff it is of the
form ∃1x0∀1x1 . . . Q

0xnφ, and Π1
n iff it is of the form ∀1x0∃1x1 . . . Q

1xnφ, where
φ is arithmetical (equivalently, quantifier-free). The classification of formulas
allows us to classify sets definable in second-order number theory according to
the complexity of the formula defining it.

Definition 1.2.6.

1. A set A ⊆ ωω is Σi
n (Πi

n) if it can be written as

A = {x ∈ ωω | N2 |= φ(x)}

where φ is Σi
n (Πi

n) and free of parameters.

2. A set A ⊆ ωω is Σi
n(r) (Πi

n) if it can be written as

A = {x ∈ ωω | N2 |= φ(x, r)}

where φ is Σi
n (Πi

n) and contains a real parameter r.

As natural number quantifiers correspond to countable unions and intersec-
tions whereas real quantifiers correspond to the operation of projection, one can
show that the “boldface” hierarchy defined by purely topological means, corre-
sponds to the “lightface” hierarchy defined using logic, assuming that real pa-
rameters are allowed in the defining formula.

Fact 1.2.7. A set A ⊆ ωω is Σi
n (Πi

n) iff A is Σi
n(r) (Πi

n(r)) for some r ∈ ωω.

For a more detailed introduction to descriptive set theory, we refer the reader
to classical textbooks such as [Kec95] and [Mos80].

1.2.5 Constructibility

In 1938, Gödel introduced the constructible universe L, an inner model of set
theory defined similarly to the cumulative hierarchy V but using the definable
power set operation rather than the full power set operation at successor steps of
the construction.
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Definition 1.2.8. Let X be any set. A subset Y ⊆ X is (first order) definable
over X if there exists a first-order formula φ such that for every x ∈ X we have

x ∈ Y iff X |= φ(x, z0, . . . , zk),

where z0, . . . , zk ∈ X. Here, “X |= φ” refers to the coded version of φ and the
satisfaction relation |= with respect to the set model (X,∈). Since the satisfaction
relation for such set models is definable in ZFC, the predicate “being definable over
X” is itself definable. Let Def(X) := {Y ⊆ X | Y is definable over X}.

Definition 1.2.9. For all ordinals α, define Lα by induction as follows:

• L0 := ∅,

• Lα+1 := Def(Lα),

• Lλ :=
⋃
α<λ Lα for limit λ.

Let L :=
⋃
α∈Ord Lα be the proper class of all sets in this hierarchy. This is called

the constructible universe, and sets in L are called constructible.

By [Göd38], L is a model of set theory which, additionally, satisfies the Gener-
alized Continuum Hypothesis (GCH) and many other mathematical statements.
A definable version of the Axiom of Choice holds in L, i.e., there is a definable
well-order of the entire universe of constructible sets, which we shall denote by
<L. It is defined recursively, by ordering each elements of Lα according to the
formula defining it and the ordering of the parameters used in the definition,
which come from some Lβ for β < α. We also denote by <Lα the restriction of
the well-order to an initial segment of the L, so <L=

⋃
α∈Ord <Lα .

The constructible universe L is the smallest inner model of set theory, in the
sense that if M is any other proper class model, then L ⊆M . The statement “all
sets are constructible”, typically abbreviated by “V = L”, is absolute between
L and every other model, hence L itself is a model of the statement “V = L”.
Here we will not present all known facts about L and refer to textbooks such as
[Jec03, Kan03, Dev84] for further details. However, we are particularly interested
in questions concerning definability.

Fact 1.2.10 (Gödel).

1. There is a sentence Θ (containing sufficiently much of ZF+V = L to insure
absoluteness of all the relevant definitions) such that for any set model M ,
if M |= Θ then M is isomorphic to Lδ for some limit ordinal δ.

2. There is a formula χ(x, y) such that if x, y ∈ Lδ then Lδ |= χ(x, y) iff
x <Lδ y.
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If δ is a countable limit ordinal then Lδ is countable and the structure (Lδ,∈)
is isomorphic to (ω,E) for a well-founded relation E on ω. Conversely, if we are
given a well-founded relation E on ω, and we know that (ω,E) |= Θ, then by Fact
1.2.10 (ω,E) must be isomorphic to some (Lδ,∈), and in that case we denote the
transitive collapse of (ω,E) onto (Lδ,∈) by πE.

Fact 1.2.11 (Gödel). In L, the canonical well-ordering of the reals (i.e., the set
{(x, y) | x, y ∈ ωω and x <L y}) is a ∆1

2 set.

Proof. First note that, by virtue of the definition of the well-ordering, for any
x, y ∈ ωω ∩ Lδ we know that x <L y iff x <Lδ y iff Lδ |= χ(x, y). Therefore, for
any x, y ∈ ωω, we may write x <L y iff ∃δ < ℵ1 (x, y ∈ Lδ and Lδ |= χ(x, y)),
which, in turn, may be written as follows: there exists E ⊆ ω × ω such that

1. E is well-founded,

2. (ω,E) |= Θ, and

3. ∃n ∃m (n = πE(x) and m = πE(y) and (ω,E) |= χ(n,m)).

Note that E can be considered a real number, so “there exists E” corresponds to
a second order quantifier ∃1. Moreover, the statement “E is well-founded” is Π1

1,
whereas statements 2 and 3 are arithmetical (see e.g. [Kan03, Proposition 13.8]).
It follows that x <L y is equivalent to a Σ1

2 statement.

To see that it is also Π1
2, apply the same trick to the statement ∀δ < ℵ1 (x, y ∈

Lδ → Lδ |= χ(x, y)).

This proof is paradigmatic for proving that in L, definitions by induction
on a well-ordering of the reals can usually be modified to produce sets of low
complexity. In particular, we will use this method many times for constructing
Σ1

2, ∆1
2 or Π1

1 counterexamples to regularity properties in L.

If a is any set, we may define L[a] analogously to L but replacing definability
by a first-order formula in the clause “Lα+1 := Def(Lα)” by definability with the
parameter a. The hierarchy generated is Lα[a], and both the individual levels
and the entire class L[a] share most properties with L. In our setting, a will most
often be a real number.

1.2.6 Absoluteness

To say that a formulas φ is absolute between V and some model M is to say that
M |= φ if and only if V |= φ. We are specifically interested in formulas φ in
second-order number theory, as these are used to classify sets of reals.

Fact 1.2.12 (Analytic absoluteness). Let M be any model (countable or other-
wise) of set theory. Every Σ1

1 (hence Π1
1) formula is absolute between M and

V .
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As a result, Σ1
2 formulas are upwards absolute and Π1

2 formulas are downwards
absolute between any M and V , but not the other way around.

Fact 1.2.13 (Shoenfield absoluteness). Let M be a model such that ω1 ⊆M (in
particular, M cannot be countable). Every Σ1

2 (hence Π1
2) formula is absolute

between M and V .

As a result, Σ1
3 formulas are upwards absolute and Π1

3 formulas are downwards
absolute between any M with ω1 ⊆M and V , but not the other way around.

Analytic absoluteness will most often be used in a context where M is some
countable elementary submodel of a sufficiently large structure. Shoenfield abso-
luteness will typically be used between V and L, or some L[r] for r ∈ ωω.

Absoluteness of sentences involving Borel sets is particularly interesting. Note
that every Borel set comes together with a description of its own construction
using the basic operations. Therefore, Borel sets can be coded by reals in an
effective manner (see [Jec03, p 504–507] for details). Such reals are called Borel
codes, and if c ∈ ωω is such a Borel code, let Bc denote the Borel set encoded by c.
If a model M contains the code c of a Borel set, then it can interpret the set BM

c .
This is not the same set as Bc as M has less reals than V , but, for all practical
purposes, it is the same Borel set, i.e., it is how a different model interprets the
same definition. Most simple operations involving Borel sets, if considered as
operations on the codes rather than the sets themselves, are absolute.

Fact 1.2.14. The statements “x ∈ Bc”, “Bc = ∅”, “Bc ⊆ Bd”, “Bc = ωω \Bd”,
“Bc = Bd∪Be”, “Bc = Bd∩Be” etc. are all analytic or co-analytic, and therefore
absolute between V and any model M containing c, d, e and x.

Shoenfield absoluteness is intimately connected with tree representation of Σ1
2

sets.

Fact 1.2.15 (Shoenfield).

1. If A is Σ1
2(r) then there exists a tree T on ω×ω1 (i.e., T ⊆ ω<ω×ω<ω1 ), such

that T ∈ L[r], and such that for all x, x ∈ A iff ∃h ∈ ωω1 s.t. (x, h) ∈ [T ]
iff ∃h ∈ ωω1 ∀n ((x�n, h�n) ∈ [T ]).

2. If A is Σ1
2(r) and ℵL[r]

1 = ℵ1, then A =
⋃
α<ℵ1 Bα, where Bα are Borel sets,

and whose Borel codes are contained in L[r].

Both facts, especially the second, will be used numerous times in the analysis
of Σ1

2 sets.
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1.2.7 Forcing

In 1964, Paul Cohen [Coh63, Coh64] discovered the method of forcing by which
models of set theory could be extended to larger models in a controlled manner,
by adding so-called generic objects. This could be viewed as the counterpart to
Gödel’s method of inner models.

As we cannot reproduce the entire method of forcing here, we refer the readers
to textbooks such as [Kun80] and [Bel85]. The main principle of forcing is the
use of a partial order (P,≤) contained in some ground model M of ZFC, and a
“generic” object G ⊆ P outside M which can be adjoined to form a larger model
of ZFC, M [G]. The combinatorial properties of the partial order P determine
which additional statements are true in M [G]. Elements p ∈ P are called forcing
conditions or simply conditions, and q ≤ p is interpreted as “q is stronger than
p”, “q contains more information than p”, or “q extends p”. Although M does
not contain the objects in M [G], it contains names τ for such objects, which
are interpreted by an object τG ∈ M [G]. In a syntactic way, the forcing relation

 is then defined which, in M , decides the truth-value of statements in M [G].
Specifically, the Forcing theorem states the following two things:

1. if M |=“p 
 φ(τ)” and p ∈ G then M [G] |= φ(τG), and

2. if M [G] |= φ(x) then there is a p ∈ G and a name τ such that τG = x and
M |=“p 
 φ(τ)”.

We will assume familiarity with the technical aspects of forcing, in particular
the concepts compatible, dense, predense, dense/predense below p, antichain and
P-generic filter, as well as the technical definition of names and (some) formaliza-
tion of the forcing relation 
; all these can be found in the textbooks mentioned
above and in other literature. A forcing P is said to have the countable chain
condition, or c.c.c., if every maximal antichain is at most countable.

Although, formally, adjoining a P-generic filter G is only possible if M is a set-
sized transitive model, it is common for set theorists to talk of generic extensions
V [G] of the universe V . This is understood as follows: prior to the adjoining
of G, one thinks of V as the universe of all sets (so a generic G cannot exist).
However, when we adjoin G we take a “step out” of V , and look at it from the
point of view of some larger (unspecified) universe, in which V is a set-sized model
and a P-generic object G over V exists. Classical textbooks on forcing show how
such an argument can be formalized without being nonsensical (in fact, there are
several possible approaches to formalization—see [Kun80, Chapter VII §9]). We
shall not be concerned with these issues and will take the liberty to extend the
universe V to a larger one V [G] whenever convenient.

Iterations of forcing will be used throughout this dissertation. Intuitively,
after extending a model M to M [G0] by adding a P-generic G0, the process can
be repeated and a P-generic G1 can be added to M [G0] producing the larger model
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M [G0][G1]; that, in turn, can be extended to M [G0][G1][G2], etc. An iteration of
P of length α is the result of repeating this process for α steps. However, in order
to specify what happens at limit stages of such an iteration, the formal approach
is somewhat different: a forcing partial order Pα is defined directly in the ground
model M in such a way that adding a Pα-generic filter G to M once amounts
to adding α many P-generic filters Gβ for β < α, in sequence. Iterations can
have finite support or countable support, depending on how the construction at
limit stages is defined. In most of our application an intuitive understanding of
iterations will suffice, although in Chapter 5 some of the more technical aspects
of iterations will be relevant. For a detailed introduction on forcing iterations, see
[Kun80, Chapter VIII §5], and for applications of it in the study of the continuum,
see [BJ95, Chapters 5, 6 and 7].

If a forcing partial order P has the countable chain condition (c.c.c.) then it

preserves ℵ1, i.e., ℵM [G]
1 = ℵM1 . An iteration of P with finite support does so,

too. For partial orders without the c.c.c., preservation of ℵ1 is established by
alternative methods. The main modern device for this is the notion of proper
forcing, which we now introduce. It is a crucial concept which we will be used a
lot in our work.

In discussions of proper forcing, it is customary to consider generic extensions
V [G] of the universe V . On the other hand, M typically denotes a countable
elementary submodel of someHθ, whereHθ is the collection of all sets hereditarily
of cardinality < θ, and θ is a sufficiently large cardinal, meaning that Hθ contains
all information necessary for the argument we are currently interested in. The
precise value of θ is left unspecified, but usually it is sufficient for θ to be larger
than 2|P|. The model M can be seen as a miniature version of V , containing all
the essential logical information relevant for the current argument, while being
itself only countable.

If G is a P-generic filter over V , we denote by M [G] the set of all G-interpre-
tations of names τ which lie in M . This set M [G] might, or might not, be a
generic extension of M . This leads to the following sequence of definitions:

Definition 1.2.16. Let G be P-generic over V .

1. We call G (M,P)-generic if M [G] is a generic extension of M . Formally,
this means that G ∩D ∩M 6= ∅ for every dense set D ∈M .

2. A condition p ∈ P is called an (M,P)-master condition if p 
 “Ġ is (M,P)-
generic”, where Ġ is the canonical name for the generic filter (over V ).

3. A forcing P is called proper if for every countable M ≺ Hθ and every
p ∈ P ∩M , there exists a q ≤ p which is a (M,P)-master condition.

The reference to M and P will often be dropped when clear from the context.
Note that in order for p 
 Ġ∩D∩M 6= ∅ to be true, it is sufficient that (D∩M)
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be predense below p. Therefore, an equivalent definition of properness is the
following: for every countable M ≺ Hθ and every p ∈ P∩M , there exists a q ≤ p
such that for every dense D ∈M , (D ∩M) is predense below q.

Every c.c.c. forcing is proper, and every proper forcing preserves ℵ1. More-
over, this is preserved in iterations of proper forcing notions with countable sup-
port.

We refer the reader to [Abr10] for a detailed introduction on proper forcing
and its applications.

Below we give the definitions of some standard forcing partial orders. We will
need this list for reference in subsequent chapters.

Definition 1.2.17.

1. Cohen forcing, denoted by C, consists of conditions s ∈ ω<ω ordered by
t ≤ s iff s ⊆ t.

2. Random forcing, denoted by B, consist of Borel (or closed) sets of positive
Lebesgue measure (see Definition 1.3.1), ordered by B ≤ C iff B ⊆ C.

3. Hechler forcing, denoted by D, consists of conditions (s, f) ∈ ω<ω×ωω such
that s ⊆ f , ordered by (s′, f ′) ≤ (s, f) iff s ⊆ s′ and ∀n (f(n) ≤ f ′(n)).

4. Sacks forcing, denoted by S, consists of perfect trees T ⊆ 2<ω, ordered by
inclusion (i.e. S ≤ T iff S ⊆ T ).

5. Miller forcing, denoted by M, consists of super-perfect (Miller) trees T ⊆
ω<ω ordered by inclusion (see Definition 1.2.1).

6. Laver forcing, denoted by L, consists of Laver trees T ⊆ ω<ω ordered by
inclusion (see Definition 1.2.1).

7. Mathias forcing, denoted by R, consists of conditions (s, A) ⊆ [ω]<ω × [ω]ω

such that max(s) < min(A), ordered by (s′, A′) ≤ (s, A) iff s ⊆ s′ and
A′ ⊆ A, and s′ \ s ⊆ A.

All the forcing partial orders mentioned above add a generic real xG, canon-
ically derived from the generic filter G. For Cohen forcing, we can define xG :=⋃
{s | s ∈ G}, and for S,M and L: xG :=

⋃
{stem(T ) | T ∈ G}. For D,

xG :=
⋃
{s | (s, f) ∈ G for some f}, and similarly for R. For random forcing B,

the generic real is the unique real such that {xG} =
⋂
{B | B ∈ G}. In all cases,

the generic filter G can be reconstructed from xG; thus V [G] = V [xG]. We will
often talk about P-generic reals rather than P-generic filters in our applications
of forcing.

All forcings in Definition 1.2.17 are proper, and C,B and D are c.c.c. whereas
the others are not.
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Lastly, we introduce a very different kind of forcing, the Lévy collapse used
to build the Solovay model.

Definition 1.2.18. Let κ be an inaccessible cardinal, and let Col(ω,<κ) be the
partial order of finite functions p such that

1. dom(p) ⊆ κ× ω,

2. if (α, n) ∈ dom(p) then p(α, n) < α.

From a Col(ω,<κ)-generic filter G one can obtain a function fG : κ× ω → κ
defined by fG :=

⋃
G, and for every α < κ, a function fG,α : ω → α defined

by fG,α(n) := fG(α, n). Standard genericity arguments show that each fG,α is
a surjection; thus, in the generic extension by Col(ω,<κ), κ is collapsed onto
ℵ1. The Solovay model is defined as an inner model of the Col(ω,<κ)-generic
extension V [G].

Definition 1.2.19.

1. A set A is definable from a sequence of ordinals if there is an s ∈ Ordω,
i.e., a countable sequence of ordinals, and a formula ϕ, such that

x ∈ A ⇐⇒ ϕ(s, x).

2. HODω is the class of all sets hereditarily definable from a sequence of or-
dinals, i.e., the class of all A such that every set in the transitive closure of
A is definable from a sequence of ordinals.

3. By the Solovay model we refer to HODω defined within V [G], where V is
a model with an inaccessible cardinal κ and V [G] the Col(ω,<κ)-generic
extension.

HODω is an inner model satisfying ZF + DC (Axiom of Dependent Choices),
though, in general, not the full Axiom of Choice. Also, it is easy to see that every
projective set is definable from a sequence of ordinals.

The following fundamental property of the Lévy collapse is instrumental for
proving that sets of reals in the Solovay model satisfy many nice properties.

Lemma 1.2.20 (Solovay). Let κ be an inaccessible cardinal in V and V [G] be
the Col(ω,<κ)-generic extension. For every formula ϕ, there is a formula ϕ̃ such
that for s ∈ Ordω and x ∈ ωω:

V [G] |= ϕ(s, x) ⇐⇒ V [s][x] |= ϕ̃(s, x).

Proof. See e.g. [Jec03, Lemma 26.17] or [Kan03, Lemma 11.12].

As soon as one proves that, in V [G], all sets of reals definable from a sequence
of ordinals are “nice” in some certain way, the following two results are immedi-
ately obtained: Con(ZFC+“all projective sets are ‘nice’ ”) and Con(ZF+DC+“all
sets are ‘nice’ ”).



1.2. Preliminaries 21

1.2.8 Determinacy

Suppose two players, I and II, are playing a game picking integers xi, yi in turns,
and continue doing this ω-many times:

I : x0 x1 x2 . . .
II : y0 y1 y2 . . .

After infinitely many moves, a real z := 〈x0, y0, x1, y1, . . . 〉 is produced. Given
a pre-determined “pay-off” set A ⊆ ωω, player I wins this game if z ∈ A, otherwise
II does. Despite this unrealistic scenario, such so-called infinite, two-person games
of perfect information are mathematically well-defined and play a crucial role
in descriptive set theory. We let G(A) stand for the game as described above
with the winning condition for player I determined by the set A. The following
sequence of definitions explains the importance of infinite games in the study of
the continuum.

Definition 1.2.21.

1. A strategy for player I is a function σ : ω<ω → ω, the intended interpreta-
tion of which is that σ(p) determines the integer xi for player I to move, in
the game where the moves played so far have been p = 〈x0, y0, . . . , xi−1, yi−1〉.
A strategy for player II is a function τ : ω<ω → ω with the analogous in-
terpretation.

2. If y = 〈y0, y1, . . . 〉 is a real, then σ ∗ y denotes the result of the game in
which I follows strategy σ and II plays the sequence of integers given by y,
and similarly for x ∗ τ where x is the sequence of integers played by I.

3. In a fixed game G(A), σ is a winning strategy for player I if for all y ∈ ωω,
σ ∗ y ∈ A, and τ is a winning strategy for player II if for all x ∈ ωω,
x ∗ τ /∈ A.

4. The game G(A) is determined if player I or player II has a winning strategy.
A set A ⊆ ωω is determined if the game G(A) is determined.

It is easy to show that open and closed sets A are determined—this is known
as the Gale-Stewart theorem and is due to [GS53]. A much more difficult result
is the theorem of Donald A. Martin [Mar75] showing that all Borel sets A are
determined. The following axiom has been proposed in [MS62].

Definition 1.2.22. The Axiom of Determinacy, AD, is the statement that all
sets of reals A ⊆ ωω are determined.

AD contradicts the Axiom of Choice, since one can use the well-ordering of
the reals to construct a non-determined set. However, AD is still often considered
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as an alternative to AC, and the system ZF + AD is consistent assuming the
existence of infinitely many Woodin cardinals with a measurable cardinal above
them, by results of Hugh Woodin. Unlike full AD, the following weaker axiom is
not contradictory with ZFC.

Definition 1.2.23. The Axiom of Projective Determinacy, PD, is the statement
that all projective sets of reals A ⊆ ωω are determined.

By the result of Martin and Steel [MS89], PD is true assuming that there are
infinitely many Woodin cardinals.

Another variation of the Axiom of Determinacy involves the possibility for
players I and II to chose real numbers rather then integers. Let A ⊆ (R)ω be the
pay-off set, and let GR(A) be the corresponding game with real moves. Here we
write R following custom, but this typically refers to the Baire or Cantor space.
The concepts of a strategy, winning strategy and determinacy can be defined
analogously.

Definition 1.2.24. The Axiom of Real Determinacy, ADR, is the statement that
every set A ⊆ (R)ω is determined (i.e., every game GR(A) is determined).

ADR is stronger than AD, and its consistency can be deduced from an assump-
tion slightly stronger than the existence of infinitely many Woodin cardinals (see
[Kan03, Theorem 23.19]).

1.2.9 Cardinal invariants

Cardinal invariants (sometimes called cardinal coefficients) are cardinal numbers
that have a combinatorial definition but may have different values in different
models of set theory. We will only be interested in cardinal invariants of the
continuum. The most famous cardinal invariant (if it may be called such) is
the cardinality of the continuum itself, 2ℵ0 . The other invariants k are typically
defined as the least cardinality of a set of reals with a certain property, and usually
have value ℵ0 < k ≤ 2ℵ0 . Although this dissertation is primarily about questions
of definability, certain cardinal invariants will play a crucial role too, so we will
give the most important definitions. A detailed introduction can be found e.g. in
[Bla10].

Definition 1.2.25.

1. Let x, y ∈ ωω. We say that y dominates x, notation x ≤∗ y, if ∀∞n (x(n) <
y(n)).

2. Let x, y ∈ [ω]ω. We say that y splits x if both x ∩ y and x \ y are infinite.
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Definition 1.2.26.

1. b, the bounding number, is the least cardinality of a set A ⊆ ωω such that
there is no real y which dominates every real in A.

2. d, the dominating number, is the least cardinality of a set A ⊆ ωω such that
every real x is dominated by some real in A.

3. r, the reaping number, is the least cardinality of a set A ⊆ ωω such that
there is no real y which splits every real in A.

4. s, the splitting number, is the least cardinality of a set A ⊆ ωω such that
every real x is split by some real in A.

The next set of invariants concerns σ-ideals on the reals.

Definition 1.2.27. Let I be a σ-ideal on ωω, i.e., an I ⊆P(ωω) such that

1. if A ∈ I and B ⊆ A then B ∈ I,

2. if An ∈ I for n ∈ ω, then
⋃
nAn ∈ I.

By convention, singletons {x} are assumed to be in the ideal I but the entire space
ωω is not. For each such ideal I we define the following cardinal invariants:

1. cov(I), the covering number of I, is the least size κ of a family {Aα | α < κ}
of sets in I such that

⋃
α<κAα = ωω.

2. add(I), the additivity number of I, is the least size κ of a family {Aα | α <
κ} of sets in I such that

⋃
α<κAα /∈ I.

3. non(I), the uniformity number of I, is the least cardinality of a set A ⊆ ωω

such that A /∈ I.

4. cof(I), the cofinality number of I, is the least size κ of a family {Aα | α < κ}
of sets in I such that ∀A ∈ I ∃α < κ (A ⊆ Aα).

It is easy to see that the inequalities ℵ1 ≤ add(I), add(I) ≤ non(I), add(I) ≤
cov(I), non(I) ≤ cof(I), cov(I) ≤ cof(I) and cof(I) ≤ 2ℵ0 are provable in ZFC,
as represented in the following diagram (where “→” represents “≤”).

non(I)

''OOO
OOO

ℵ1
// add(I)

77oooooo

''OOOOOO
cof(I) // 2ℵ0

cov(I)

77oooooo
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The next cardinal invariants involve the space [ω]ω of infinite subsets of ω.
For a, b ∈ [ω]ω, a ⊆∗ b denotes the statement “a is a subset of b modulo a finite
set”, i.e., |a \ b| < ω.

Definition 1.2.28.

1. A set A ⊆ [ω]ω has the finite intersection property (f.i.p.) if for every
a0, . . . , ak ∈ A,

⋂k
i=0 ai is infinite. A real b ∈ [ω]ω is a pseudo-intersection

of A if b ⊆∗ a for all a ∈ A. Clearly, if A has a pseudo-intersection
then it also has the f.i.p., but the converse need not be true. The pseudo-
intersection number p is the smallest size of a set A ⊆ [ω]ω with the f.i.p.
but without a pseudo-intersection.

2. A tower is a collection A ⊆ [ω]ω ordered by reverse almost-inclusion ⊇∗
(i.e., A = {aα | α < κ} such that if α < β then aβ ⊆∗ aα) but which does
not have a pseudo-intersection. The tower number t is the smallest size of
a tower.

3. A collection D ⊆ [ω]ω is dense (in [ω]ω) if ∀a ∈ [ω]ω ∃b ⊆ a such that
b ∈ D; it is open if whenever b ∈ D and b′ ⊆∗ b, then also b′ ∈ D. The
distributivity number h is the least cardinality κ of a set {Dα | α < κ} of
open dense sets Dα such that

⋂
α<κDα = ∅.

4. A collection A ⊆ [ω]ω is almost disjoint (a.d.) if a ∩ b is finite for every
a, b ∈ A. It is maximal almost disjoint (mad) if it is infinite, almost disjoint
and maximal with regard to that property. The almost disjointness number
a is the least size of a mad family.

2ℵ0

d

zzzzz
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~~~~~
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>>>>>
zzzzz

t
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Figure 1.1: Van Douwen’s diagram
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It is not hard to see that each of the cardinal invariants we have so far defined
must at least be uncountable. Also, if the Continuum Hypothesis holds then all
cardinal invariants have value 2ℵ0 , so they are really only interesting in models of
¬CH. It is consistent for each invariant to be larger than ℵ1, and in the absence of
CH, a statement involving a cardinal invariant, such as “b > ℵ1” or “b < d”, tells
us something about the structure of the continuum and can be a useful axiom in
applications of set theory.

cov(N ) // non(M) // cof(M) // cof(N ) // 2ℵ0

b //

OO

d

OO

ℵ1
// add(N ) //

OO

add(M)

OO

// cov(M)

OO

// non(N )

OO

Figure 1.2: Cichoń’s diagram

Figures 1.1 and 1.2, known as the van Douwen diagram and Cichoń’s diagram,
respectively, show all known ZFC-provable inequalities between the cardinal in-
variants we have defined, as well as those that involve the meager and Lebesgue
null ideals M and N (see Definition 1.3.1).

In these diagrams, all inequalities except p ≤ t have been proven to be con-
sistently strict, i.e., for every such pair k, l there is a model in which k < l.

1.3 Regularity properties

1.3.1 Definitions

We begin by giving a precise definition of the three classical regularity properties
(adapted to the Baire and Cantor spaces rather than the original R).

Definition 1.3.1. Lebesgue measurability is defined together with a measure func-
tion µ mapping subsets of ωω or 2ω to the interval [0, 1].

• If s ∈ ω<ω is a finite sequence with |s| = n, then µ([s]) :=
∏n

i=0
1

2s(i)+1 . If
we are dealing with s ∈ 2<ω then the definition is simply µ([s]) := 1

2n
. Note

that this is set up so that the size of the whole space is 1.

• Following a standard measure-theoretic construction, µ can be extended to
all Borel sets, by induction on the operations of negation and countable
union.
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• A Borel set B is called Lebesgue null if µ(B) = 0, and an arbitrary set A
is called Lebesgue null if A ⊆ B for some Borel set B with µ(B) = 0, in
which case we define µ(A) := 0.

• Finally, a set A is called Lebesgue measurable if there exists a Borel set
B such that (A \ B) ∪ (B \ A) is Lebesgue null, in which case we define
µ(A) := µ(B).

The last two lines provide an extension of the notion of a Lebesgue null set
and a Lebesgue measurable set beyond the Borel sets on which it was originally
defined. We let N denote the σ-ideal of Lebesgue null sets.

Definition 1.3.2. The property of Baire is topological in nature.

• Recall that in a topological space, a set A is nowhere dense if for every basic
open set O there is a basic open subset U ⊆ O such that U ∩ A = ∅. A
set A is meager (also called of first category) if it is the countable union of
nowhere dense sets.

• A set A ⊆ ωω or 2ω satisfies the property of Baire if there is an open set O
such that (A \O) ∪ (O \ A) is meager.

The σ-ideal of meager sets is denoted by M.

Definition 1.3.3. A set A ⊆ ωω or 2ω satisfies the perfect set property if it is
either countable or there exists a perfect set P such that P ⊆ A.

There is a multitude of other notions that could adequately be described
“regularity properties”, appearing in the most diverse fields of mathematics. It
would be impossible to give a complete list, so we will only introduce the more
well-known ones, with a special emphasis on those that will play a role in this
dissertation.

Our first definition is loosely related to the property of Baire and was first
introduced by Edward Marczewski1 in 1935 ([Szp35]).

Definition 1.3.4. A set A ⊆ ωω or 2ω is Marczewski measurable (sometimes
called a Marczewski set, or having property (s)) if for every perfect set P there
is a perfect subset Q ⊆ P such that Q ⊆ A or Q ∩ A = ∅.

The above can clearly be expressed using perfect trees T and the set of their
branches [T ], and in this setting Marczewski measurability is related to Sacks
forcing S (see Definition 1.2.17). We also obtain the properties M-Marczewski
measurable and L-Marczewski measurable if we replace perfect trees by super-
perfect (Miller) and Laver trees, respectively (M and L standing for the Miller
and Laver forcing partial orders).

1Before 1940, Marczewski’s surname was Szpilrajn; thus, in his pre-1940 publications he is
cited with that name.
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The above definition can be generalized to an arbitrary collection X of sets of
reals. Thus we can call a set A ⊆ ωω X-Marczewski measurable if ∀P ∈ X∃Q ∈ X
s.t. Q ⊆ P and Q ⊆ A or Q ∩A = ∅, although some additional requirements on
X may be necessary for this to be a good notion of regularity (otherwise it may
fail for very simple, e.g. closed, sets). This notion was previously investigated by
the author in [Kho09], where it was called the Marczewski-Burstin algebra, and
a similar notion was used by Daisuke Ikegami in [Ike10a]. We will return to this
in Chapter 2.

The next property is motivated by infinitary combinatorics. A classical theo-
rem of Frank P. Ramsey [Ram29] says the following: for any partition of [ω]2 (the
set of two-element subsets of ω) into disjoint sets A and B, there is an infinite set
H ⊆ ω such that [H]2 is either completely contained in A or completely contained
in B (such an H is called a homogeneous set). This easily extends to any natural
number n in place of 2, and the interesting question concerns [ω]ω. This gives
rise to the following definition.

Definition 1.3.5. A set A ⊆ [ω]ω satisfies the Ramsey property if and only if
there exists an x ∈ [ω]ω such that [x]ω ⊆ A or [x]ω ∩ A = ∅.

Another, less well-known, though close relative of the Ramsey property is the
following:

Definition 1.3.6. A set A ⊆ [ω]ω satisfies the doughnut property if and only if
there exist x, y ∈ [ω]ω such that y\x is infinite and such that {z | x ⊆ z ⊆ y} ⊆ A
or {z | x ⊆ z ⊆ y} ∩ A = ∅.

The perfect set property has many relatives too, specifically if we replace
perfect trees by different kind of trees.

Definition 1.3.7.

1. A set A ⊆ ωω is called Kσ-regular if either there is a real x that dominates
all a ∈ A (see Definition 1.2.25), or there is a super-perfect tree T such that
[T ] ⊆ A.

2. A tree T on ω is called a Spinas tree (due to [Spi94]) if it is super-perfect
with the additional requirement that for every ω-splitting node t ∈ T , if s1

and s2 extend t and are both ω-splitting, then |s1| = |s2|; in other words,
the next splitting nodes are all a fixed distance away from t.

A set A ⊆ ωω is called a dominating set if for every x ∈ ωω there exists
a ∈ A such that x ≤∗ a. A is u-regular if it is either not a dominating set
or there is a Spinas tree T with [T ] ⊆ A.
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3. If x and f are two reals, we say that x strongly dominates f if ∀∞n (x(n+
1) > f(x(n))). A set A ⊆ ωω is called strongly dominating if ∀f ∈ ωω ∃x ∈
A s.t. x strongly dominates f . A ⊆ ωω is called Laver-regular, or `-regular,
if it is either not strongly dominating or there is a Laver tree T such that
[T ] ⊆ A.

These can be understood as certain dichotomies, saying of a set A ⊆ ωω that
it is either “small” in some particular sense, or else contains a certain “large” kind
of object. Their isolation is due to [Kec77], [Spi94] and [GRSS95], respectively.

Finally, rather than thinking about regularity we can think about special ir-
regular objects, for example, those defined as the maximal possible sets satisfying
a certain property. Consider non-principal ultrafilters U on ω. By an identifica-
tion of [ω]ω with the Baire or Cantor space, one can easily show that an ultrafilter
is not Lebesgue-measurable and does not have the property of Baire. Likewise,
one can easily show that an object explicitly derived from U does not have the
Ramsey or the doughnut property. So, an ultrafilter can be seen as a special
kind of irregular object. In other words, the property of not being an ultrafilter
is considered a notion of regularity. Another object with a similar attitude is a
mad family (see Definition 1.2.28).

1.3.2 Regularity of projective sets

All the properties defined above can be violated assuming the Axiom of Choice.
On the other hand, all are true for analytic sets. This is due to Suslin [Sus17]
for the three classical properties; Marczewski [Szp35] for Marczewski measurabil-
ity; Silver [Sil70] for the Ramsey property; and Kechris [Kec77, Theorem 4 (i)],
Spinas [Spi94, Theorem 1.4] and Goldstern, Repický, Shelah and Spinas [GRSS95,
Lemma 2.3] for the three dichotomy-style properties, respectively. Furthermore,
there are no analytic ultrafilters (folklore), and no analytic mad families by a
result of Adrian Mathias [Mat77, Corollary 4.7]. Other properties we mentioned
(doughnut, M- and L-Marczewski measurability), as well as many we have not,
also hold on the analytic level. The Baire property, Lebesgue measure, Ramsey,
doughnut and all Marczewski-style properties are satisfied by co-analytic sets too,
by virtue of the symmetry between the regularity of sets and their complements.

If we wish to continue up the projective hierarchy, we immediately face un-
decidability issues. Recall that A ⊆ ωω is a Bernstein set if neither A nor its
complement contains a perfect set. The Bernstein set is a counterexample to vir-
tually every regularity property, most certainly the ones we have defined above
(although this does not apply to irregular objects, i.e., a Bernstein set is not
necessarily an ultrafilter or a mad family).

Fact 1.3.8 (Gödel). In L, there is a ∆1
2 Bernstein set.
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Proof. Let {Pα | α < ℵ1} enumerate all perfect sets in L, and by induction on
α < ℵ1 produce two sets A = {aα | α < ℵ1} and B = {bα | α < ℵ1} as follows: if
{aβ | β < α} and {bβ | β < α} have already been defined, let aα be the <L-least
real in Pα \ ({aβ | β < α} ∪ {bβ | β < α}), and then let bα be the <L-least real
in Pα \ ({aβ | β ≤ α} ∪ {bβ | β < α}). Both operations are possible because
|Pα| = ℵ1 but α < ℵ1.

Clearly A ∩ B = ∅ and both sets contain at least one point from every Pα, so
both A and B are Bernstein sets. To see that A (and B) is Σ1

2, we use the same
trick as in the proof of Fact 1.2.11. Notice that if aα ∈ Lδ for some countable
limit ordinal δ, then the initial segments {aβ | β < α} and {bβ | β < α} are also
in Lδ. Moreover, picking the <L-least element can be expressed within Lδ using
an absolute formula defining the initial segment of the well-ordering <L (see Fact
1.2.10). Therefore the definition of A is absolute between L and some Lδ for a
sufficiently large limit ordinal. Then, for every x ∈ ωω, we may write x ∈ A iff
∃δ < ℵ1 (x ∈ Lδ and Lδ |= x ∈ A), which, in turn, may be written as follows:
there exists E ⊆ ω × ω such that

1. E is well-founded,

2. (ω,E) |= Θ, and

3. ∃n (x = πE(n) and (ω,E) |= n ∈ π−1
E [A]).

As in the proof of Fact 1.2.11, the above statement is Σ1
2.

To see that A (and B) is also Π1
2, apply the same trick to the statement ∀δ <

ℵ1 (x ∈ Lδ → Lδ |= x ∈ A).

So, in L, the statement “all ∆1
2 sets are regular” fails for all notions of regu-

larity (to prove that there are no ∆1
2 ultrafilters requires a separate, though not

more difficult, proof; for mad families, see Section 5.1).
We mentioned Solovay’s characterization theorem for Σ1

2 sets in the introduc-
tion, a significant result linking regularity of Σ1

2 sets with a statement regarding
forcing over L. We are now in a position to state it precisely (see Section 1.2.7
for relevant definitions).

Theorem 1.3.9 (Solovay).

1. All Σ1
2 sets are Lebesgue measurable if and only if for every r, {x ∈ ωω | x

is not random-generic over L[r]} has measure zero.

2. All Σ1
2 sets satisfy the Baire property if and only if for every r, {x ∈ ωω | x

is not Cohen-generic over L[r]} is meager.

We will give a proof of this theorem in a more general setting, see Corollary
2.3.8. A similar characterization holds for ∆1

2 sets, due to [IS89, Theorem 3.1].



30 Chapter 1. Introduction

Theorem 1.3.10 (Judah-Shelah).

1. All ∆1
2 sets are Lebesgue measurable if and only if for every r, there exists

a random-generic real over L[r].

2. All ∆1
2 sets satisfy the Baire property if and only if for every r, there exists

a Cohen-generic real over L[r].

Other properties have their own characterization theorems. We list a few of
the more important ones.

Theorem 1.3.11 (Brendle-Löwe).

1. The following are equivalent:

(a) all Σ1
2 sets are Marczewski measurable,

(b) all ∆1
2 sets are Marczewski measurable,

(c) for every r, there exists a real not in L[r].

2. The following are equivalent:

(a) all Σ1
2 sets are M-Marczewski measurable,

(b) all ∆1
2 sets are M-Marczewski measurable,

(c) for every r, there exists a real y which is unbounded over L[r], i.e.,
such that no real x ∈ L[r] dominates y.

3. The following are equivalent:

(a) all Σ1
2 sets are L-Marczewski measurable,

(b) all ∆1
2 sets are L-Marczewski measurable,

(c) for every r, there exists a real y which is dominating over L[r].

Proof. See Theorems 7.1, 6.1 and 4.1 from [BL99], respectively.

Theorem 1.3.12 (Kechris; Spinas; Brendle-Löwe). The following are equivalent:

1. all Σ1
2 are Kσ-regular,

2. all Π1
1 are Kσ-regular,

3. all Σ1
2 are u-regular,

4. all Π1
1 are u-regular,

5. all Σ1
2 are Laver-regular,

6. for every r, there exists a real y which is dominating over L[r].
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Proof. For the equivalence between 1, 2 and 6, see [Kec77, Section 4], [Iho88,
Theorem 1.1] and [IS89, Theorem 3.2]; for 3, 4 and 6, see [Spi94, Theorem 4.2]
and [BHS95, Theorem 2.1]; and for 5 and 6, see [BL99, Proposition 4.2].

We have deliberately left the perfect set property to the end, because, from
the properties we have mentioned so far, it is the only one that has large cardinal
strength already on the Π1

1 level.

Theorem 1.3.13 (Mansfield; Solovay; Specker). The following are equivalent:

1. all Σ1
2 sets satisfy the perfect set property,

2. all Π1
1 sets satisfy the perfect set property,

3. ∀r ∈ ωω (ℵL[r]
1 < ℵ1).

In this theorem, the direction from 3 to 1 follows from a more general result,
usually called the Mansfield-Solovay theorem, interesting in its own right.

Theorem 1.3.14 (Mansfield; Solovay). If A is a Σ1
2 set then either A ⊆ L or A

contains a perfect set.

Proof. This is due to [Man70] as well as Solovay’s main work [Sol70]. For an easy
proof, see [Jec03, Theorem 25.23].

The Mansfield-Solovay theorem can also be relativized to a real r, i.e., every
Σ1

2(r) set is either in L[r] or contains a perfect set, and in this form it is clear how
the implication 3 ⇒ 1 from Theorem 1.3.13 is obtained. The direction 2 ⇒ 3,
originally due to Specker [Spe57], is remarkable because of the following fact:

Fact 1.3.15. If ∀r ∈ ωω (ℵL[r]
1 < ℵ1) then ℵV1 is an inaccessible cardinal in L.

Proof. It is clear that the cardinal ℵV1 remains regular in L, so assume, towards
contradiction, that it is not a limit cardinal there (which is sufficient since L
satisfies GCH). Let α be an ordinal such that, in L, it is a cardinal and L |=“ℵV1 =
α+”. Since α < ℵ1 in V , there is a real r which codes α. But then L[r] |=“α is

countable” and so L[r] |=“ℵV1 = α+ = ℵL[r]
1 ”, contradicting the assumption.

Finally, we should mention that for irregular objects, a characterization the-
orem is often missing. The following questions are open:

Question 1.3.16.

1. Is there a statement involving “transcendence over L” equivalent to the
statement “there are no Σ1

2 ultrafilters”?

2. Is there a statement involving “transcendence over L” equivalent to the
statement “there are no Σ1

2 mad families”?
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Another object, closely related to mad families, seems even more mysterious.
Call two functions x, y ∈ ωω eventually different if ∀∞n (f(n) 6= g(n)). Then
A ⊆ ωω is called a maximal eventually different (m.e.d.) family if all x, y ∈ A
are eventually different and A is maximal with respect to that property. Unlike
mad families, there is no analogue of Mathias’ theorem saying that there are no
analytic m.e.d. families. More surprisingly, even the following basic question
remains open:

Question 1.3.17. Does there exist a closed m.e.d. family A ⊆ ωω?

1.3.3 The strength of projective regularity hypotheses

A large part of this dissertation is concerned with the strength of hypotheses
involving the regularity of sets (low) in the projective hieararchy. Let REG be
a placeholder for some particular regularity property, let Γ denote a projective
pointclass (such as analytic, Σ1

2, etc), and let Γ(REG) abbreviate the statement “all
sets in Γ satisfy property REG”. As is now clear, the statements Σ1

2(REG), ∆1
2(REG),

and in some cases Π1
1(REG) are independent of ZFC. Therefore, it makes sense to

consider such a statement as an additional hypothesis and see how strong it is,
in the sense of implying other such hypotheses or being itself a consequence of a
similar hypothesis.

For example, by [RS85] and [Bar84], Σ1
2(Lebesgue) implies Σ1

2(Baire), while
the converse is false. Likewise, “∆1

2(Lebesgue)⇒∆1
2(Baire)” and “∆1

2(Baire)⇒
∆1

2(Lebesgue)” are both false. In [IS89] it is shown that Σ1
2(Baire) implies

Σ1
2/Π

1
1(Kσ-regularity) and Σ1

2(Ramsey) implies Σ1
2/Π

1
1(Kσ-regularity), whereas

both converses are false. Other work dealing with similar questions includes
[Iho88, BL99, Hal03, BHL05, BL11, Ike10a].

If we have a characterization theorem, we gain some control over the truth
of the statements Σ1

2(REG) and ∆1
2(REG) in various models, using the method

of iterated forcing briefly described in Section 1.2.7. All the characterization
theorems we mentioned have the following form: ∆1

2(REG) holds if and only if for
every r, there exist a certain type of transcendent real over the ground model
L[r]; and Σ1

2(REG) holds if and only if for every r, there exist many transcendent
reals of this type over the ground model L[r] (where “many” is defined using
some ideal closely related to the transcendence property). Therefore, if we find a
forcing P which adds this specific type of reals to the ground model and extend L
using an ℵ1-iteration of P (with finite support if P is c.c.c. or countable support
when P is proper but non-c.c.c.), we obtain a model in which ∆1

2(REG) holds.
Likewise, if we find another forcing P′ which adds many reals of the required
type to the ground model, then a forcing iteration of length ℵ1 will yield a model
where Σ1

2(REG) is true. Conversely, if we know of a forcing Q that it does not add
such reals (neither in a one-step extension nor in the iteration), then an iteration
(or in some cases a product) of Q will yield a model in which ∆1

2(REG) is false;
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similarly for Σ1
2(REG) and “not adding many such reals”.

Now suppose we are dealing with two properties, REG1 and REG2, each of them
related to reals of type 1 and type 2, respectively, via characterization theorems.
How can we compare the strength of hypotheses involving these two properties?
If we can prove that the existence of type 1 reals leads to the existence of type 2
reals, then we have proved ∆1

2(REG1)⇒ ∆1
2(REG2). On the other hand, if we can

find a forcing P which adds reals of type 1 but not of type 2, then we can produce
a model of ∆1

2(REG1)+¬∆1
2(REG2). The same can be done on the Σ1

2 level and the
existence of “many” reals. Thus, in the presence of characterization theorems,
comparing the strength of regularity hypothesis for Σ1

2 and ∆1
2 sets boils down

to proving something about adding or not adding specific types of reals.

Example 1.3.18.

1. It is well-known that random forcing does not add Cohen reals, and Cohen
forcing does not add random reals. Therefore, using the equivalence in The-
orem 1.3.10, in the random model (i.e., product of random forcing over L)
∆1

2(Lebesgue) holds but ∆1
2(Baire) fails, whereas in the Cohen model (iter-

ation/product of Cohen forcing over L), ∆1
2(Baire) holds and ∆1

2(Lebesgue)
fails. So (consistently) there are no implications between these two state-
ments.

2. By parts 2 and 3 of Theorem 1.3.11, L-measurability is connected to domi-
nating reals and M-measurability to unbounded reals (i.e., reals that are not
dominated by a real from the ground model). As a dominating real is, by
definition, unbounded, we have (in ZFC) the implication Σ1

2(L)⇒ Σ1
2(M).

Conversely, it is known that Miller forcing adds unbounded reals but not
dominating reals. Therefore, the Miller model (iteration of Miller forcing)
is a witness of Σ1

2(M) 6⇒ Σ1
2(L).

Note that there is a “strongest possible” and a “weakest possible” hypothesis
in this context. The strongest hypothesis is the statement “∀r (ℵL[r]

1 < ℵ1)”. As
this implies that ωω ∩ L[r] is countable for every r, any other “transcendence”
over L[r] can be deduced by a diagonal argument. Indeed, this statement implies
Σ1

2(REG) for nearly all known notions of regularity, and it is the only hypothesis
of this kind that can not be obtained by any forcing iteration starting from L (as
it has the consistency strength of an inaccessible cardinal). We have seen this to
be equivalent to Π1

1(perfect set property), and there are other natural statements
equivalent to it, for example Σ1

2(Baire property in the dominating topology), see
[BL99, Theorem 5.11].

On the other hand, Σ1
2(S) (where S abbreviates Marczewski-measurability,

due to its relation to Sacks forcing) is the weakest possible hypothesis, since by
1 of Theorem 1.3.11 it is equivalent to the statement ∀r (ωω ∩ L[r] 6= ωω) which
will certainly hold in any (non-trivial) forcing extension.
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All other hypotheses of the form Σ1
2(REG), ∆1

2(REG) and Π1
1(REG) are located

somewhere in between these two extreme cases, and can be seen as asserting that
the set-theoretic universe is larger than L in some specific sense.

There is a close relationship between these types of questions and cardinal
invariants of the continuum. Suppose we have the two properties REG1 and REG2,
connected to type 1 and type 2 “transcending” reals via a characterization theo-
rem. Define the cardinal invariants

• k1 := least size of A ⊆ ωω such that there are no type 1 reals over A, and

• k2 := least size of A ⊆ ωω such that there are no type 2 reals over A.

Then the following can be said:

1. k1 > ℵ1 ⇒ ∆1
2(REG1) and k2 > ℵ1 ⇒ ∆1

2(REG2) (provably in ZFC).

2. If k1 ≤ k2 is provable in ZFC, then, most likely, the same proof will show
that ∆1

2(REG1)⇒∆1
2(REG2).

3. If it is consistent that k1 < k2, then, most likely, the same model will show
that ∆1

2(REG2) 6⇒∆1
2(REG1).

Here, point 1 is a straightforward ZFC-theorem, but 2 and 3 are not. In 2, the idea
is the following: if k1 ≤ k2 is provable in ZFC, then most likely, the proof involves
showing that, for any A ⊆ ωω, if there is a type 1 transcendent real over A or over
a closely related set A′, then there is a type 2 transcendent real over A. This is
also a proof of ∆1

2(REG1)⇒∆1
2(REG2), substituting L[r] in place of the sets A and

A′. Point 3 is even more vague: the idea there is that if k1 < k2 is consistent and if
the proof uses an iterated forcing argument, then, most likely, it involves a forcing
P which adds reals of type 2 (in order to make k2 large) but does not add reals of
type 1 (in order to keep k1 small). Then an iteration of this forcing will show that
∆1

2(REG2) 6⇒ ∆1
2(REG1). However, there may be other methods of proving that

k1 < k2 is consistent, and those will not necessarily lead to the same conclusion.
Points 2 and 3 cannot be turned into precise ZFC-theorems since the converse of
point 1 does not hold: for example, in any ℵ1-iteration there will still be just ℵ1

many reals so all cardinal invariants will have value ℵ1, whereas ∆1
2(REG) may

hold due to the characterization theorem. The same will also be true in any model
of CH with a measurable cardinal. So the concepts of cardinality and regularity
are inherently different.

Nevertheless, the above insight is very useful because it allows us to apply
results from the (much more well-researched) field of cardinal invariants to ques-
tions of regularity. For example, part of Cichoń’s diagram can be translated to a
diagram involving regularity hypotheses, as represented in Figure 1.3. Here, note
that b and d correspond to L- and M-Marczewski measurability, respectively, the
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∆1
2(Leb.) +3 ev. diff. +3 · +3 · +3 Σ1

2(S)
∆1

2(S)

Σ1
2(L)

∆1
2(L)

+3

KS

Σ1
2(M)

∆1
2(M)

KS

∀r (ℵL[r]
1 < ℵ1) +3 Σ1

2(Leb.) +3

KS

Σ1
2(Baire)

KS

+3 ∆1
2(Baire)

KS

+3 ·

KS

Figure 1.3: Cichoń’s diagram for regularity hypotheses.

covering numbers of the null and the meager ideals correspond to Lebesgue mea-
surability and the Baire property on the ∆1

2 level, and the additivity numbers
of these ideals to the same properties on the Σ1

2 level. The bottom left and top
right corners show the strongest and the weakest hypotheses, respectively. The
statement “ev. diff.” abbreviates ∀r ∃x (x is eventually different from all reals in
L[r]) and has been included for completeness, with the relationship to non(M)
due to [BJ95, Theorem 2.4.7]. It is currently unknown whether this statement is
equivalent to some natural regularity hypothesis, see Example 2.5.6 (4) for more
about this. Likewise, it is not clear whether a regularity hypothesis can be put
in the places left empty in the diagram.

Regularity hypothesis Transcendence over L[r] Cardinal invariant

∀r (ℵL[r]
1 < ℵ1) “co-countable” set of new reals ℵ1

Σ1
2(Lebesgue) measure-one set of random reals add(N )

∆1
2(Lebesgue) random reals cov(N )

Σ1
2(Baire) co-meager set of Cohen reals add(M)

∆1
2(Baire) Cohen reals cov(M)

? eventually different reals non(M)
∆1

2(L) / Σ1
2(L) dominating reals b

∆1
2(M) / Σ1

2(M) unbounded reals d

∆1
2(S) / Σ1

2(S) new reals 2ℵ0

Table 1.1: Correspondence between regularity, transcendence and cardinal invari-
ants.

Each implication in Figure 1.3 follows from the same argument that proves the
corresponding cardinal inequality. Moreover, there are (consistently) no other im-
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plications between the properties in this diagram, and this fact, too, is witnessed
by the same model that witnesses the strict cardinal inequality. The connection
between cardinal invariants and regularity statements in general will become more
apparent in Sections 2.3 when we introduce quasi-generic reals.

1.4 Summary of results

All results in this dissertation are related to the questions described above. In
Chapter 2, we present a systematic treatment of regularity properties, in a frame-
work that is heavily influenced by the methods of forcing. This allows us to extract
common features out of many proofs involving regularity and forcing, and to gen-
eralize known results. A similar enterprise was already undertaken by Daisuke
Ikegami in [Ike10a, Ike10b], and part of this chapter can be seen as an extension
of his approach to a more general framework. Although many theorems are stated
in a new way, the methods and proofs used there were, for the most part, known
prior to our work. The main purpose here is the unification of ideas and methods
from different areas, and the making precise of various intuitions, heuristics and
unpublished results in this field. Many interesting questions are isolated in this
process which seem worthy of further study. Furthermore, many results of this
chapter will be used for reference in subsequent chapters.

In Chapter 3, we investigate a recently isolated partition property on the
second level of the projective hierarchy. We prove a number of results about
implications and non-implications between this and other regularity properties.
The most interesting result is:

Theorem 3.5.3. It is consistent that Σ1
2(~n→ ~m) holds whereas both ∆1

2(M) and
∆1

2(doughnut) fail.

The proof involves a combinatorially involved forcing notion, one among the
many so-called creature forcings of Saharon Shelah. As this type of forcing does
not fit the framework of Chapter 2, special proofs are required for many results
in this chapter.

In Chapter 4, we turn our attention to Hausdorff gaps, a classical object first
constructed by Felix Hausdorff in 1936 in [Hau36]. In [Tod96, Theorem 1], Stevo
Todorčević proved that such objects do not exist on the analytic level, suggesting
that Hausdorff gaps are irregular objects, i.e., that the lack of such gaps can be
considered a regularity hypothesis. Our main results are the following:

Corollary 4.3.10. The following are equivalent:

1. there is no (Σ1
2, ·)-Hausdorff gap,

2. there is no (Σ1
2,Σ

1
2)-Hausdorff gap,
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3. there is no (Π1
1, ·)-Hausdorff gap,

4. there is no (Π1
1,Π

1
1)-Hausdorff gap,

5. ∀r (ℵL[r]
1 < ℵ1).

Corollary 4.4.3. Con(ZFC+“there are no projective Hausdorff gaps”) and
Con(ZF + DC+“there are no Hausdorff gaps”).

Corollary 4.5.4. ADR implies that there are no Hausdorff gaps.

In Chapter 5, we consider mad families from the descriptive-theoretic point of
view. We define a new cardinal invariant, the Borel-almost-disjointness number
aB, which is related to the existence of Σ1

2 mad families in a similar way as
the additivity/covering numbers of M and N are related to Σ1

2/∆
1
2(Baire) and

Σ1
2/∆

1
2(Lebesgue). The main result in this chapter is that aB < b is consistent.

More precisely, we prove the following:

Theorem 5.3.3 In the ℵ2-iteration of Hechler forcing (with finite support) start-
ing from a model of CH, b = ℵ2 while aB = ℵ1.

With a minimal modification in the proof of this theorem, we obtain the
consistency of b > ℵ1+ “there is a Σ1

2 mad family”, answering a question posed
by Friedman and Zdomskyy in [FZ10, Question 16]. Likewise, we obtain the
consistency of Σ1

2(L)+“there is a Σ1
2 mad family”.





Chapter 2

Idealized regularity

Since the developments of forcing in the 1960s and Solovay’s celebrated result
[Sol70] establishing the consistency of “ZF + DC+ all sets of reals are Lebesgue
measurable, have the property of Baire and the perfect set property”, it grad-
ually became commonplace to associate regularity properties with a notion of
forcing. Random forcing was specifically designed by Solovay to prove the mea-
surability result, Cohen forcing is naturally related to the Baire property, and
we have already seen in Section 1.3.3 that Marczewski-style properties can be
viewed in a forcing context. Frequently, a regularity property is isolated because
of its significance for the combinatorics of certain forcings, and conversely, un-
derstanding a regularity property usually greatly benefits from finding a forcing
that corresponds to it.

At first, one might have the hope that all regularity properties can be for-
mulated in terms of forcing. Unfortunately, this seems over-ambitious and in
subsequent chapters we will consider properties that do not seem to fall into this
category. Nevertheless, a large number of regularity properties can be directly
formulated as properties of a certain forcing, and it turns out that the framework
of idealized forcing introduced by Jindřich Zapletal is very well suited for this
purpose. The goal of this chapter is to develop a systematic theory of regularity
properties in this framework.

An important inspiration for this chapter is the work of Daisuke Ikegami in
[Ike10a, Ike10b], who considered a wide class of forcing notions called strongly ar-
boreal forcings and showed that many regularity properties can be stated directly
in terms of a forcing from this class. In Section 2.3 we pay special credit to these
results and generalize the main theorem of [Ike10a].

It should be noted that despite the novel framework, most proofs in this
chapter are not really new, but variations on, or generalizations of, arguments
found in various other sources, such as the original result of Solovay, the work of
Zapletal and Ikegami, and folklore results. In Sections 2.5 we present a slightly
different point of view, raising interesting questions suitable for further research.

39
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2.1 Idealized forcing

An ideal on ωω is a set I ⊆ P(ωω) which is closed under subsets (if B ∈ I and
A ⊆ B then A ∈ I) and unions (if A,B ∈ I then A ∪ B ∈ I). By standard
convention, we also assume that all singletons {x} are in the ideal and that the
whole space ωω is not. A σ-ideal is an ideal that is additionally closed under
countable unions. For convenience we will usually talk of the Baire space when
giving definitions, proving theorems etc., but in most cases this can easily be
adapted to the Cantor space, the space [ω]ω, or any other incarnation of the real
numbers. Sets that lie in the ideal I will be called I-small and those that do not
will be called I-positive, following standard practice.

In [Zap04] and [Zap08], Jindřich Zapletal developed an extensive theory of
idealized forcing, i.e., using the partial order of I-positive Borel sets of reals,
ordered by inclusion, as a forcing notion. We start by reviewing a few of the
basic concepts and results.

Definition 2.1.1. Let I be a σ-ideal on ωω. Let PI := B(ωω) \ I denote the
partial order of all Borel I-positive subsets of ωω ordered by inclusion.

Fact 2.1.2 (Zapletal).

1. If G is a PI-generic filter, then there is a unique real xG ∈ V [G] such that
for all Borel sets coded in V , xG ∈ BV [G] iff BV ∈ G. This is called the
generic real, and the generic filter can be recovered from the generic real
using the previous characterization, so V [G] = V [xG].

2. If ẋG is the name for the generic real, then every I-positive B forces ẋG ∈ B,
and for every B ∈ I, 
 ẋG /∈ B.

Proof. See [Zap08, Proposition 2.1.2].

In particular, a real x is PI-generic over a transitive model M if x ∈
⋃
D for

every dense D ∈ M . When M is a non-transitive elementary submodel then,
in accordance to common usage, we will say that a real x is (M,PI)-generic if
x ∈

⋃
(D ∩M) for every dense D ∈M . This is equivalent to saying that x is the

real derived from an (M,PI)-generic filter (see Definition 1.2.16). We will often
drop the reference to PI if it is clear from context.

Recall from Definition 1.2.16 that a forcing notion P is proper if for every
countable elementary submodel M ≺ Hθ of a sufficiently large structure and
every p ∈ P ∩M , there is a master condition q ≤ p, that is, a condition q such
that q 
 “Ġ is an M -generic filter”—or alternatively, q 
 “ẋG is an M -generic
real”.
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Fact 2.1.3 (Zapletal).

1. Let I be a σ-ideal and M ≺ Hθ a countable elementary submodel of a
sufficiently large structure. Then for every B ∈ PI ∩M , the set

C := {x ∈ B | x is M-generic}

is Borel.

2. The forcing PI is proper iff for every countable M ≺ Hθ and every B ∈
PI ∩M , the set C from above is I-positive.

Proof. See [Zap08, Proposition 2.2.2].

This set C is the master condition, having the additional property that every
real x ∈ C is M -generic. This highly useful aspect of properness was used nu-
merous times in [Zap04, Zap08] and we shall use it to good effect in many of our
arguments, too.

Another essential feature of properness is the generation of new reals from the
generic real, by Borel functions encoded in the ground model.

Theorem 2.1.4 (Zapletal). Let PI be a proper forcing and ẋ a name for a real.
Then there is a Borel function f and a condition B such that B 
 ẋ = f(ẋG).

Proof. See [Zap08, Proposition 2.3.1].

All the ideals we consider will have an absolute definition. To be precise, if B
is a Borel set, then the statement “B ∈ I” will be Σ1

2 or Π1
2 (formally this means

that the sentence φ(x), saying that “the Borel set encoded by the real number
x is in I”, has complexity Σ1

2 or Π1
2). In particular, the membership of Borel

sets in I will be absolute between transitive models containing ω1, by Shoenfield
absoluteness.

Idealized forcings are related to more standard forcings (using simple com-
binatorial objects) via dense embeddings. Suppose that I is a σ-ideal and Q a
partial order consisting of simple sets (e.g., closed), also ordered by inclusion,
and such that every q ∈ Q is I-positive and every Borel I-positive set contains
some q ∈ Q as a subset. Then, clearly, there is a dense embedding from Q to PI
(denoted by Q ↪−→d PI) so the two are forcing equivalent. At the heart of this
embedding lies a dichotomy theorem: every Borel set is either in I or contains a
set q ∈ Q. Such theorems are typically hard to prove and require some familiarity
with the specific combinatorics of the objects and the ideal. There are at least
three different methods for this: the classical method, using direct combinatorial
properties; the “forcing” method, using forcing with Q and some absoluteness



42 Chapter 2. Idealized regularity

results; and the game-theoretic method, using the Borel determinacy of a corre-
sponding game. Notice that this is exactly the same as saying that all Borel sets
satisfy a certain regularity property, namely the property of either being I-small
or containing a (large) object q ∈ Q. We have already mentioned the perfect
set property, Kσ-regularity and Laver-regularity (see Definition 1.3.7), which are
all satisfied by analytic, and therefore Borel, sets. The following list shows some
typical examples of this phenomenon (see Definition 1.2.17 for the forcing partial
orders).

Example 2.1.5.

1. Let ctbl be the σ-ideal of countable sets, and recall the Sacks forcing partial
order S consisting of perfect sets. Since Borel sets satisfy the perfect set
property, it follows that there is a dense embedding S ↪−→d B(ωω) \ ctbl.

2. Let Kσ be the ideal of σ-compact sets, i.e., sets A such that some x domi-
nates all a ∈ A, and recall the Miller forcing partial order M consisting of
super-perfect trees. Since Borel sets satisfy Kσ-regularity, there is a dense
embedding M ↪−→d B(ωω) \Kσ.

3. Let IL be the Laver ideal, defined as the ideal of all sets A which are not
strongly dominating (see Definition 1.3.7 (3)). Recall the Laver partial order
L. Since Borel sets satisfy the Laver-regularity, there is a dense embedding
L ↪−→d B(ωω) \ IL.

4. Consider the Lebesgue null ideal N . Random forcing is the algebra B(ωω)\
N , but by classical results it is known that every Borel set of positive mea-
sure contains a closed set of positive measure. Therefore, the collection of
all closed subsets of ωω with positive Lebesgue measure is forcing equivalent
to B(ωω) \ N .

5. Recall the Mathias forcing partial order R. Each condition (s, S) ∈ R gives
rise to the closed set [s, S] := {s ∪ a | a ∈ [S]ω}. Such sets generate the
Ellentuck topology, due to Ellentuck [Ell74], and we can consider the σ-
ideal IRN of sets meager in this topology, equal to the σ-ideal of nowhere
dense sets in this topology, also called the Ramsey-null ideal. By Ellentuck’s
original proof [Ell74], every Borel set is either in IRN or contains a set of
the form [s, S]. Therefore there is a dense embedding R ↪−→d B([ω]ω)\ IRN.

6. The last two examples we exhibit are somewhat more involved. Let E0

be the equivalence relation on 2ω given by xE0y iff ∀∞n (x(n) = y(n)).
A partial E0-transversal is a set A which contains at most one element
from each E0-equivalence class, in other words, ∀x, y ∈ A : if x 6= y then
∃∞n (x(n) 6= y(n)). Let IE0 be the σ-ideal generated by Borel partial
E0-transversals.
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The Borel equivalence relation E0 is well-known among descriptive set the-
orists and it played a key role in the study of the Glimm-Effros dichotomy
in [HKL90]. The ideal IE0 was investigated by Zapletal who, among other
things, isolated the notion of an E0-tree.

Definition 2.1.6. (Zapletal) An E0-tree is a perfect tree T ⊆ 2<ω such that

(a) there is a stem s0 with |s0| = k0, and

(b) there are numbers k0 < k1 < k2 < . . . and for each i exactly two
sequences si0, s

i
1 ∈ [ki,ki+1)2, such that

[T ] = {s0
_s0

z(0)
_s1

z(1)
_s2

x(2)
_ · · · | z ∈ 2ω}.

Let E0 denote the forcing partial order of E0-trees ordered by inclusion. A
standard fusion argument can be used to show the properness of this forcing.
Zapletal [Zap04, Lemma 2.3.29] proved the corresponding dichotomy: every
Borel (even analytic) set is either in IE0 or contains [T ] for some T ∈ E0.
It follows that E0 ↪−→d B(2ω) \ IE0 .

7. Similarly to the above, let G be the relation on 2ω given by xGy iff there is
exactly one n such that (x(n) 6= y(n)). A Borel set B is G-independent if
any two distinct elements x, y ∈ B are not G-related, i.e., if x 6= y then x
and y differ in at least two digits. Let IG be the σ-ideal generated by Borel
G-independent sets. This definition is due to [Zap04, Section 2.3.11].

Definition 2.1.7. A perfect tree T ⊆ 2<ω is called a Silver tree if for every
s, t ∈ T , if |s| = |t| then {i ∈ 2 | s_〈i〉 ∈ T} = {i ∈ 2 | t_〈i〉 ∈ T}, i.e., the
branching at each node depends only on the length of that node. Another
way to put this is: [T ] =

∏
n∈ω Zn for some sequence {Zn | n ∈ ω} such that

each Zn is either {0}, {1}, or {0, 1}, and such that ∃∞n (Zn = {0, 1}). The
partial order of Silver trees ordered by inclusion is called Silver forcing and
typically abbreviated by V.

By [Zap04, Lemma 2.3.37], every Borel (even analytic) set is either in the
ideal IG or contains [T ] for some Silver tree T . Therefore V ↪−→d B(2ω)\IG.

There are other situations (often when the forcing PI satisfies the c.c.c.) when
there is no strict dichotomy in the above sense, but rather one in the sense of
“modulo I”. Suppose that for every I-positive Borel set B there is a q ∈ Q
such that (q \ B) ∈ I. In this case there is no dense embedding from Q to PI
but only to the algebra B(ωω)/I of Borel sets modulo I. Since there is always a
dense embedding from PI to B(ωω)/I, the two notions Q and PI are still forcing
equivalent.

Example 2.1.8.
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1. Consider the meager ideal M and Cohen forcing C. From the fact that
Borel sets satisfy the Baire property, it follows that for any Borel non-
meager set there is a basic open set [s] contained in B modulo meager.
Therefore C ↪−→d B(ωω)/M so C and B(ωω) \M are forcing equivalent.

2. Recall the Hechler partial order D. Each condition (s, f) ∈ D gives rise
to the closed set [s, f ] := {x ∈ ωω | s ⊆ x and ∀n (f(n) < x(n))}, and
these sets generate the dominating topology, a non-second-countable topol-
ogy refining the standard topology on ωω. Let MD be the ideal of sets
meager in the dominating topology. For the same reason as with Cohen
forcing, D densely embeds into B(ωω)/MD, and hence is forcing equivalent
to B(ωω) \MD.

Many other interesting examples can be found in [Zap04, Zap08] to which we
refer the reader for further study.

We will mostly be interested in ideals that are Borel generated, in the sense
that every A ∈ I is contained in some Borel set B ∈ I. Even when an ideal
I does not have this property by nature, for our purposes it will be sufficient
(and often, more interesting—cf. Section 2.4) to consider its Borelized version
IB := {A ∈P(ωω) | A ⊆ B for some Borel set B ∈ I}.

If I is a Borel generated σ-ideal, we can use it to derive a “Marczewski-null-
style” ideal.

Definition 2.1.9. Let I be a Borel generated σ-ideal. Define NI by stipulating

A ∈ NI :⇐⇒ ∀B ∈ PI ∃C ≤ B (C ∩ A = ∅).

Lemma 2.1.10. Let I be a Borel generated σ-ideal such that PI is proper.

1. NI is a σ-ideal extending I and coinciding with I on Borel sets.

2. If PI satisfies the c.c.c., then NI = I.

Proof.

1. It is clear that if A ∈ I then there is a B ⊇ A is such that B ∈ I, and any
C ∈ PI can be extended to C \B ∈ PI which is disjoint from A, so A ∈ NI .
Also it is clear that if B is Borel and I-positive, then B itself is a witness
to the fact that B /∈ NI .

To prove that NI is a σ-ideal we use properness: let An be sets in NI and
let A =

⋃
nAn. For each n, let Dn := {B ∈ PI | B∩An = ∅}. By definition

all Dn are dense. Fix some B and let M be a countable model containing
all the Dn and B. Let C := {x ∈ B | x is M -generic}. By properness
and Fact 2.1.3 C is I-positive, and for every x ∈ C and every n we have
x ∈

⋃
(Dn ∩M), implying that x /∈ An. Therefore C ∩A = ∅ as had to be

shown.
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2. Let A ∈ NI and define D := {B ∈ PI | B ∩ A = ∅}. Since D is dense,
let E ⊆ D be a maximal antichain. By the c.c.c. it is countable, so
C := ωω \

⋃
E is a Borel set and A ⊆ C. Since C is disjoint from all B ∈ E

it must be I-small, otherwise it would contradict E’s maximality.

The σ-idealNI is usually not Borel generated when PI is not c.c.c. In the pres-
ence of a dense embedding Q ↪−→d PI , it is equivalent to the standard Marczewski
null ideal for partial orders. For example, Nctbl is the classical Marczewski-null
ideal, i.e., the ideal of sets A such that for every perfect set p there is a perfect
subset q ⊆ p with q ∩A = ∅. The same holds for NKσ and NIL with perfect sets
replaced by super-perfect resp. Laver trees.

One of the reasons for introducing the derived ideal NI is that it is closely
related to density in the forcing-theoretic sense. It will be useful in several places
in the subsequent sections.

2.2 From ideals to regularity

Recall the notion of Marczewski measurability, and the generalized X-Marczewski
measurability, defined in Section 1.3.1. Adapting it to the idealized forcing con-
text, we get the following regularity property, which we will call I-regularity.

Definition 2.2.1. Let I be a σ-ideal, assume that PI is proper, and let A be an
arbitrary subset of ωω (or a similar space). We say that A is I-regular, denoted
by Reg(I), if

∀B ∈ PI ∃C ∈ PI s.t. C ≤ B and (C ⊆ A or C ∩ A = ∅).

Lemma 2.2.2. The collection of I-regular sets forms a σ-algebra.

Proof. By definition, this collection is closed under complements. Let An be I-
regular sets, and let B be an I-positive Borel set. It is clear that B ∩ An is
still I-regular. Now, if (An ∩ B) ∈ NI for all n, then by Lemma 2.1.10 we have⋃
n(An∩B) ∈ NI so there exists C ≤ B disjoint from

⋃
nAn. On the other hand,

if some (An ∩ B) is not in NI , then by I-regularity there must be a C ≤ B such
that C ⊆ An.

So the property of being I-regular is equivalent to being PI-Marczewski mea-
surable (according to the defined in Section 1.3.1), and in the presence of a dense
embedding Q ↪−→d PI it is equivalent to being Q-Marczewski measurabile. In
the case of a dense embedding modulo I, it is only equivalent to an analogous
statement with “inclusion” replaced by “inclusion modulo I”.

Furthermore, in many cases when Q generates a topology and I is the σ-ideal
of sets meager in that topology, I-regularity is equivalent to the Baire property (in
the respective topology). This applies to Cohen, Hechler and Mathias forcing,
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the latter fact being the essence of Ellentuck’s proof that all analytic sets are
Ramsey [Ell74]. For the σ-ideal of Lebesgue null sets N , our notion of regularity
coincides with Lebesgue measurability.

Note that when dealing with the regularity of all sets within a given projective
pointclass Γ, the first quantifier from Definition 2.2.1 can usually be dropped. In
most cases the σ-ideal is homogeneous, meaning that for every Borel I-positive
set B there is a Borel function f which is a bijection between B and ωω and
preserves membership in I. Such a function can easily be used to transform the
set A∩B to another set A′ without increasing its complexity. Thus the first clause
“∀B” in the definition can be eliminated. This is important in such situations
as Mathias forcing: formally, IRN-regularity is the property usually called being
completely Ramsey, but on the level of projective pointclasses Γ, it is equivalent to
the Ramsey property (as given in Definition 1.3.5). The same may be said about
Silver forcing: here, the homogeneity of the corresponding ideal IG together with
the dense embedding implies that IG-regularity is equivalent to the property of
containing or being disjoint from a set [T ] where T is a Silver tree. By identifying
infinite subsets of ω with their characteristic functions, it is easy to see that this
property is equivalent to the doughnut property (see Definition 1.3.6).

So, we see that a fairly wide class of regularity properties can be captured
by a single definition in the idealized forcing context. Table 2.1 sums up a few
of the standard forcing notions with their corresponding ideals and regularity
properties.

Forcing σ-ideal I I-regularity

c.
c.

c. Cohen (C) M Baire property
random (B) N Lebesgue measurable
Hechler (D) MD D-Baire property

n
on

-c
.c

.c
.

Sacks (S) ctbl Marczewski measurable;
not a Bernstein set

Miller (M) Kσ M-Marczewski measurable
Laver (L) IL L-Marczewski measurable
Mathias (R) IRN Ramsey;

Baire property in
Ellentuck topology

E0-tree (E0) IE0 E0-Marczewski measurable
Silver (V) IG doughnut property

Table 2.1: Some standard regularity properties

We will now prove a number of general results about I-regularity and definabil-
ity, following the pattern described in Section 1.3. Since our definition was based
on forcing, it is not surprising that all the proofs proceed via forcing-theoretic
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methods (even when the result is a ZFC-theorem). From now on, we will always
assume that I is a σ-ideal such that PI is a proper forcing partial order. As usual,
Γ(Reg(I)) is shorthand for the statement “all sets in Γ are I-regular.”

Proposition 2.2.3. All analytic sets are I-regular.

Proof. Let A be an analytic set, defined by a Σ1
1 formula φ with parameter r (we

will suppress r for convenience of notation). Let B be any I-positive Borel set.
Let M be a countable elementary submodel containing B and r. In M , there
is a stronger condition B′ ≤ B such that B′ 
 φ(ẋG) or B′ 
 ¬φ(ẋG). Assume
the former, and let C := {x ∈ B′ | x is M -generic} be the Master-condition.
By properness it is I-positive, and since C 
 ẋG ∈ Ḃ′, for every x ∈ C we have
M [x] |= φ(x). Since φ is Σ1

1 it is absolute between M [x] and V and hence φ(x)
holds in V . Therefore C ⊆ A. The case when B′ 
 ¬φ(ẋG) proceeds analogously
noting that Π1

1-absoluteness between M [x] and V also holds. In that case we get
C ∩ A = ∅.

Proposition 2.2.4. If V = L then there is a ∆1
2 non-I-regular set.

Proof. By Fact 1.3.8 we know that if V = L then there is a ∆1
2 Bernstein set, i.e.,

a set A such that there is no perfect set completely contained in A or completely
disjoint from A. By our assumption that all singletons, and hence all countable
sets, are I-small, it follows that every I-positive Borel set must be uncountable, so
by the perfect set property it must contain a perfect set. Therefore the Bernstein
set cannot be I-regular.

Proposition 2.2.5. If for every r ∈ ωω there is a PI-generic real over L[r] then
all ∆1

2 sets are I-regular.

Proof. Let A be a ∆1
2 set, defined by Σ1

2 formulas φ and ψ with parameter r. Let
B be any I-positive Borel set, and let c be its code. Let x be PI-generic over
L[r, c]. We know that either φ(x) or ψ(x) is true, and by Shoenfield absoluteness,
the same holds in L[r, c, x]. Hence, by the forcing theorem, we can find a B′ ≤ B
in L[r, c] such that B′ 
 φ(ẋG) or B′ 
 ψ(ẋG). Since both φ and ψ are Σ1

2,
the situation is symmetrical, so without loss of generality we may assume the
former. Let M be a countable elementary submodel containing B′, r and c. Let
C := {x ∈ B′ | x is M -generic} be the master condition. Now in V , for every
x ∈ C, M [x] |= φ(x), and by upwards Σ1

2-absoluteness we get φ(x) in V . Therefore
C ⊆ A. In the situation where B′ 
 ψ(ẋG) we would get C∩A = ∅ by an identical
argument.

Proposition 2.2.6. If for every r ∈ ωω the set {x | x is not PI-generic over
L[r]} is in NI , then all Σ1

2 sets are I-regular.
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Proof. Let A be a Σ1
2 set, defined by a formula φ with parameter r. Let B be

an I-positive Borel set, and let c be its code. In L[r, c], let B′ ≤ B be such that
B′ 
 φ(ẋG) or B′ 
 ¬φ(ẋG), without loss of generality the former. Now in V , we
know by assumption that there exists an I-positive C ≤ B′ such that every x ∈ C
is PI-generic over L[r, c]. Hence, for every x ∈ C we have L[r, c, x] |= φ(x) and by
Shoenfield absoluteness φ(x) holds in V , so C ⊆ A. The case when B′ 
 ¬φ(ẋG)
is identical and we get C ∩ A = ∅.

Corollary 2.2.7. If ∀r (ℵL[r]
1 < ℵ1), then all Σ1

2 sets are I-regular.

Proof. Fix any r. Since ℵV1 is inaccessible in L[r] the collection of dense sets
in (PI)L[r] is countable in V . Let {Dn | n < ω} enumerate it and for each n let
An := ωω \

⋃
Dn. Clearly each An ∈ NI . Now note that if x is not PI-generic over

L[r], then x /∈
⋃
Dn for some Dn, i.e., x ∈

⋃
nAn. SinceNI is a σ-ideal by Lemma

2.1.10, it follows that {x | x is not PI-generic over L[r]} ⊆
⋃
nAn ∈ NI .

Proposition 2.2.5 gives an easy way to construct models where the regular-
ity hypothesis ∆1

2(Reg(I)) holds. An ℵ1-iteration of the (proper) forcing PI ,
with countable support, starting from L, will yield such a model. Obtaining
Σ1

2(Reg(I)) is more difficult. By Theorem 1.3.11, we know that for I being the
Kσ or the Laver ideal, Σ1

2(Reg(I)) follows from ∆1
2(Reg(I)), so such cases are

trivial. In other well-known cases (e.g., Cohen forcing, random forcing) we need
to use a different forcing notion—often referred to as an Amoeba forcing—to add
many PI-generic reals simultaneously. However, we also know from [BL99, The-
orem 5.11] and [BL11, Theorem 7] that in some cases, notably Hechler forcing,
Σ1

2(Reg(I)) is already the strongest possible hypothesis, i.e., it is equivalent to

∀r (ℵL[r]
1 < ℵ1), and therefore cannot be obtained by a forcing iteration for reasons

of consistency strength. On the other hand, a hypothesis of the form ∆1
2(Reg(I))

can never be strongest possible (for the same reason).

Our last result concerns the Solovay model, which was discussed in Section
1.2.7.

Proposition 2.2.8. In the Solovay model, all sets are I-regular.

Proof. Let V be a model with an inaccessible cardinal κ and V [G] the correspond-
ing Lévy collapse of κ. In V [G], let A be a set of reals definable from a countable
sequence of ordinals. Let s ∈ Ordω be such that A is definable by ϕ(s, x). By
standard properties of the Lévy collapse (Lemma 1.2.20), there is a formula ϕ̃
such that for all x, V [G] |= ϕ(s, x) iff V [s][x] |= ϕ̃(s, x).

Let B be an I-positive Borel set in V [G]. Without loss of generality we may
assume that the code of B is contained in s. Now consider the forcing PI in V [s].
There is B′ ≤ B in V [s] such that B′ 
 ϕ̃(ẋG) or B′ 
 ¬ϕ̃(ẋG). Assume the

former. Since κ = ℵV [G]
1 is inaccessible in V [s], the collection of all dense sets in
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PV [s]
I is countable in V [G]. Just as in the proof of Corollary 2.2.7, the collection
{x | x is not PI-generic over V [s]} is in NI . Therefore, in V [G], there is a Borel
I-positive set C ≤ B′ such that every x ∈ C is PI-generic over V [s]. Hence, for
every such x we have V [s][x] |= ϕ̃(s, x), which implies that V [G] |= ϕ(s, x), i.e.,
x ∈ A. The case that B′ 
 ¬ϕ̃(ẋG) is analogous.

Corollary 2.2.9. Con(ZFC+“all projective sets are I-regular”) and Con(ZF +
DC+“all sets are I-regular”).

2.3 Quasi-generic reals and characterization re-

sults

Propositions 2.2.5 and 2.2.6 tell us that sufficient transcendence over L implies I-
regularity for ∆1

2 or Σ1
2 sets, but they are not yet characterization theorems, i.e.,

their converse does not necessarily hold. In Section 1.3.2 we saw that the converse
is true for Cohen and random forcing. However, we also saw that for Sacks, Miller
and Laver forcing the characterization involved new reals, unbounded reals and
dominating reals rather than Sacks-, Miller- and Laver-generic reals, respectively.
The difference can be explained by introducing the following definition:

Definition 2.3.1. Let I be a σ-ideal on ωω and M a transitive model of set
theory. A real x is called I-quasi-generic over M if for every Borel set B ∈ I
whose Borel code lies in M , x /∈ B. We will also use the term Q-quasi-generic if
we know that Q ↪−→d B(ωω) \ I.

An obvious generalization of Cohen and random reals, the concept of quasi-
generic reals was first explicitly introduced in [BHL05, Section 1.5] in the context
of Silver forcing. In [Ike10a] the notion was fully exploited in order to prove a
characterization theorem for arboreal forcings in an abstract setting. Note that
by Fact 2.1.2 every real x which is PI-generic over M is also I-quasi-generic over
M . The converse is true for all c.c.c. forcings.

Lemma 2.3.2 (Ikegami). Let I be a σ-ideal such that PI is c.c.c., and let M a
transitive model. Then every real x is PI-generic over M iff it is I-quasi-generic
over M .

Proof. Let x be I-quasi-generic over M . For every maximal antichain E in M ,
let BE := ωω \

⋃
E. By the c.c.c., this is a Borel set, it is coded in M , and is

in NI , hence in I. By I-quasi-genericity x /∈ BE, hence x ∈
⋃
E. Therefore x is

PI-generic.

For non-c.c.c. forcings, the notion of I-quasi-genericity is usually different
from PI-genericity. For example, the following is easy to show (see Lemma 2.5.3
for a proof):
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• a real is S-quasi-generic (i.e., ctbl-quasi-generic) over M iff it is not in M ,

• a real is M-quasi-generic (i.e., Kσ-quasi-generic) over M iff it is unbounded
over M ,

• a real is L-quasi-generic (i.e., IL-quasi-generic) over M iff it is strongly
dominating over M (see Definition 1.3.7 (3)).

Concerning the last point: if x is strongly dominating over M then it is also
dominating over M . The converse is false; however, it is not hard to see that if
there is a dominating real over M then there is also a strongly dominating real
over M . Therefore, as far as statements about transcendence over a model go,
dominating and strongly dominating reals amount to the same thing.

We can extend Ikegami’s characterization theorems to the idealized forcing
context. First, we show that quasi-generics are sufficient to ensure I-regularity
on the second projective level, giving stronger versions of Propositions 2.2.5 and
2.2.6.

Proposition 2.3.3. If for every r ∈ ωω, for every I-positive set B, there is an
x ∈ B which is I-quasi-generic over L[r], then all ∆1

2 sets are I-regular.

If we assume sufficient homogeneity of the ideal then the additional clause “for
every I-positive set B” may be omitted.

Proof. Let A be a ∆1
2(r) set and let B be any I-positive set. We may assume that

∃s ∈ ωω (ℵL[s]
1 = ℵ1) since otherwise the result trivially follows from Corollary

2.2.7. Also we may assume that ℵL[r]
1 = ℵ1 without loss of generality (otherwise

consider L[r, s]). By Shoenfield’s classical analysis of Σ1
2 sets (Fact 1.2.15) we

may write (A ∩B) =
⋃
α<ℵ1 Cα and (B \A) =

⋃
α<ℵ1 Dα, with Cα and Dα Borel

sets coded in L[r]. Let x ∈ B be I-quasi-generic. Then x ∈ Cα or x ∈ Dα for
some α, so either Cα or Dα is the required I-positive subset of B.

If I is homogeneous we can transform A ∩ B to some A′ without increasing the
complexity, and run the same argument with A′.

Proposition 2.3.4. If for every r ∈ ωω, {x | x is not I-quasi-generic over
L[r]} ∈ NI , then all Σ1

2 sets are I-regular.

Proof. Let A be Σ1
2(r) and again assume that ℵL[r]

1 = ℵ1. Let B be an I-positive
set. If there are no I-quasi-generics in A∩B, then by assumption there is C ≤ B
disjoint from A so we are done. So assume x ∈ A ∩ B is I-quasi-generic, and, as
before, write A ∩ B =

⋃
α<ℵ1 Cα with Cα Borel and coded in L[r]. Since x is in

some Cα, this Cα will be the I-positive subset of B contained in A.
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With the stronger notion of quasi-genericity instead of genericity, a suitable
converse of Propositions 2.3.3 and 2.3.4 can indeed be proved, but only if we
assume that the ideal I (i.e., the membership of Borel sets in I) is Σ1

2, as shown
by the results of Ikegami [Ike10a]. For its statement we require two additional
definitions.

Definition 2.3.5. A forcing P is Σ1
3-absolute if every Σ1

3 formula is absolute
between V and V [G], for any P-generic G.

Since upwards Σ1
3-absoluteness holds between every model and an extension of

it by a forcing preserving ω1, it is only downwards Σ1
3-absoluteness which matters.

The next definition is due to Zapletal [Zap08, Proposition 2.3.4].

Definition 2.3.6. For a projective pointclass Γ, we say that Γ-I-uniformization
holds if for every I-positive B and every A ⊆ B × ωω such that A ∈ Γ and
∀x ∈ B ∃y ((x, y) ∈ A), there is an I-positive Borel set C ⊆ B and a Borel
function g : C → ωω uniformizing A, i.e., such that ∀x ∈ C ((x, g(x)) ∈ A).

Zapletal already showed that analytic I-uniformization holds [Zap08, Propo-
sition 2.3.4], and that Π1

1-I-uniformization fails in L [Zap08, Example 2.3.5]. The
following theorem shows that it is another transcendence property over L. De-
spite our more general framework, the proof of this theorem is essentially due to
Ikegami [Ike10a].

Theorem 2.3.7 (Ikegami). Let I be a σ-ideal such that PI is proper. The fol-
lowing are equivalent:

1. All ∆1
2 sets are I-regular,

2. Π1
1-I-uniformization holds, and

3. PI is Σ1
3-absolute.

If I is Σ1
2 then it is also equivalent to

4. ∀r ∈ ωω, ∀B ∈ PI , there is an x ∈ B which is I-quasi-generic over L[r].

Proof.

• (1 ⇒ 2). Let B be I-positive and let A ⊆ B × ωω be Π1
1. By Kondô’s

uniformization theorem, let f be a Π1
1 function with dom(f) = B uni-

formizing A. Let Dn,m := {B′ ≤ B | ∀x ∈ B′ (f(x)(n) = m)}, and let
Dn :=

⋃
mDn,m.

Claim. Dn is dense below B.

Proof. Fix n, let B′ ≤ B, and consider Am := {x ∈ B′ | f(x)(n) = m}.
Since (the graph of) f is Π1

1, each Am is a ∆1
2 set, therefore I-regular. Now,



52 Chapter 2. Idealized regularity

if Am ∈ NI for every m, then B′ =
⋃
mAm ∈ NI by Lemma 2.1.10, hence

B′ ∈ I, contradicting the assumption. Therefore at least one Am must be
NI-positive, and since it is I-regular, there must be a B′′ ≤ B′ such that
B′′ ⊆ Am. Then B′′ ∈ Dn,m. (Claim.)

Now let M be a countable elementary submodel, containing B and all the
Dn. Let C := {x ∈ B | x is M -generic} be the I-positive M -master
condition. Define g : C → ωω by g(x)(n) = m iff x ∈

⋃
(Dn,m ∩M). This

is a Borel function since (Dn,m ∩M) is countable. As x is M -generic and
Dn is dense, x ∈

⋃
(Dn ∩M) so there is an m such that x ∈

⋃
(Dn,m ∩M).

Also, it is clear that there can be at most one m such that x ∈
⋃

(Dn,m∩M)
since

⋃
Dn,m and

⋃
Dn,m′ are disjoint for all m 6= m′. By definition of Dn,m

it follows that g(x)(n) = m iff f(x)(n) = m, so g�C = f�C and the result
follows.

• (2 ⇒ 3). Let φ be a Σ1
1 formula (with parameter r, which we suppress for

ease of notation) and let “∃x∀y φ(x, y)” be the Σ1
3 formula in question. We

must show that it is downwards absolute; so assume V [G] |= ∃x ∀y φ(x, y).
Let B be a condition and ẋ a name for a real, such that B 
 ∀y φ(ẋ, y).
By Fact 2.1.4, there is a Borel function f such that B 
 ∀y φ(f(ẋG), y).
We now claim that the statement “∃x ∀y φ(x, y)” must hold in V as well.
Towards contradiction, suppose it does not. Then for every x ∈ B there
is a y such that ¬φ(f(x), y). Using Π1

1-I-uniformization let C ≤ B be I-
positive, and let g be a Borel function uniformizing the Π1

1 set {(x, y) ∈
B × ωω | ¬φ(f(x), y)}. Then for every x ∈ C, ¬φ(f(x), g(x)) holds. Since
both f and g are Borel functions, the statement “∀x ∈ C ¬φ(f(x), g(x))” is
Π1

1, hence absolute. Therefore C 
 ¬φ(f(ẋG), g(ẋG)). But this contradicts
B 
 ∀y φ(f(ẋG), y), so we are forced to conclude that “∃x ∀y φ(x, y)” is
downwards absolute.

• (3⇒ 1). Let A be a ∆1
2 set, defined by Σ1

2 formulas φ and ψ. The statement
“∀x (φ(x) ↔ ¬ψ(x))” is Π1

3, so by assumption it is true in the extension.
Now proceed as in the proof of Proposition 2.2.5. For every I-positive B
there is an I-positive B′ ≤ B such that B′ 
 φ(ẋG) or B′ 
 ψ(ẋG). Assume
the former, let M be a countable elementary submodel containing B′ and
let C := {x ∈ B′ | x is M -generic}. For every x ∈ C, M [x] |= φ(x), and
by upwards Σ1

2-absoluteness φ(x) holds. The situation with B′ 
 ψ(ẋG) is
analogous because ψ is also Σ1

2.

For the equivalence with (4), suppose I is Σ1
2. Let B be I-positive. Then the

statement “∃x (x ∈ B and x is I-quasi-generic over L[r])” is Σ1
3(r, B), and is

clearly forced by B to be true in the extension V [G] (it is true of the generic
real xG, which is I-quasi-generic over V and hence also over L[r]). So by Σ1

3-
absoluteness it is true in V . The direction (4)⇒ (1) is Proposition 2.3.3.
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Corollary 2.3.8. Assume that I is Σ1
2. Then the following are equivalent:

1. For every r ∈ ωω, {x | x is not I-quasi-generic over L[r]} ∈ NI , and

2. All Σ1
2 sets are I-regular.

Proof. Assume that all Σ1
2 sets are I-regular. If I is Σ1

2 then {x | x is not I-quasi-
generic over L[r]} is also Σ1

2, hence I-regular. If it is not in NI then there must
be an I-positive Borel set B contained in it, i.e., such that for every x ∈ B, x is
not I-quasi-generic over L[r]. But then by Theorem 2.3.7 ∆1

2(Reg(I)) would be
false, which certainly contradiction the assumption.

We can now also be somewhat more precise about the relationship between
regularity hypotheses and cardinal invariants which we mentioned in Section 1.3.3.
Recall that the covering number cov(I) is the least number of I-small sets needed
to cover the whole space ωω, and the additivity number add(I) is the least number
of I-small sets whose union is not I-small. A variation of the covering number is
cov∗(I) defined as the least number of I-small sets needed to cover some I-positive
Borel set. In the case of homogeneity of I, cov∗(I) = cov(I).

Lemma 2.3.9.

1. cov∗(I) > ℵ1 =⇒ ∆1
2(Reg(I)),

2. add(NI) > ℵ1 =⇒ Σ1
2(Reg(I)).

Proof. This follows immediately from Propositions 2.3.3 and 2.3.4, noting that
{x | x is not I-quasi-generic over L[r]} can be written as

⋃
{B ∈ B | B ∈ I and

B is coded by a real in L[r]} and that there are only ℵ1 reals in L[r].

As before, the converse is clearly false, for instance in ℵ1-iteration of PI start-
ing from L, or in models of CH with a measurable cardinal (the latter due to
Corollary 2.2.7). Nevertheless, we can say a little more if we look at the details
of cardinal inequality proofs. Assuming that I and J are Σ1

2 ideals, we can say
the following:

1. if cov∗(I) ≤ cov∗(J) is provable in ZFC, then, most likely, ∆1
2(Reg(I)) ⇒

∆1
2(Reg(J)) is also provable in ZFC, and

2. if it is consistent that cov∗(I) < cov∗(J), then, most likely, it is consistent
that ∆1

2(Reg(J)) 6⇒∆1
2(Reg(I)).

3. The same holds regarding add(NI) and Σ1
2(Reg(I)).

To say a bit more about point 1, if cov∗(I) ≤ cov∗(J) is a theorem, then most
likely the proof is as follows: “Given a collection {Bα ∈ J | α < κ} for some
κ < cov∗(I), transform it to another collection {B′α ∈ I | α < κ}, find a real
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x outside
⋃
α<κB

′
α, and then transform it again to get another real y outside⋃

α<κBα, proving that κ < cov∗(J).” If the transformation process in this proof
is recursive, then B′α will have a code in L[r] whenever Bα has a code in L[r]. As a
result, the same proof will show that ∆1

2(Reg(I))⇒∆1
2(Reg(J)), via Proposition

2.3.3 and Theorem 2.3.7. For add(NI) and Σ1
2(Reg(I)), the same applies, using

Proposition 2.3.4 and Corollary 2.3.8.
Concerning point 2, the idea is that if cov∗(I) < cov∗(J) is consistent, then

most likely the proof involves a forcing iteration with some P which adds J-quasi-
generic reals but no I-quasi-generic reals (for example, PJ itself). In this case, it is
clear that an iteration of this forcing will also yield a model in which ∆1

2(Reg(J))
is true but ∆1

2(Reg(I)) is false. For the additivity and the Σ1
2 level, we have to

consider a P which adds a co-NJ set of J-quasi-generics but does not add a co-NI
set of I-quasi-generics.

However, the above is merely heuristics: for example, if the cardinal inequality
is proved by some other means than described above, the conclusion may well
fail to hold, and conversely, relationships between regularity hypotheses can be
established without a direct link to cardinal invariants.

Finally, we would like to mention that Ikegami’s equivalence theorems depend
heavily on the complexity of the ideal I, and it is still open whether a suitable
characterization theorem can be proved in case I is not Σ1

2. It so happens that
many naturally occurring ideals (for example, most of the ideals in [Zap04]) are
Σ1

2, and for some time it was considered unlikely that a natural counterexample
would exist at all. However, in a recent development, Marcin Sabok [Sab10]
proved that the Ramsey-null ideal IRN is one such counterexample, i.e., it is
Π1

2-complete. This naturally leads to the following question.

Question 2.3.10. Does ∆1
2(Ramsey) imply that ∀r ∈ ωω there is a Ramsey-null-

quasi-generic real over L[r]?

2.4 Dichotomies

The notion of I-regularity was introduced as a generalization of many well-known
regularity properties. There is another class of properties, however, which do not
(and cannot) fall into this framework, and these are the dichotomy properties
such as the perfect set property and its relatives Kσ-regularity, u-regularity and
Laver-regularity (see Definition 1.3.7).

Proving this dichotomy for Borel sets is a necessary requirement for an em-
bedding Q ↪−→d B(ωω) \ I. Often the proof can be extended to cover analytic
sets, and a natural question arises as to what happens at higher complexity levels.
By Theorem 1.3.13 we know that “all Σ1

2 sets satisfy the perfect set property”
is equivalent to “all Π1

1 sets satisfy the perfect set property”, and equivalent to

∀r (ℵL[r]
1 < ℵ1): the strongest regularity hypothesis. Notice that this is very
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different from Σ1
2(S), which is equivalent to ∀r (L[r]∩ωω 6= ωω): the weakest reg-

ularity hypothesis. Though both properties involve the ideal ctbl and the partial
order S of perfect sets, the resulting hypotheses could hardly be more different.

To be able to study such dichotomies in our idealized framework, we introduce
a new definition.

Definition 2.4.1. Let I be a Borel generated σ-ideal. A set A satisfies the I-
dichotomy, denoted by Dich(I), if it is either in I or there is an I-positive Borel
set B such that B ⊆ A.

Notice that in the presence of a dense embedding Q ↪−→d PI , the I-dichotomy,
as we defined it above, is exactly the original dichotomy, involved in the proof of
the embedding.

Notice also that this definition is really only interesting when the ideal I is
Borel generated. For example, if we would replace I by NI and define “NI-
dichotomy” analogously, it would be equivalent to I-regularity and would not
give us anything interesting. It is also clear that Γ(Dich(I)) implies Γ(Reg(I))
for projective pointclasses Γ, and that the two notions coincide if I = NI , which
is the case for all c.c.c.-ideals. In particular, Dich(N ) and Dich(M) are Lebesgue
measurability and the Baire property, respectively.

Originally, it was our intention to prove abstract results about the I-dichotomy
similar to the ones we proved about I-regularity. It turns out, however, that I-
dichotomy is a much more mysterious property. For example, we were not able
to prove that all analytic sets satisfy the I-dichotomy, although we don’t know
of any counterexamples. Strangely enough, on the Σ1

2 level results similar to
Propositions 2.2.6 and 2.3.4 can be proved.

Proposition 2.4.2. If for every r ∈ ωω, {x | x is not PI-generic over L[r]} ∈ I,
then Σ1

2(Dich(I)) holds.

Proof. Let A be a Σ1
2 set, defined by a formula φ with parameter r. If there

are no reals in A which are PI-generic over L[r] then we are done since A ∈ I.
So suppose there is an x ∈ A which is PI-generic over L[r]. Since by Shoenfield
absoluteness L[r, x] |= φ(x), by the forcing theorem there is a B ∈ L[r] such that
B 
 φ(ẋG). Now let M be a countable elementary submodel containing r and B,
and let C := {x ∈ B | x is M -generic} be the master condition. For every x ∈ C
we have M [x] |= φ(x) and by upwards Σ1

2-absoluteness φ(x) holds in V , hence
C ⊆ A.

Currently we do not know of any applications of this theorem, except where
PI has the c.c.c., in which case it says the same as Proposition 2.2.6. Also, note
that, unlike Proposition 2.2.6, here we cannot conclude that Σ1

2(Dich(I)) follows

from the strongest hypothesis ∀r (ℵL[r]
1 < ℵ1) (the reason will soon become clear).

Also, if we wish to prove an analogous propositions with quasi-generics instead
of generics, we must assume that ℵ1 is not inaccessible in L.
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Proposition 2.4.3. If ∀r {x | x is not I-quasi-generic over L[r]} ∈ I and

∃r (ℵL[r]
1 = ℵ1), then Σ1

2(Dich(I)) holds. If additionally I is Σ1
2, then, conversely,

Σ1
2(Dich(I)) implies that ∀r {x | x is not I-quasi-generic over L[r]} ∈ I.

Proof. Let A be Σ1
2(r) and without loss of generality assume ℵL[r]

1 = ℵ1. Then
A can be written as

⋃
α<ℵ1 Bα with Bα coded in L[r]. If there are no reals in A

which are I-quasi-generic over L[r] then A ∈ I, and if there is, then it is in some
Bα which must then be I-positive.

For the converse direction, suppose I is Σ1
2. Since Σ1

2(Dich(I)) implies Σ1
2(Reg(I)

which implies ∆1
2(Reg(I)), by Theorem 2.3.7 there exists an I-quasi-generic real

in every I-positive set B. Thus {x | x is not I-quasi-generic over L[r]} is a Σ1
2 set

which does not contain an I-positive Borel set so by the dichotomy it is in I.

Despite these results, the trouble with Σ1
2(Dich(I)) is that it can be inconsis-

tent! Zapletal [Zap08, Proposition 3.9.2] essentially proved the following strong
result: if PI is a forcing notion (satisfying additional requirements which are true
in all natural cases), and Σ1

2(Dich(I)) holds, then any intermediate extension N
of the forcing extension V PI is either a c.c.c. extension of V or N = V PI . This
immediately implies that for several ideals I, among them the Borelized version
of the Ramsey-null ideal IBRN and the ideals IE0 and IG (see Example 2.1.5), the
statement Σ1

2(Dich(I)) is simply false. In the case of the E0-ideal, there is even
a direct diagonalization proof, also an (unpublished) result of Zapletal.

Proposition 2.4.4 (Zapletal). There is a Σ1
2 set not satisfying the IE0-dichotomy.

Proof. First, construct a two-dimensional perfect tree T , inductively generated
by the following clauses:

• (∅,∅) ∈ T ,

• if (s, t) ∈ T then the following pairs of extending sequences are in T :

– (s_〈0〉, t_s_〈0〉_〈0〉)
– (s_〈0〉, t_s_〈0〉_〈1〉)
– (s_〈1〉, t_s_〈1〉_〈0〉)
– (s_〈1〉, t_s_〈1〉_〈1〉)

It is clear that T generates a perfect tree, with [T ] ⊆ 2ω × 2ω the set of branches
through T . For x ∈ 2ω, let Tx := {t | ∃s ⊆ x ((s, t) ∈ T )}. We claim that the
following two conditions are satisfied:

(a) each Tx is an E0-tree, and

(b) ∀x 6= x′, ∀y ∈ [Tx],∀y′ ∈ [Tx′ ], ¬(yE0y
′).
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Part (a) follows immediately from the construction. For part (b), note that the
construction of T guarantees that if s ⊆ x and (x, y) ∈ [T ], then the sequence s
appears infinitely often in y. Therefore, if x 6= x′, there exists some n such that
s := x�n differs from s′ := x′�n. Therefore, if y ∈ [Tx] then s will appear infinitely
often in y and if y′ ∈ [Tx′ ] then s′ will appear infinitely often in y′; moreover, this
will happen on the same digits of the respective reals y and y′. Hence, there will
be infinitely many digits on which y and y′ disagree, i.e., ¬(yE0y

′).

Now let Y be a universal analytic subset of 2ω × 2ω, i.e., a set which is itself
analytic and such that every analytic subset of 2ω is equal to some vertical section
(Y )x := {y | (x, y) ∈ Y }. Then [T ] \ Y is Π1

1 so by Kondô’s uniformization
theorem (see [Jec03, Theorem 25.36]) we can find a Π1

1 function g uniformizing
it, i.e., such that for every x, if ([T ] \ Y )x 6= ∅ then g(x) ∈ ([T ] \ Y )x. Let
A := ran(g).

We claim that A is the required counterexample. It is clear that A is Σ1
2 because

it is the range of a Π1
1 function. To show that A /∈ Dich(IE0), first suppose there

is a Borel IE0-positive set B ⊆ A. Then there are at least two y, y′ ∈ A such that
yE0y

′. Let x, x′ be such that y = g(x) and y′ = g(x′). Then y ∈ ([T ])x = [Tx] and
y′ ∈ ([T ])x′ = [Tx′ ] are related by E0, contradicting assumption (b) above. Now,
suppose A ∈ IE0 . Then there exists a Borel, hence analytic, set B ∈ IE0 such that
A ⊆ B. By the universal property of Y , there must be some x so that B = (Y )x.
Moreover, since by condition (a), [Tx] is an E0-tree, hence IE0-positive, the set
([T ] \ Y )x = [Tx] \ (Y )x is non-empty, hence x ∈ dom(g). Therefore g(x) /∈ B,
but that contradicts g(x) ∈ A.

A similar proof works for the ideal IG. Combining this fact with Propositions
2.4.2 and 2.4.3, we see that for the ideals IE0 , IG and IBRN, the antecedents in
these propositions must themselves be inconsistent.

We will not be able to say much more about I-dichotomy. As counterexamples
exist in ZF we cannot prove Dich(I) for all sets of reals in the Solovay model,
and this also seems to form an obstacle to proving Σ1

1(Dich(I)). The following
questions seem very interesting in this context:

1. Is there a general proof of Σ1
1(Dich(I)), or are there natural counterexam-

ples?

2. Under what conditions is Σ1
2(Dich(I)) consistent?

3. Under what conditions does Dich(I) hold for all sets of reals in the Solovay
model?
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2.5 From transcendence to quasi-generics

In the previous sections we have taken a σ-ideal on the reals as a starting point
and proved results connecting regularity to transcendence over L. We can take the
reverse approach and consider a natural transcendence property as the starting
point. We will assume this property to be simple enough, in any case given by
a Borel relation between reals (in practice it is usually of low complexity in the
arithmetic hierarchy).

Definition 2.5.1. Let R be a Borel relation on ωω (or a similar space). We say:

1. y is R-transcendent over A if ∀x ∈ A (x R y), and

2. {yn | n ∈ ω} is R-σ-transcendent over A if ∀x ∈ A ∃n (x R yn).

For a model M we say that y is R-transcendent over M iff it is R-transcendent
over ωω ∩M , and similarly for R-σ-transcendent.

Intended examples of relations “xRy” are: y dominates x, y is not dominated
by x, y is eventually different from x, y splits x, etc.

Definition 2.5.2. Let R be a Borel relation. For x ∈ ωω, let

KR
x := {y ∈ ωω | ¬(x R y)}.

Let IR be the σ-ideal generated by the sets KR
x .

The σ-ideal IR is Borel generated, and it is easily seen to be Σ1
2. Given R, it

is useful to think about the dual relation R̆, defined by x R̆ y iff ¬(y R x). Note
that A ∈ IR iff there exists {xn | n < ω} which R̆-σ-transcends A.

Lemma 2.5.3. Let R, KR
x and IR be as above, and let M be a model such that

ω1 ⊆M . Then y is R-transcendent over M iff it is IR-quasi-generic over M .

Proof. First, suppose y is IR-quasi-generic over M . For any x ∈ ωω ∩M , KR
x is

a Borel set in I, coded in M . Therefore y /∈ KR
x , hence xRy.

Conversely, suppose y is R-transcendent over M . Let B ∈ IR be a Borel set
coded in M . By Σ1

2-absoluteness M |= B ∈ IR, so there are xn in M such that
M |= B ⊆

⋃
nK

R
xn , which by Π1

1-absoluteness is also true in V . Now, if y ∈ B
then y ∈ KR

xn for some xn, i.e., ¬(xn R y) for some xn. But this contradicts the
R-transcendence of y over M . Therefore y /∈ B, which proves that y is IR-quasi-
generic.

So forcing with PIR is, in a sense, a very canonical way to add a R-transcendent
real. The biggest problem is to verify whether PI is proper, but if it is, then by
Proposition 2.3.3, Corollary 2.3.8 and Proposition 2.4.3 it immediately follows
that
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• ∆1
2(Reg(IR)) iff for all r there is a R-transcendent real over L[r],

• Σ1
2(Reg(IR)) iff for all r, {x | x not R-transcendent over L[r]} ∈ NIR , and

• If ∃r(ℵL[r]
1 = ℵ1), then Σ1

2(Dich(IR)) iff for all r, {x | x is not R-transcendent
over L[r]} ∈ IR.

A little more can be proved assuming that R is a transitive relation.

Proposition 2.5.4. Suppose that R is transitive. Then

1. all analytic sets satisfy the IR-dichotomy, and

2. the following are equivalent:

(a) ∆1
2(Reg(IR)),

(b) Σ1
2(Reg(IR)),

(c) Σ1
2(Dich(IR)).

Proof.

1. Let A be analytic, and let A =
⋃
α<ℵ1 Bα be its Borel decomposition. If one

of the Bα’s is IR-positive we are done, so suppose they are all in IR. Then
for every α there are {xαn | n < ω} s.t. for all y ∈ Bα, ∃n s.t. ¬(xαn R y).
Consider V [G], the forcing extension with PIR . There the generic real xG
is R-transcendent over V , hence xαnRxG holds for all α, n. By Shoenfield
absoluteness A =

⋃
α<ℵ1 Bα still holds in the extension. Therefore, in V [G],

for all y ∈ A there are α, n such that ¬(xαn R y), and by transitivity of R,
¬(xG R y) (otherwise xαn RxG R y). Therefore V [G] |= A ∈ IR, and since this
statement is Σ1

2 it is true in V , too.

2. The implications (c) ⇒ (b) ⇒ (a) are trivial, so we have to show (a) ⇒
(c). If ∆1

2(Reg(IR)) holds then by Theorem 2.3.7 Σ1
3-absoluteness holds

between V and the forcing extension V [G] by PIR . Now apply exactly the
same argument as in part 1, using Σ1

3-absoluteness instead of Shoenfield
absoluteness.

Below are some examples of familiar transcendence properties.

Example 2.5.5.

1. Let R be defined by x R y iff x 6= y. Then IR = ctbl, the corresponding
forcing is Sacks forcing, and a real is IR-quasi-generic over M iff it is not in
M . Moreover, IR-dichotomy is the perfect set property.

2. Let R be defined by x R y iff x 6≥∗ y. Then IR = Kσ, the corresponding
forcing is Miller forcing, and a real is Kσ-quasi-generic over M iff it is
unbounded over M . Moreover, IR-dichotomy is Kσ-regularity.
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3. Let R be defined by x R y iff y dominates x. The corresponding ideal
consist of all sets A which are not dominating. There are two ways to look
at this: considering x, y as members of ωω, or of ω↑ω (strictly increasing
sequences). The latter case is easier because by Borel u-regularity (see
Definition 1.3.7 (2)), there is a dense embedding from the set of Spinas trees
into B(ω↑ω)\IR. This is a proper forcing notion which, by [BHS95, Theorem
5.1], is equivalent to Laver forcing. If we consider the ωω situation, then
there is a dense embedding consisting of so-called nice sets (see [BHS95, p.
294]), which are combinatorially more complicated.

4. Let R be defined by x R y iff y strongly dominates x (Definition 1.3.7 (3)).
Now the corresponding ideal is the Laver ideal IL, and a real x is strongly
dominating iff it is Laver-quasi-generic.

Next we consider several examples of transcendence properties which are well-
known, but have not yet been studied from the point of view of regularity. As
always, the main problem is determining whether the corresponding forcing is
proper.

Example 2.5.6.

1. For x, y ∈ [ω]ω, let R be defined by x R y iff y splits x, i.e., x ∩ y and
x \ y are infinite. The corresponding ideal IR has been studied by Spinas in
[Spi04, Spi08]. In his terminology, a set A was called countably splitting iff
A /∈ IR. Spinas isolated the following notion of a splitting tree:

Definition 2.5.7. A tree T on 2<ω is called a splitting tree if for every s
in T there exists N ∈ ω such that ∀n ≥ N there exist two extensions t0 and
t1 in T such that t0(n) = 0 and t1(n) = 1. Let SPL denote the partial order
of splitting trees ordered by inclusion.

By [Spi04, Theorem 1.2], there is a dense embedding SPL ↪−→d PIR . Since
splitting treas easily allow a standard fusion construction, it follows that
PIR is proper, so all the preceding theorems apply. In particular, all ∆1

2 sets
are IR-regular iff for every r there exists a splitting real over L[r]. However,
R is not transitive and it is not clear whether Σ1

2(Dich(IR) is consistent and
whether ∆1

2(Reg(IR)) and Σ1
2(Reg(IR)) are equivalent.

2. Consider the dual relation, i.e., xRy iff x does not split y. In [Spi08], Spinas
studied the corresponding ideal and attempted to find a dense combinatorial
object, but without success. Until this has been achieved, it is not clear
whether the corresponding forcing PIR is proper, and whether any of the
preceding theorems hold.

3. Let R be defined by: x R y iff x and y are infinitely often equal, i.e.,
∃∞n(x(n) = y(n)). In [Spi08] Spinas has isolated the notion of an i.o.e.-tree:
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Definition 2.5.8. A tree T on ω is an i.o.e.-tree if every s ∈ T has an
extension t ∈ T such that |SuccT (t)| = ω.

Spinas [Spi08, Theorem 3.3] showed that the partial order of i.o.e.-trees
densely embeds into PIR , which, again, implies that PIR is proper, hence the
equivalence theorems hold. In particular, all ∆1

2 sets are IR-regular iff for
every r there exists an infinitely often equal real over L[r]. It is open whether
Σ1

2(Dich(IR)) is consistent and whether ∆1
2(Reg(IR)) and Σ1

2(Reg(IR)) are
equivalent.

4. Now consider the dual notion again, i.e., x R y iff x and y are eventually
different. The corresponding ideal has not received much attention so far,
and it is currently unknown whether there is a dense partial order consisting
of trees or other simple objects, and whether the forcing is proper.

2.6 Questions and further research

We would like to conclude this chapter by pointing out a number of open ques-
tions, or ideas for further research, that have come up in the development of this
general theory.

Question 2.6.1. Concerning I-regularity:

1. Does the direction “(3)⇒ (4)” in Ikegami’s theorem (Theorem 2.3.7) work
without the assumption on the complexity of the ideal I?

2. A test-case for the above: does Σ1
2(Ramsey) imply the existence of Ramsey-

null-quasi-generics over L[r]?

3. Under which conditions is ∆1
2(Reg(I)) and Σ1

2(Reg(I)) equivalent?

Question 2.6.2. Concerning I-dichotomy:

1. Is Σ1
1(Dich(I)) true?

2. Under which assumptions is Σ1
2(Dich(I)) consistent?

3. Under which assumptions is Dich(I) true for all sets in the Solovay model?

4. What can we say about Π1
1(Dich(I))? When is it equivalent to Σ1

2(Dich(I))?

Question 2.6.3. Concerning R-transcendence:

1. Are the forcings related to the unsplit reals and the eventually different reals
(Example 2.5.6 (2) and (4)) proper?
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In this chapter, we have not really talked about infinite games or the axiom
of determinacy. The main reason is that the framework of idealized forcing seems
too general to allow us to prove any results. Of course, we know that AD (the
axiom of determinacy) implies the Baire property and Lebesgue measurability for
all sets of reals, as well as many of the I-dichotomy properties. One might ask
whether the following holds:

Question 2.6.4. Does AD imply that all sets are I-regular?

Although no counterexample to this implication is currently known, it is also
known to be a very difficult open problem for many regularity properties. Most
notably, it is still open whether AD implies that all sets are Ramsey. On the other
hand, the Ramsey property does follow from the axiom of real determinacy ADR,
by [Pri76, Kas83]. The same holds for many other Marczewski-style properties,
as shown in [Löw98]. In a sense, it is more natural to use games with real moves
when talking about more complicated regularity properties. So, one might at
least wonder whether the following is true:

Question 2.6.5. Does ADR imply that all sets are I-regular?

Unfortunately we do not have a proof of this in general.



Chapter 3

Polarized partitions

In this chapter we turn our attention to a regularity property motivated by the
study of partition combinatorics on the real line. It is a close relative of the classi-
cal Ramsey property (see Definition 1.3.5), but is combinatorially more involved,
and has only become the object of systematic study quite recently, in the works
of DiPrisco, Llopis, Todorčević, Shelah and Zapletal [DPLT01, DPT03, Tod10,
ZS10].

The term polarized partition has been in use in the literature, and we shall use
the term polarized partition property to refer to the regularity property studied in
this chapter. It comes in two guises: an unbounded and a bounded version, with
the former being a consequence of the Ramsey property (on the level of projective
pointclasses Γ) but the latter not. We will look at the strength of hypotheses stat-
ing that all ∆1

2 or Σ1
2 sets satisfy the bounded or unbounded polarized partition

property, comparing them with other regularity and transcendence statements.
One interesting aspect of this property is that it does not seem to fall into

the framework described in Chapter 2. The best candidates of forcing notions
related to it (the forcing used in [ZS10] and our own P defined in Section 3.5)
belong to the class of “creature forcings” introduced by Shelah, which, in general,
are not equivalent to idealized forcings. Perhaps for this reason, we were not able
to prove a characterization theorem in the style of the results in Section 1.3.2.
Nevertheless, we were able to prove many other results comparing this property
to other well-known regularity properties, the most interesting being the content
of Section 3.5 stating that the bounded version of the property can be forced to
hold on the Σ1

2 level without adding unbounded or splitting reals.
The results of this chapter are joint work with Jörg Brendle.

3.1 Motivation.

The property studied in this chapter is motivated by the following combinatorial
question: suppose we are given a partition of the Baire space ωω into two pieces,

63
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say, A and ωω \ A, and an infinite sequence 〈mi | i < ω〉 of integers ≥ 2. Can
we find an infinite sequence 〈Hi | i < ω〉 of subsets of ω, with |Hi| = mi, which
is homogeneous for the partition, i.e., such that the product

∏
iHi is completely

contained in A or completely disjoint from A?
Without placing any definability conditions on A, it is easy to construct a

counterexample using AC. For instance, if � is a well-ordering of ωω and if for
every x we denote by yx the �-least real eventually equal to x, then the following
set is a counterexample:

A := {x ∈ ωω | |{n | x(n) 6= yx(n)}| is even}.

This is because if there were a sequence 〈Hi | i ≤ ω〉 with |Hi| ≥ 2 such that,
say,

∏
iHi ⊆ A, then any x ∈

∏
iHi could be changed to x′ ∈

∏
iHi by altering

just one digit, so that yx = yx′ but |{n | x′(n) 6= yx′(n)}| is odd, yielding a
contradiction. This also immediately shows that if V = L, then the property fails
for ∆1

2 partitions, as we can use the ∆1
2 well-ordering <L of the reals instead of

�.
For definable partitions A, the situation is quite different. Recall that a set

A′ ⊆ [ω]ω satisfies the Ramsey property if there exists an x ∈ [ω]ω such that
[x]ω ⊆ A′ or [x]ω ∩ A′ = ∅.

Lemma 3.1.1 (folklore). Let Γ be any projective pointclass and assume that all
sets in Γ are Ramsey. Then the partition problem has a positive solution for all
partitions in Γ.

Proof. Suppose A ⊆ ωω is a given set of complexity Γ, and m0,m1, . . . are integers
≥ 2. Let A′ := {x ∈ A | x is strictly increasing}, i.e., A′ = A ∩ ω↑ω, and let
A′′ := {ran(x) | x ∈ A′} (i.e., identify infinite sequences with their increasing
enumeration). Since A′′ is still in Γ, by assumption there is an x ∈ [ω]ω which is
homogeneous for A′′, i.e., such that [x]ω ⊆ A′′ or [x]ω∩A′′ = ∅. Now, simply take
as H0 the first m0 values of x, as H1 the next m1 values of x, and so on. Clearly,
for every y ∈

∏
iHi we have ran(y) ⊆ x and hence either

∏
iHi ⊆ A′ ⊆ A or∏

iHi ∩ A′ = ∅. Since
∏

iHi only contains increasing sequences, the latter case
implies

∏
iHi ∩ A = ∅.

As an immediate corollary, we see that the answer to our combinatorial ques-
tion is positive for

• analytic and co-analytic partitions,

• Σ1
2 partitions in the iterated Mathias model,

• all partitions in the Solovay model.

The homogeneous x obtained from the proof of Lemma 3.1.1 can grow quite
rapidly, and in general there is no upper bound on its rate of growth. Hence
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the homogeneous sequence 〈Hi | i ≤ ω〉 obtained from x is also potentially un-
bounded. We could ask what happens if we tighten the conditions of the original
question so as to rule out these “unbounded” solutions. Suppose that, this time,
we are given a partition A and two sequences of integers ≥ 2: m0,m1, . . . and
n0, n1, . . . . Can we find 〈Hi | i < ω〉 such that |Hi| = mi and Hi ⊆ ni which is
homogeneous for A? Here, we want the ni to increase at a much quicker rate
then the mi, since otherwise this property will fail even for very simple partitions
(e.g., closed).

This time, a positive solution clearly cannot follow from the Ramsey property.
In [DPT03], DiPrisco and Todorčević first computed explicit upper bounds ~n
as a function of ~m and proved that with these bounds the problem does have
a positive solution for analytic partitions, as well as for all partitions in the
Solovay model. The computation of ~n in terms of ~m used a recursive but non-
primitive-recursive function (an Ackermann-style function) which was improved
by Shelah and Zapletal [ZS10] to a direct, primitive-recursive computation using
the methods of creature forcing.

It is clear that both the bounded and the unbounded partition problems dis-
cussed above lead to the definition of a new regularity property.

Definition 3.1.2.

1. Whenever H = 〈Hi | i ∈ ω〉 is an infinite sequence of finite subsets, we
shall use the shorthand notation [H] instead of

∏
iHi. This corresponds to

identifying the sequence H with a finitely branching uniform perfect tree, so
that [H] is the set of branches through this tree.

2. Let m0,m1, . . . be fixed integers. A set A ⊆ ωω satisfies the ( unbounded)
polarized partition property ω

ω
. . .

→
 m0

m1

. . .


if there is an H = 〈Hi | i ∈ ω〉 with |Hi| = mi, such that [H] ⊆ A or
[H] ∩ A = ∅.

3. Let m0,m1, . . . and n0, n1, . . . be fixed integers ≥ 2 such that the ni’s are
recursive in the mi’s. A set A ⊆ ωω (or ⊆

∏
i ni) satisfies the bounded

polarized partition property n0

n1

. . .

→
 m0

m1

. . .


if there is an H = 〈Hi | i ∈ ω〉 with |Hi| = mi and Hi ⊆ ni, such that
[H] ⊆ A or [H] ∩ A = ∅.
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We will mostly use inline notation and denote by Γ(~ω → ~m) and Γ(~n → ~m)
the hypotheses that all sets in Γ satisfy the properties “(~ω → ~m)” and “(~n→ ~m)”,
respectively.

Our first observation is that as long as we are only interested in projective
pointclasses Γ, the precise value of the right-hand-side integers m0,m1, . . . is
irrelevant.

Lemma 3.1.3. Let Γ be a pointclass and m0,m1, . . . and m′0,m
′
1, . . . two se-

quences of integers ≥ 2. Then

1. Γ(~ω → ~m) holds if and only if Γ(~ω → ~m′) holds.

2. If Γ(~n → ~m) holds for some (sufficiently large) ~n, then there are ~n′ such
that Γ(~n′ → ~m′) holds.

Proof.

1. It is clear that decreasing any of the mi’s only makes the partition property
easier to satisfy. Suppose we know Γ(~ω → ~m) and we are given ~m′. Find
0 = k−1 < k0 < k1 < . . . such that for all i we have mki−1

·mki−1+1 · . . . ·
mki−1 ≥ m′i:

(

product is ≥m′0︷ ︸︸ ︷
m0,m1, . . . ,mk0−1

product is ≥m′1︷ ︸︸ ︷
mk0 ,mk0+1, . . . ,mk1−1

product is ≥m′2︷ ︸︸ ︷
mk1 ,mk1+1, . . . ,mk2−1 . . . ).

Now let ϕ : ωω −→ ωω be the continuous function given by

ϕ(x) := (〈x(0), . . . , x(k0 − 1)〉 , 〈x(k0), . . . , x(k1 − 1)〉 , . . . )

where 〈. . . 〉 is the canonical (recursive) bijection between ω and ωki−ki−1 ,
for the respective i. Let A ⊆ ωω be a set in Γ. Then A′ := ϕ−1[A] is in Γ
so by assumption there is an H ′ such that ∀i (|H ′i| = mi) and [H ′] ⊆ A′ or
[H ′] ∩ A′ = ∅. Define H by Hi := {

〈
r0, . . . , r(ki−ki−1)−1

〉
| rj ∈ H ′ki−1+j}.

Then clearly |Hi| = mki−1
· . . . · mki−1 ≥ m′i and it only remains to show

that [H] = ϕ“[H ′]. But that follows immediately from the definition of ϕ.

2. Here, use the same function ϕ but now note that we may choose H ′ to be
bounded by ~n, so that each H ′ki−1+j is bounded by nki−1+j. Therefore the

possible elements of Hi are bounded by
〈
nki−1

, nki−1+1, . . . , nki−1

〉
(assuming

that the coding is monotonous).

Because of this, we will use the generic notations (~ω → ~m) and (~n → ~m)
to refer to the unbounded resp. bounded partition properties, leaving ~n and ~m
unspecified if it is irrelevant.
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By Lemma 3.1.1 and [DPT03, Corollary 3.8], Σ1
1(~ω → ~m) and Σ1

1(~n → ~m)
are true. What about the Σ1

2 and ∆1
2 levels? If we could find an idealized, proper

forcing notion PI such that (~ω → ~m) or (~n → ~m) is (classwise) equivalent to
I-regularity, then we could apply results from chapter 2 to prove characteriza-
tion results and measure the strength of the hypotheses Σ1

2/∆
1
2(~ω → ~m) and

Σ1
2/∆

1
2(~n → ~m). We were not able to find such a forcing, and there seem to be

good arguments for why it cannot be done: the forcings most naturally related to
the polarized partition properties belong to the class of creature forcings, and by
an unpublished result of Zapletal such forcings cannot, in general, be represented
as B(ωω) \ I for any σ-ideal I.

Even though we are not able to prove a characterization theorem, we can
prove many non-trivial implications (and non-implications) locating the polarized
partition property fairly accurately among other well-known regularity properties
and transcendence statements.

In Section 3.2 we prove a connection with eventually different reals and in
Section 3.3 we do the same for E0-measurability. In Section 3.4 we look at some
non-implications, and in Section 3.5 we construct a forcing notion which forces
Σ1

2(~n→ ~m) without adding unbounded or splitting reals.

3.2 Eventually different reals

Two reals x and y are called eventually different if ∀∞n (x(n) 6= y(n)), and
x is eventually different over L[r] if for every y ∈ ωω ∩ L[r], x is eventually
different from y. We already mentioned eventually different reals in connection
with the cardinal invariant non(M) in Section 1.3.3, and in connection with R-
transcendence in Example 2.5.6 (4). Let us also call a real x bounded eventually
different over L[r] if it is eventually different over L[r] and moreover there exists
a y ∈ ωω ∩ L[r] such that x ≤ y.

Theorem 3.2.1.

1. ∆1
2(~ω → ~m) =⇒ ∀r ∃x (x is eventually different over L[r]).

2. ∆1
2(~n→ ~m) =⇒ ∀r ∃x (x is bounded eventually different over L[r]).

Proof.

1. Suppose, towards contradiction, that there is an r such that for all x, there
is a y ∈ L[r] such that ∃∞n (x(n) = y(n)).

Claim. For all x, there is also a y ∈ L[r] such that ∃∞n (x(n) = y(n) ∧
x(n+ 1) = y(n+ 1)).

Proof. Given x, let x′ := (〈x(0), x(1)〉 , 〈x(2), x(3)〉 , . . . ). Let y′ ∈ L[r]
be such that ∃∞n (x′(n) = y′(n)). Now let y be such that (〈y(0), y(1)〉 ,
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〈y(2), y(3)〉 , . . . ) = y′. Since we use recursive coding, y is also in L[r]. Now
it is clear that y is as required. (claim)

For each x, let yx denote the <L[r]-least real in L[r] such that ∃∞n (x(n) =
yx(n) ∧ x(n+ 1) = yx(n+ 1)). Now define the following set:

A := {x ∈ ωω | the least n s.t. x(n) = yx(n) is even}.

To see that A is ∆1
2(r), we use the same method as in the proofs of Fact

1.2.11 and Fact 1.3.8. Letting Φ(x, y, r) denote the statement “y is the <L[r]-
least real such that ∃∞n(x(n) = y(n)∧ x(n+ 1) = y(n+ 1)) and the first n
s.t. x(n) = y(n) is even”, and using the absolute definition of <L[r], we can
write, for all x ∈ ωω: x ∈ A iff ∃(Lδ[r])∃y(x, y ∈ Lδ[r] ∧ Lδ[r] |= Φ(x, y, r)).
Equivalently: there exists E ⊆ ω × ω and y ∈ ωω such that

1. E is well-founded,

2. ∃n ∃m ∃u (x = πE(n), y = πE(m), r = πE(u) and (ω,E) |= Θ(u) ∧
Φ(n,m, u)).

Here the sentence Θ(r) is just like the Θ from Fact 1.2.10 except that it
asserts “V = L[r]” rather than V = L. It is clear that the above statement
is Σ1

2(r).

Similarly, x /∈ A can be written in the same form but with “even” replaced
by “odd”, thus showing that A is ∆1

2(r).

Next we show that A is indeed a counterexample to (~ω → ~m). Suppose
there is an H such that [H] ⊆ A or [H]∩A = ∅, without loss of generality
the former. Let x ∈ [H] ⊆ A. Since x and yx coincide on two consecutive
digits somewhere, we can easily alter x to x′ by changing only finitely many
digits, so that still x′ ∈ [H] but the first n for which x′(n) = yx(n) is odd.
Since x and x′ are eventually equal, yx = yx′ and therefore x′ /∈ A, which is
a contradiction.

2. Using an analogous proof, we will show that x can in fact be bounded by the
real ~n′ := (〈n0, n1〉 , 〈n2, n3〉 , . . . ) which is clearly in L[r]. Assume towards
contradiction that for all x bounded by ~n′ there is a y ∈ L[r] infinitely equal
to it. Using the same method as before, it follows that for every x bounded
by ~n, there is a y ∈ L[r] infinitely equal on two consecutive digits. The rest
of the proof proceeds analogously except that this time we define

A := {x ∈
∏
i

ni | the least n s.t. x(n) = yx(n) is even}

and use the fact that the H given by (~n→ ~m) is contained within
∏

i ni.
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3.3 E0-measurability

Next, we connect the polarized partition property to E0-measurability. Recall the
definition of the IE0-ideal from Example 2.1.5 (6), and the corresponding dense
forcing partial order (E0,≤), consisting of E0-trees (Definition 2.1.6) ordered by
inclusion. Notice that by the dense embedding, IE0-regularity is equivalent to E0-
Marczewski measurability (which we simply call E0-measurability). As always,
Γ(E0) abbreviates the statement “all sets of complexity Γ are E0-measurable”.

Since E0 is a proper forcing and the ideal IE0 is Σ1
2, by Theorem 2.3.7 and

Corollary 2.3.8 we have that ∆1
2(E0) is equivalent to the statement “∀r ∃x (x is

IE0-quasi-generic over L[r])” and Σ1
2(E0) to the statement “∀r {x ∈ 2ω | x is not

IE0-quasi-generic over L[r]} ∈ NIE0
”.

We show that (~ω → ~m) implies E0-measurability for all complexity classes Γ,
so in particular, for Γ = ∆1

2 and Γ = Σ1
2.

Theorem 3.3.1. Γ(~ω → ~m) =⇒ Γ(E0).

Proof. First, we define an auxiliary equivalence relation Eω
0 , which is just like

E0 but defined on Baire space rather than Cantor space, i.e., for x, y ∈ ωω we
define xEω

0 y iff ∀∞n (x(n) = y(n)). The notions of a partial Eω
0 -transversal as

well as the σ-ideal IEω0 are defined analogously. Let A ⊆ 2ω be an arbitrary set
of complexity Γ, and let T ∈ E0 be an arbitrary E0-tree.

Claim 1. There is a bijection f : 2ω → [T ] which preserves E0.

Proof. Recall that if T is an E0-tree, then there is a stem s0 with |s0| = k0, and
there are numbers k0 < k1 < k2 < . . . , and for each i exactly two sequences
si0, s

i
1 ∈ [ki,ki+1)2, such that

[T ] = {s0
_s0

x(0)
_s1

x(1)
_s2

x(2)
_ · · · | x ∈ 2ω}.

Define f by f(x) := s0
_s0

x(0)
_s1

x(1)
_s2

x(2)
_ . . . . Then f is a bijection between

2ω and [T ]; if ∀∞n(x(n) = y(n)) then clearly ∀∞n(f(x)(n) = f(y)(n)); and
conversely, if ∃∞n(x(n) 6= y(n)), then ∃∞n(snx(n) 6= sny(n)), and it follows that

∃∞n(f(x)(n) 6= f(y)(n)). So f preserves E0. � (Claim 1)

Claim 2. There is an injective function g : ωω → 2ω which preserves Eω
0 with

respect to E0.

Proof. Define g as follows: for each x ∈ ωω, let

g(x)(n) :=

{
1 if x((n)0) = (n)1

0 otherwise

where n = 〈(n)0, (n)1〉 is the canonical coding. In other words, g sends every
x ∈ ωω to the characteristic function of the (encoded) graph of x. Again, it is
easy to verify that for all x, y ∈ ωω, xEω

0 y iff f(x)E0f(y). � (Claim 2)
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Let A′ := (f ◦ g)−1[A]. It is clear that both f and g are continuous functions, so
A′ is also of complexity Γ. By assumption, there is a sequence H = 〈Hi | i < ω〉
such that [H] ⊆ A′ or [H] ∩ A′ = ∅. For each Hi, let k0

i and k1
i be the first two

elements of Hi. Now define h : 2ω → [H] by h(x)(i) := ki(x(i)). It is obvious that
h is an injection and preserves E0 with respect to Eω

0 , i.e., xE0y iff h(x)Eω
0 h(y).

Putting everything together, let B := (f ◦ g ◦ h)“[2ω]. Clearly either B ⊆ [T ]∩A
or B ⊆ [T ]\A. Moreover, as f ◦g◦h preserves E0 and 2ω is obviously IE0-positive,
the image B is also IE0-positive. This shows that A is IE0-regular as required.

We do not know whether we can get any stronger implication from ∆1
2(~n→ ~m)

and Σ1
2(~n→ ~m).

3.4 Implications and non-implications.

Let us sum up everything we have proved so far in an implication diagram, in the
same style as we have done before with Cichoń’s diagram for regularity hypotheses
(Figure 1.3). In addition to the properties already mentioned, we include M- and
L-Marczewski measurability, the doughnut property (see Definition 1.3.6) and the
splitting property, i.e., the IR-regularity property for the transcendence relation
defined by x R y iff y splits x (see Example 2.5.6 (1)).
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Figure 3.1: Implications between regularity hypotheses.

The latter two are included here because of their close relationship to the E0-
measurability. This relationship was studied in [BHL05], and our results will have
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some relevance for that work. Recall that the doughnut property is equivalent
to IG-regularity and to V-Marczewski measurability where V denotes the Silver
forcing partial order (see Example 2.1.5 (7)). Similarly, the splitting property
is equivalent to SPL-Marczewski measurability where SPL denotes the partial
order of splitting trees (Definition 2.5.7). Also, ∆1

2(doughnut) is equivalent to
the existence of IG-quasi-generics over every L[r], and ∆1

2(SPL) to the existence
of splitting reals over every L[r], by Theorem 2.3.7. Moreover, by Proposition
2.4 and Proposition 2.5 of [BHL05], ∆1

2(doughnut) implies the existence of both
IE0-quasi-generics and splitting reals over L[r]. In fact, since every Silver tree is
an E0-tree, the implication Γ(doughnut) =⇒ Γ(E0) holds for all projective classes
Γ.

In Figure 3.1, we have labeled all new implications, i.e., the ones involving the
polarized partitions, while the unlabeled implications were well-known prior to
our work. From the new ones, (b), (b′), (b′′), (c) and (c′) are trivial, (a) is Lemma
3.1.1, (d) and (d′) are Theorem 3.2.1, and (e) and (e′) are Theorem 3.3.1.

Note also that, although not included in the diagram, the strongest regularity
hypothesis ∀r (ℵL[r] < ℵ1) implies all other properties considered here, and like-
wise, Σ1

2(S) is implied by all of them. The only non-trivial case is showing that
if ∀r (ℵL[r] < ℵ1) then Σ1

2(~n → ~m) holds. To prove this, we can use the forcing
from [ZS10] (or the forcing P constructed in the next section). Although this is
not an idealized forcing, the methods of Proposition 2.2.6 and Corollary 2.2.7 can
still be applied, and the result follows in the same way as in [ZS10, Section 3].

We are now interested whether the implications in this diagram are the only
possible ones. In particular, we would like to prove that all the new implications
are strict and cannot be reversed (i.e., they are not equivalences). We start by
looking at (e) and (e′).

Lemma 3.4.1. In the Cohen model, i.e., the model obtained by an ℵ1-iteration of
Cohen forcing, Σ1

2(doughnut), and everything that follows from it, holds, whereas
the existence of eventually different reals, and hence ∆1

2(~ω → ~m) and ∆1
2(~n→ ~m),

fail. In particular, implications (e) and (e′) cannot be reversed.

Proof. It is well-known that Cohen forcing does not add eventually different reals.
On the other hand, by [BHL05, Proposition 3.7] all Σ1

2 sets (in fact all projective
sets) have the doughnut property in the iterated Cohen model.

Next, we turn to the arrows (b), (b′) and (b′′): is the bounded partition prop-
erty really stronger then the unbounded one? The following terminology is well-
known:
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Definition 3.4.2. A forcing P has the

1. Laver property if for every p ∈ P and every name for a real ẋ such that for
some y we have p 
 ẋ ≤ y̌, there is an infinite sequence S = 〈Sn | n < ω〉
with ∀n (|Sn| ≤ 2n), and some q ≤ p such that q 
 ẋ ∈ [Š].

2. weak Laver property if for every p ∈ P and every name for a real ẋ such that
for some y we have p 
 ẋ ≤ y̌, there is an infinite sequence S = 〈Sn | n < ω〉
with ∀n (|Sn| ≤ 2n), and some q ≤ p such that q 
 ∃∞n (ẋ(n) ∈ Šn).

In fact the weak Laver property has a simpler characterization:

Lemma 3.4.3. A forcing P has the weak Laver property iff it does not add a
bounded eventually different real.

Proof. Let V be the ground model and V [G] the generic extension by P. Clearly,
if for every bounded real x in V [G] there is y ∈ V infinitely equal to x, then there
is also a product S ∈ V with the same property—any S containing y will do.
So it remains to prove the converse: let x ∈ V [G] be a real bounded by y ∈ V .
Partition ω into {Bn | n ∈ ω} by letting B0 := {0}, B1 := {1, 2}, B2 := {3, 4, 5, 6}
and so on with |Bn| = 2n. For convenience enumerate Bn = {bn0 , . . . , bn2n−1}. Let
ϕ be the continuous function defined by ϕ(x)(n) =

〈
x(bn0 ), . . . , x(bn2n−1)

〉
.

Clearly x′ := ϕ(x) is bounded by ϕ(y) ∈ V . Let S ∈ V be a product satisfying
∀n (|Sn| ≤ 2n) and ∃∞n (x′(n) ∈ Sn). Enumerate every Sn as {an0 , . . . , an2n−1}.
Now, let {sn0 , . . . , sn2n−1} be members of B

n
ω such that

〈
snj (bn0 ), . . . , snj (bn2n−1)

〉
= anj

for every j. Then from the definition of ϕ it follows that for every n, if x′(n) ∈ Sn
then x�Bn = snj for one of the j’s. Hence ∃∞n (x�Bn = snj for some j). But
then we can define a new real z by “diagonalizing” all the possible snj ’s, that is,
z(bni ) := sni (bni ). Then x is infinitely equal to z, and since z has been explicitly
constructed from S, it follows that z ∈ V . This completes the proof.

Corollary 3.4.4. The Mathias model, i.e., the model obtained by an ℵ1-iteration
of Mathias forcing, Σ1

2(Ramsey) (and everything that follows from it) holds, while
the existence of bounded eventually different reals, and hence ∆1

2(~n → ~m), fails.
In particular, implications (b), (b′) and (b′′) cannot be reversed.

Proof. It is well-known that Σ1
2(Ramsey) holds in the iterated Mathias model.

However, it is also known that Mathias forcing satisfies the Laver property (cf.
[BJ95, Section 7.4]), and that this is preserved by the ℵ1-iteration. Therefore the
iteration certainly also has the weak Laver property. By Lemma 3.4.3, this implies
that in the Mathias model there are no bounded eventually different reals.

We note that the nature of implications (c), (c′), (d) and (d′) is still unknown.
We conjecture that (d) and (d′) are strict implications but efforts to prove this
have so far been unsuccessful.
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In the next section we prove a strong result which, in particular, will show
that (a) is irreversible.

3.5 A fat creature forcing

We will now construct a forcing notion P which yields Σ1
2(~n→ ~m) without adding

unbounded or splitting reals. As a result, we will have a proof of the consistency
of Σ1

2(~n→ ~m) without Σ1
2(M) or Σ1

2(SPL). Most of this section will be devoted
to the construction of this forcing and the study of its forcing-theoretic properties.
The results proved here seem interesting in their own right, and the forcing we
construct may have potential applications in other areas.

Our forcing P can be seen as a hybrid of two forcing notions already existing in
the literature: the one used by DiPrisco and Todorčević in [DPT03] to prove the
original result Σ1

1(~n→ ~m) in ZFC, and a creature forcing developed by Shelah and
Zapletal in [ZS10] and Kellner and Shelah in [KS09]. The latter forcing does not
add unbounded or splitting reals by [ZS10] and can be applied directly to yield
∆1

2(~n → ~m), but seems insufficient for Σ1
2(~n → ~m). The DiPrisco-Todorčević

forcing, on the other hand, does yield Σ1
2(~n → ~m) but it is so combinatorially

complex that it is difficult to prove preservation theorems about it, such as being
ωω-bounding or not adding splitting reals. That is why we choose a “hybrid”
solution.

We start with the following consideration: it is easy to compute integers
M0,M1, . . . such that the partition M0

M2

. . .

→
 2

2
. . .


holds for closed partitions. For a proof, see [DPLT01, Theorem 1] or use an
argument like in the proof of Theorem 3.5.7 (1). We fix such integers Mi for
the rest of this section. The next definition and the lemma following it are
instrumental in our approach to constructing a model of Σ1

2(~n→ ~m).

Definition 3.5.1. Let M be a model of set theory and H an infinite sequence of
finite subsets of ωω. We say that H has the clopification property with respect to
M if for every Borel set B with Borel code in M , the set B∩ [H] is clopen relative
to [H] (i.e., in the subset topology on [H] inherited from the standard topology on
ωω).

Lemma 3.5.2. If for every r ∈ ωω there is an H with |Hi| = Mi having the
clopification property with respect to L[r], then Σ1

2(~ω → ~2) holds. If, moreover,
H is bounded by some recursive 〈ni | i < ω〉, then Σ1

2(~n→ ~2) holds.
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Proof. We may assume that for some r, ℵL[r]
1 = ℵ1, since otherwise Σ1

2(~n → ~2)
holds anyway. Using Fact 1.2.15 we can write A =

⋃
α<ω1

Bα where each Bα is
a Borel set coded in L[r]. Let H be the product with the clopification property.
Then for each α, Bα∩ [H] is clopen relative to [H], so A∩ [H] =

⋃
α<ω1

(Bα∩ [H])
is open relative to [H], and [H] \A is closed relative to [H], so the result follows.

The second statement of the theorem is also clear.

We will construct a forcing P satisfying the following three properties:

1. P adds a generic product HG, such that 
P“[ḢG] has the clopification prop-
erty with respect to the ground model, and is bounded by a recursive se-
quence ~n ”,

2. P is proper and ωω-bounding (i.e., does not add an unbounded real), and

3. P does not add splitting reals.

It is well-known that being proper and ωω-bounding are properties preserved
by ℵ1-iterations with countable support (see [BJ95, Theorem 6.1.4, Theorem
6.3.6]). The property of not adding splitting reals may not be preserved, however
its conjunction with being ωω-bounding is, by [Zap08, Corollary 6.3.8., p 290].
So, assuming we are able to construct such a P we have the following main result
of this section:

Theorem 3.5.3. It is consistent that Σ1
2(~n→ ~m) holds whereas both ∆1

2(M) and
∆1

2(doughnut) fail.

This is witnessed by the ℵ1-iteration of the forcing P and follows from Lemma
3.5.2. In particular, implication (a) in the diagram cannot be reversed.

We now proceed with the definition of P. We start by defining, for each n, a
local partial order (Pn,≤n). After that P will be constructed roughly as a product
of the Pn.

Definition 3.5.4.

• For n, let εn be a given “small” positive real number, and let Xn be a
“large” integer. The precise nature of these two numbers will be determined
later. Let prenormn : P(Xn) −→ ω be a function satisfying the following
condition:

For every c ⊆ Xn, if prenormn(c) ≥ 1 then for every partition
of [c]Mn into two parts A0 and A1, there exists a d ⊆ c such that
prenormn(d) ≥ prenormn(c)−1 and [d]Mn is completely contained
in A0 or A1.
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• Pn consists of tuples (c, k), where c ⊆ Xn and k is a natural number, such
that prenormn(c) ≥ k + 1. The ordering is given by (c′, k′) ≤n (c, k) iff
c′ ⊆ c and k ≤ k′.

• Let normn : Pn −→ R be any function such that for any (c, k), whenever
normn(c, k) ≥ εn and (d, `) is such that prenormn(d)−` ≥ 1

2
(prenormn(c)−

k), then normn(d, `) ≥ normn(c, k)− εn. For convenience of later computa-
tions, let us fix one particular such function:

normn(c, k) := εn · log2(prenormn(c)− k).

Any other function with this property would suffice too, with the correspond-
ing change in computations.

Note that one can have trivial partial orders satisfying the above conditions,
for example, by choosing the Xn small and the function prenormn to be constantly
0. So we put an additional requirement: for each n, there must be at least one
condition (c, k) ∈ Pn such that normn(c, k) ≥ n. This can be accomplished by
picking the Xn sufficiently large and using the finite Ramsey theorem to define
prenormn. In general the value of Xn will depend on εn, i.e., the smaller the latter
is the larger the former must be. Using the explicit definition of normn above,
Xn must be so large that prenormn(Xn) ≥ 2(n/εn).

Definition 3.5.5. The forcing notion P contains conditions p which are functions
with domain ω, such that for some K ∈ ω:

• ∀n < K : p(n) ⊆ Xn and |p(n)| = Mn,

• ∀n ≥ K : p(n) ∈ Pn, and

• the function mapping n to normn(p(n)) converges to infinity.

K is the stem-length of p and p�K is the stem of p. For two conditions p and p′

with stem-length K and K ′, the ordering is given by p′ ≤ p iff

• stem(p) ⊆ stem(p′),

• ∀n ∈ [K,K ′) : p′(n) ⊆ c, where p(n) = (c, k), and

• ∀n ≥ K ′ : p′(n) ≤n p(n).

This forcing is very similar to the creature forcing used in [KS09] and [ZS10]
and we refer the reader to these papers for some additional discussion about its
properties. The main difference is that our forcing notion P does not just add
one generic real, but a whole generic product of finite subsets of ω, defined from
the generic filter G by

HG :=
⋃
{stem(p) | p ∈ G}.
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By construction HG(n) ⊆ Xn and |HG(n)| = Mn. Each forcing condition in G
contains an initial segment of this generic product, namely the stem, concatenated
with a sequence of Pn-conditions with norms converging to infinity. Note that
this is only possible because we have chosen Xn to be increasing sufficiently fast.

Next, let us introduce some notation.

Notation 3.5.6.

1. If (c, k) ∈ Pn, we refer to the first coordinate c by “val”, i.e., val(c, k) = c.
By a slight abuse of notation, if p is a condition with stem-length K we
define val(p(n)) = p(n) for all n < K.

2. For p ∈ P, let T (p) := {s ∈ ω<ω | ∀n : s(n) ∈ val(p(n))}.

3. Let Seq denote the set of all finite initial segments potentially in the generic
product, i.e.:

Seq := {σ : m→P(ω) | ∀n < m (σ(n) ⊆ Xn and |σ(n)| = Mn)}.

For n, let Seqn := {σ ∈ Seq | |σ| = n}.

4. For p ∈ P, let Seq(p) := {σ ∈ Seq | ∀n : σ(n) ⊆ val(p(n))} and Seqn(p) :=
{σ ∈ Seq(p) | |σ| = n}.

5. For σ ∈ Seq(p), let p ↑ σ be the P-condition defined by

(p ↑ σ)(n) :=

{
σ(n) if n < |σ|
p(n) otherwise

.

We will use the letters s, t, . . . for elements of ω<ω and σ, τ, . . . for elements
of Seq.

It is important to note that the forcing P is not separative. In particular
T (q) ⊆ T (p) does not imply q ≤ p. However, if there exists a K such that
T (q)�K ⊆ T (p)�K and ∀n ≥ K : q(n) ≤n p(n), then q is inseparable from p,
and hence forces whatever p forces. We shall need this fact several times in the
proofs.

In [KS09, ZS10], the main tools for proving results about the forcing notion
were so-called εn-bigness and εn-halving. In our setting, the former is significantly
stronger although the latter is essentially the same.

• “εn-bigness” is essentially a re-statement of the definition of prenorm. If
(c, k) ∈ Pn is any condition with normn(c, k) ≥ εn, then prenormn(c)− k ≥
2. In particular, if [c]Mn is partitioned into two pieces A0 and A1, then, by
the definition of prenorm, there is a d ⊆ c such that [d]Mn is completely
contained in A0 or A1 and prenormn(d) ≥ prenormn(c) − 1. In particular,
prenormn(d) − k ≥ prenormn(c) − k − 1 ≥ 1

2
(prenormn(c) − k), therefore

(d, k) ≤n (c, k) is a valid Pn-condition with normn(d, k) ≥ normn(c, k)− εn.



3.5. A fat creature forcing 77

• By “εn-halving” we mean the following phenomenon: if (c, k) ∈ Pn is any
condition with normn(c, k) ≥ εn, then let k′ := b1

2
(prenormn(c) + k)c. The

condition (c, k′) ≤n (c, k) is called the half of (c, k), denoted by half(c, k).
It satisfies the following conditions:

– normn(c, k′) ≥ normn(c, k)− εn, and

– every (d, `) ≤n (c, k′) can be “un-halved” to (d, k) ≤n (c, k) with
normn(d, k) ≥ normn(c, k)− εn.

The last inequality holds because prenormn(d)− k ≥ 1
2
(prenormn(c)− k).

−c // −c
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− `
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(c, k)

“half”

2:
(c, k′) ≥n (d, `)

“unhalf”

3;
(d, k)

Theorem 3.5.7.

1. Let P be the forcing described above, and assume that for all n, εn ≤
1/
(∏

i<nXi

)
. Then 
P“[ḢG] has the clopification property w.r.t. the

ground model and is bounded”.

2. Assume that, additionally, for all n, εn ≤ 1/
(∏

i<n

(
Xi
Mi

))
. Then P is proper

and ωω-bounding.

3. Assume that, additionally, for all n, εn ≤ 1/(
∏

i<n prenormi(Xi)·2Xi). Then
P does not add splitting reals.

Recall that the numbers Xn depend on the value of εn. In this theorem,
we require that εn depends on the previous values of Xi. The combination of
these two requirements gives an inductive computation of the numbers Xn which
eventually form the upper bound ~n in the partition property (~n→ ~m).

Part 1 of this theorem is loosely based on [DPT03] and parts 2 and 3 are
modifications of [ZS10, Proposition 2.6]. The rest of this section is devoted to the
proof of these three claims.

Before starting on the proofs, let us stipulate how fusion works in the case of
P: for two conditions p and q and k ∈ ω, say that q ≤(k) p iff q ≤ p and there
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is a K such that p�K = q�K and for all n ≥ K : normn(q(n)) ≥ k. It is easy
to verify that if p0 ≥(0) p1 ≥(1) p2 ≥(2) . . . is a fusion sequence, then the natural
(pointwise) limit q of this sequence is a P-condition below every pi.

Proof of 1. For every Borel set B, define DB := {p ∈ P | B ∩ [T (p)] is clopen in
[T (p)]}. Since every p ∈ P forces “[ḢG] ⊆ [T (p)]” it is sufficient to show that
every DB is dense. Define

CL := {A ⊆
∏
i

Xi | ∀p ∈ P ∀k ∃q ≤(k) p (A ∩ [T (q)] is clopen in [T (q)])}.

We claim that:

1. if A is closed then A ∈ CL,

2. if A ∈ CL then (
∏

iXi \ A) ∈ CL, and

3. if An ∈ CL for every n, then
⋂
nAn ∈ CL.

In particular, all Borel sets are in CL and hence every DB is dense.

Point 2 of the claim follows trivially from the definition of CL. Also, once we have
proven point 1, point 3 will follow more or less immediately: by a standard fusion
construction

⋂
nAn can be rendered relatively closed, and by an application of

point 1, it can then be rendered relatively clopen. We leave the details of this
construction to the reader and instead focus our efforts on the proof of point 1.

First we need to fix some terminology: let T be any tree, and X ⊆ T . For t ∈ T
we say that “the membership of t in X depends only on t�m” if

t ∈ X ⇐⇒ ∀s ∈ T (t�m ⊆ s → s ∈ X) and

t /∈ X ⇐⇒ ∀s ∈ T (t�m ⊆ s → s /∈ X).

Let P�m := {p�m | p ∈ P}. If h ∈ P�m is such that h = p�m, we define
T (h) := T (p)�m, i.e., the tree of finite sequences through h.

Now suppose C is a closed subset of
∏

iXi and let TC be the tree of C. Let p ∈ P
be a condition and k ∈ ω. Find K such that ∀n ≥ K : normn(p(n)) ≥ k + 1. We
claim the following:

Subclaim. For all m > K, there is h ∈ P�m such that h�K = p�K, ∀n ∈
[K,m) : normn(h(n)) ≥ normn(p(n))−1, and for every t ∈ T (h), the membership
of t in TC depends only on t�K.

Proof. The proof works by backwards-induction, from m down to K. First, we
set n := m− 1. Let {s0, . . . , s`−1} enumerate T (p)�n. Suppose p(n) = (c, k). We
partition c into two parts: A0 := {i ∈ c | s0

_〈i〉 ∈ TC} and A1 := c \ A0. Note
that this can be viewed as a partition of [c]1. Our version of “εn-bigness” is meant
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to take care of partitions of [c]Mn , so it certainly takes care of partitions of [c]1.
Therefore, there exists a (c0, k) ≤n (c, k) such that normn(c0, k) ≥ normn(c, k)−εn
and c0 ⊆ A0 or c0 ⊆ A1. Now, partition c0 again into two parts: A′0 := {i ∈
c0 | s1

_〈i〉 ∈ TC} and A′1 := c0 \ A′0. Again, εn-bigness allows us to shrink to a
condition (c1, k) ≤n (c0, k) such that normn(c1, k) ≥ normn(c0, k)−εn and c1 ⊆ A′0
or c1 ⊆ A′1. We can continue this procedure until we have dealt with all of the si.
So in the end we have a condition (c`−1, k) ≤n (c, k) such that normn(c`−1, k) ≥
normn(c, k)− εn · ` and, if we define h := p�n_ 〈(c`−1, k)〉, then for all t ∈ T (h),
the membership of t in TC depends only on t�n. Notice that ` ≤

∏
i<nXi, so by

the assumption on the size of εn it follows that normn(c`−1, k) ≥ normn(c, k)− 1.

Now we go one step back, set n := m − 2, let {s0, . . . , s`−1} enumerate T (p)�n,
and repeat exactly the same procedure. Again, we apply εn-bigness ` times (for
the new value of `) and in the end get a new condition, say h(n), such that
normn(h(n)) ≥ normn(p(n))− 1 and for all t ∈ T (h), the membership of t in TC
depends only on t�n.

Finally we reach K, and see that we have constructed a partial condition h ∈ P�m,
such that h�K = p�K, ∀n ∈ [K,m) : normn(h(n)) ≥ norm(p(n)) − 1 and for all
t ∈ T (h), the membership of t in TC depends only on t�K. � (Subclaim)

Let T be the collection of all h that satisfy the statement of the subclaim for some
m > K, i.e., T := {h | h ∈ P�m for some m > K, h�K = p�K, ∀n ∈ [K,m) :
normn(h(n)) ≥ normn(p(n)) − 1, and for all t ∈ T (h), the membership of t in
TC depends only on t�K}. Notice that if h ∈ T and j is an initial segment of h
with |j| > K, then j ∈ T. Therefore T is a tree with respect to the ordering of
initial segments. It is clearly a finitely branching tree, but it is also an infinite
tree by the subclaim. Therefore, by König’s Lemma, T has an infinite branch,
which we call q. It is now straightforward to verify that q�K = p�K, that
∀n > K : normn(q(n)) ≥ normn(p(n)) − 1 ≥ k, and that for every x ∈ [T (q)],
the membership of x in C depends only on x�K. But this is exactly to say that
q ≤(k) p and C∩[T (q)] is clopen in [T (q)], thus completing the proof. � (part 1)

Now we look at part 2 of Theorem 3.5.7.

Proof of 2. Let α̇ be a name for an ordinal. If p ∈ P is a condition, we say that
p essentially decides α̇ if there is m such that ∀σ ∈ Seqm(p) : p ↑ σ decides α̇.
It is clear that if p essentially decides α̇ then p forces α̇ into a finite set in the
ground model. Therefore, what we must prove is that for each p ∈ P and k there
is a q ≤(k) p which essentially decides α̇—by standard techniques this will allow
us to build a fusion sequence showing that P is proper and ωω-bounding.

For a p ∈ P and σ ∈ Seq(p), we call σ deciding (in p) if p ↑ σ essentially decides
α̇, and bad (in p) if there is no p′ ≤ p ↑ σ with stem(p′) = σ which essentially
decides α̇.
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Lemma 3.5.8. Let p ∈ P and K ∈ ω be such ∀n > K : normn(p(n)) ≥ N
for some N ≥ 1. Then there is a q ≤ p such that q�K = p�K, ∀n ≥ K :
normn(q(n)) ≥ N − 1, and every σ ∈ SeqK(q) is either deciding or bad (in q).

Proof. Let {σ0, . . . , σ`−1} enumerate SeqK(p). Let p−1 := p and, by induction,
do the following construction: for each i, suppose pi−1 has been defined and for
all n ≥ K : normn(pi−1(n)) ≥ N − εn · i. Then there are two cases:

• Case 1: there is a p′ ≤ pi−1 ↑ σi such that ∀n ≥ K : normn(p′(n)) ≥
N − εn · (i+ 1) and p′ essentially decides α̇. Let pi := p�K_(p′�[K,∞)).

• Case 2: it is not possible to find such a p′. Then, define pi by pi�K := p�K
and ∀n ≥ K : pi(n) := half(pi−1(n)).

Finally let q := p�K_(p`−1�[K,∞)). Clearly q ≤ p and for n ≥ K we have
normn(q(n)) ≥ N − εn · `. Since ` ≤

∏
i<K

(
Xi
Mi

)
, the assumption on the size of εn

implies that normn(q(n)) ≥ N − 1.

Every σi for which Case 1 occurred is clearly deciding (in q). If Case 2 occurred,
we will show that σi is bad. Suppose not, i.e., suppose there is a q′ ≤ q ↑ σi such
that stem(q′) = σi and q′ essentially decides α̇. Let L > K be such that ∀n > L :
normn(q′(n)) ≥ N − εn · (i + 1). For every n ∈ [K,L), by assumption pi(n) =
half(pi−1(n)). Since q′(n) ≤ q(n) ≤ pi(n), by the property called “εn-halving”
there exists a condition r(n) ≤ pi−1(n) such that normn(r(n)) ≥ normn(pi−1(n))−
εn and val(r(n)) = val(q′(n)). Define r′ := σi

_(r�[K,L))_(q′�[L,∞)). Then for
all n ≥ K we have normn(r′(n)) ≥ N − εn · (i + 1). Moreover, ∀n ≤ L we know
that val(r′(n)) = val(q′(n)) and ∀n > L : r′(n) = q′(n). As we mentioned before,
this implies that r′ is inseparable from q′, and since q′ essentially decides α̇, so
does r′. But now the condition r′ satisfies all the requirements for Case 1 to occur
at step i of the induction, which is a contradiction. � (Lemma 3.5.8)

For the next lemma, we fix the following terminology: let T ⊆ Seq be a set closed
under initial segments and X ⊆ T . For σ ∈ T we say that “the membership of σ
in X depends only on σ�m” if

σ ∈ X ⇐⇒ ∀τ ∈ T (σ�m ⊆ τ → τ ∈ X) and

σ /∈ X ⇐⇒ ∀τ ∈ T (σ�m ⊆ τ → τ /∈ X).

Lemma 3.5.9. Let p ∈ P and K < K ′ be such that ∀n ∈ [K,K ′) : normn(p(n)) ≥
1. Let X ⊆ SeqK′(p). Then there exists a q ≤ p such that q�K = p�K,
q�[K ′,∞) = p�[K ′,∞), for all n ∈ [K,K ′) : normn(q(n)) ≥ normn(p(n)) − 1,
and for all σ ∈ SeqK′(q), the membership of σ in X depends only on σ�K.
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Proof. This proof works by backwards-induction, analogously to the proof of the
subclaim in the proof of Theorem 3.5.7 (1) above. First we set n := K ′ − 1.
Let {σ0, . . . , σ`−1} enumerate Seqn(p). Suppose p(n) = (c, k). We partition
[c]Mn into two parts: A0 := {b ⊆ c | |b| = Mn and σ0

_ 〈b〉 ∈ X}, and A1 :=
[c]Mn \ A0. By εn-bigness, there exists a condition (c0, k) ≤n (c, k) such that
normn(c0, k) ≥ normn(c, k)− εn and [c0]Mn ⊆ A0 or [c0]Mn ⊆ A1. Now, partition
[c0]Mn again into two parts: A′0 := {b ⊆ c0 | |b| = Mn and σ1

_ 〈b〉 ∈ X}, and
A′1 := [c0]Mn \A′0. Again, εn-bigness allows us to shrink to a condition (c1, k) ≤n
(c0, k) such that normn(c1, k) ≥ normn(c0, k)−εn and [c1]Mn ⊆ A′0 or [c1]Mn ⊆ A′1,
etc. Finally we get a condition (c`−1, k) ≤n (c, k) such that normn(c`−1, k) ≥
normn(c, k)−εn·`. If we define pK′−1 := p�(K ′−1)_ 〈(c`−1, k)〉_(p�[K ′,∞)), then
for all τ ∈ SeqK′(pK′−1), the membership of τ in X depends only on τ�(K ′ − 1).
Moreover, ` ≤

∏
i<K

(
Xi
Mi

)
, so by the assumption on the size of εn it follows that

normn(c`−1, k) ≥ normn(c, k)− 1.

Now we repeat the same procedure for n := K ′−2 and find a new condition pK′−2,
such that pK′−2�(K ′ − 2) = p�(K ′ − 2), pK′−2�[K ′,∞) = p�[K ′,∞), ∀n ∈ {K ′ −
2, K ′ − 1} : normn(pK′−2(n)) ≥ normn(p(n)) − 1, and for all τ ∈ SeqK′(pK′−2),
the membership of τ in X depends only on τ�(K ′ − 2).

Finally we reach K, and see that we have constructed a condition q := pK
such that q�K = p�K, q�[K ′,∞) = p�[K ′,∞), ∀n ∈ [K,K ′) : normn(q(n)) ≥
norm(p(n))−1, and for all τ ∈ SeqK′(q), the membership of τ in X depends only
on τ�K. � (Lemma 3.5.9)

We are ready to prove the main result. Let p ∈ P and k be given. We must find a
q ≤(k) p which essentially decides α̇. Find K such that ∀n ≥ K : normn(p(n)) ≥
k + 2. Apply Lemma 3.5.8 with p and K to get a condition q ≤ p such that
q�K = p�K, ∀n ≥ K : normn(q(n)) ≥ k + 1 and every σ ∈ SeqK(q) is either
deciding or bad. If every σ is deciding then q essentially decides α̇, and q ≤(k) p
holds, so the proof is complete. We will show that this is the only possibility, i.e.,
that no σ ∈ SeqK(q) can be bad.

Towards contradiction, fix some σ ∈ SeqK(q) which is bad. By induction, we will
construct an increasing sequence of integers K0 < K1 < K2 < . . . and conditions
q0 ≥ q1 ≥ . . . . We start by setting K0 := K and q0 := q ↑ σ. The induction
hypothesis for stage i says that

1. ∀n ≥ Ki : normn(qi(n)) ≥ k + i+ 1, and

2. all τ ∈ SeqKi(qi) are bad.

We will also guarantee that ∀i,∀j ≥ i+ 1,∀n ≥ Ki : normn(qj(n)) ≥ k + i.

Clearly, q0 satisfies the conditions since the only τ ∈ SeqK(q) is σ. Suppose Kj

and qj have been defined for j < i. We describe the i-th induction step. Let Ki
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be such that ∀n ≥ Ki : normn(qi−1(n)) ≥ k + i + 2. Apply Lemma 3.5.8 with
parameters qi−1 and Ki to find a condition q′i ≤ qi−1 such that q′i�Ki = qi−1�Ki,
∀n ≥ Ki : normn(q′i(n)) ≥ k + i + 1 and every τ ∈ SeqKi(q

′
i) is either deciding

or bad. Now apply Lemma 3.5.9 on the condition q′i and the interval [Ki−1, Ki)
to find a condition qi ≤ q′i such that qi�Ki−1 = q′i�Ki−1, qi�[Ki,∞) = q′i�[Ki,∞),
for all n ∈ [Ki−1, Ki) : normn(q(i)) ≥ normn(q′i(n))− 1 ≥ k + (i− 1), and for all
τ ∈ SeqKi(qi), whether τ is deciding or bad depends only on τ�Ki−1.

If there is any τ ′ ∈ SeqKi−1
(qi) such that all τ ∈ SeqKi(qi) extending τ ′ are

deciding, then τ ′ itself would be deciding (in qi), and hence τ ′ could not be bad
in qi−1, contradicting the induction hypothesis. Thus, in fact all τ ∈ SeqKi(qi)
must be bad, which completes the i-th induction step.

In the end, let qω be the limit of this sequence. It is clear that ∀i ∀n ∈ [Ki, Ki+1) :
normn(qω(n)) ≥ k + i and hence qω is a valid P-condition. By construction, all
τ ∈ Seq(qω) are bad. But there must be some r ≤ qω deciding α̇, and then
stem(r) cannot be bad. This contradiction completes the proof. � (part 2)

Finally, we turn to the splitting reals. Here, the proof is almost exactly the
same as [ZS10, Thm X].

Proof of 3. Let ẋ be a name for an element of 2ω and p a condition. To show
that P does not add splitting reals, it suffices to find a condition q ≤ p such that
for infinitely many n, q decides ẋ(n). By the previous argument, we can assume,
without loss of generality, that p essentially decides ẋ(i) for every i.

Here we need to introduce new notation. For two partial conditions h, j ∈ P�K,
h ≤ j is defined as for conditions in P. For every p ∈ P, let SubK(p) := {h ∈
(P�K) | h ≤ p}. Consider any h ∈ SubK(p), where K > |stem(p)|. Call such an
h i-deciding (in p) if h_(p�[K,∞)) decides ẋ(j) for some j > i, and i-bad (in p)
if there is no p′ ≤ p such that p′�K = h which decides ẋ(j) for any j > i.

Lemma 3.5.10. Let p ∈ P and K ∈ ω be such ∀n > K : normn(p(n)) ≥ N for
some N ≥ 1. Then for all i, there is a q ≤ p such that q�K = p�K, ∀n ≥ K :
normn(q(n)) ≥ N − 1, and every h ∈ SubK(q) is either i-deciding or i-bad (in q).

Proof. This is proved exactly as Lemma 3.5.8. The only difference is that we
iterate over SubK(p) instead of SeqK(p). Note that for each p and each n, if
p(n) = (c, k) then there are at most 2Xn possibilities for values of c and at most
prenormn(Xn) possibilities for values of k. Therefore, for each p and each K,
there are at most

∏
i<K prenormi(Xi) · 2Xi members of SubK(p). The definition

of εn compensates for this precisely. � (Lemma 3.5.10)

Now we construct a sequence p0 ≥ p1 ≥ . . . of conditions and a sequence K0 <
K1 < . . . of integers by the following induction. Let p−1 := p. For each i,
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if pi−1 has been defined, pick Ki such that ∀n ≥ Ki : normn(pi(n)) ≥ i + 2.
Apply Lemma 3.5.10 with pi−1, Ki and i-decision/badness, and let pi be the new
condition. It is clear that in this way we get a fusion sequence whose limit q ≤ p
has the following property: ∀i ∀h ∈ SubKi(q) : h is i-deciding or i-bad. Also note
that ∀n ≥ K0 : normn(q(n)) ≥ 1.

Claim. For each i, there is a condition qi ≤ q such that ∀n ≥ K0 such that
normn(qi(n)) ≥ normn(q(n))− 1 and qi decides ẋ(i).

Proof. Recall that q essentially decides ẋ(i), so let m be such that ∀σ ∈ Seqm(q) :
q ↑ σ decides ẋ(i). Label each such σ “positive” or “negative” depending on
whether q ↑ σ 
 ẋ(i) = 1 or q ↑ σ 
 ẋ(i) = 0. Apply Lemma 3.5.9 on the
condition q and the interval [K0,m) to form a new condition q′i such that ∀n ∈
[K0,m) : normn(q′i(n)) ≥ normn(q(n)) − 1 and for all σ ∈ Seqm(q′i), whether σ
is positive or negative depends only on σ�K0 (if m ≤ K0, skip this step). Now
shrink q′i further down to qi on the digits n < K0, by whatever means necessary,
to make sure that qi 
 ẋ(i) = 0 or qi 
 ẋ(i) = 1. � (claim)

Each forcing condition p ∈ P can be viewed as an element in the compact topo-
logical space X :=

∏
n (P(Xn)× prenormn(Xn)). In such a space every infinite

sequence has an infinite convergent subsequence, in particular this applies to the
sequence 〈qi | i ∈ ω〉. Let a ⊆ ω be an infinite set such that 〈qi | i ∈ a〉 con-
verges to some r ∈ X . Since for all n ≥ K0, normn(qi(n)) is bounded from
below by normn(q(n))− 1, the same is true for r(n) which shows that r is a valid
P-condition.

But now we see that r decides infinitely many values of ẋ: for any given i, pick
j ∈ a with j > i so that qj�Ki = r�Ki. Let h := r�Ki. Since qj ≤ q, qj�Ki = h,
and qj decides ẋ(j), h certainly cannot be i-bad in q. So then it must be i-
deciding in q, i.e., h_(q�[Ki,∞)) must decide ẋ(k) for some k > i. But then
r ≤ h_(q�[Ki,∞)) must do so, too. � (part 3)

We have proved Theorem 3.5.7, and with that, also the main Theorem 3.5.3.

3.6 Conclusion and open questions.

We have not been able to understand the nature of the arrows (c), (c′), (d) and
(d′) in Figure 3.1. Recall that for some regularity properties (e.g. M-, L- and S-
measurability), the ∆1

2 hypothesis is equivalent to the Σ1
2 hypothesis. For others,

this is not the case (e.g. Lebesgue measure, Baire property, doughnut property).
We currently have no intuition as to what the situation is in the case of the
polarized partition properties.

Concerning eventually different reals, we believe that the arrows (d) and (d′)
are irreversible, i.e., that ∆1

2(~ω → ~m) is stronger than the existence of eventually
different reals. Indeed, we conjecture the following:
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Conjecture 3.6.1. In the random model, i.e., the ℵ1-iteration of random forcing,
∆1

2(~ω → ~m) fails.

An alternative way to go about this problem would be to search for a forcing
notion that adds eventually different reals without adding IE0-quasi-generics (and
the latter is preserved in ℵ1-iterations). Random forcing is not one of them, since
it does add IE0-quasi-generics (see [BHL05, Corollary 2.3]), but perhaps a more
sophisticated partial order can be found to do the job.

Finally, we would like to mention that our result have some relevance for the
relationship between the E0-measurability, the doughnut property and the split-
ting property. In [BHL05, Question 6], the authors asked whether the existence
of IE0-quasi-generics over L[r] implied the existence of Silver-quasi-generics over
L[r]. In the current setting, this is asking whether ∆1

2(E0) and ∆1
2(doughnut)

are equivalent. By Theorem 3.5.3, they are not.
In [BHL05, Question 5], they also asked whether the existence of splitting reals

over L[r] implied the existence of Silver-quasi-generics over L[r]. In the current
setting, this is asking whether ∆1

2(SPL) and ∆1
2(doughtnut) are equivalent. Our

results do not answer this question, but it seems likely that the answer is negative.
A method for a proof would be showing that an iteration of the SPL-forcing does
not add Silver-quasi-generic reals.



Chapter 4

Hausdorff gaps

Now we are going to depart somewhat from the theme of regularity properties,
instead focusing on the definability of special objects. We mentioned some of
these in Section 1.3: a Bernstein set, an ultrafilter, a maximal almost disjoint
(mad) family, etc. In this chapter, we look at Hausdorff gaps, another kind of
combinatorial object known since the beginning of the 20th century. Hausdorff’s
construction [Hau36] of an (ω1, ω1) gap in P(ω)/fin was widely celebrated as
an early success of the techniques and methods of set theory in mathematics.
Many aspects of Hausdorff gaps, and other kinds of gaps, have been studied
since then, such as extensions to higher cardinals, more general algebras, and
the way forcing can destroy or create gaps. Surprisingly enough, the definability
question for Hausdorff gaps has only been considered recently, in the work of Stevo
Todorčević [Tod96] who showed, among other things, that there are no analytic
Hausdorff gaps in P(ω)/fin. We shall continue this line of research, investigating
what happens on higher projective levels, as well as the Solovay model, and under
suitable axioms of determinacy.

4.1 Introduction

The underlying space in this chapter will be [ω]ω, the collection of infinite subsets
of ω. The notations =∗ and ⊆∗ will be used throughout to represent the equality
or subset relation between two elements of [ω]ω modulo finite. The following
terminology has been established in the parlance of Hausdorff gaps: two sets
a, b ∈ [ω]ω are orthogonal (notation a⊥ b) if a∩ b is finite. If B is a set, then a is
orthogonal to B (notation a⊥ B) if a⊥ b for every b ∈ B. Finally, A,B ⊆ [ω]ω

are orthogonal (notation A⊥ B) if a⊥ b holds for every a ∈ A and every b ∈ B.
A pair (A,B) of orthogonal subsets of [ω]ω is called a pre-gap. There is

one very simple way of constructing a pre-gap: take any infinite, co-infinite set
c ∈ [ω]ω and pick any A and B so that ∀a ∈ A : a ⊆∗ c and ∀b ∈ B : c ∩ b =∗ ∅.
Such a set c is said to separate, or interpolate, the pre-gap (A,B). Of course,

85
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the interesting object is a pre-gap (A,B) which is not constructed in this trivial
fashion.

Definition 4.1.1. A pre-gap (A,B) is called a gap if there is no c which separates
A from B.

An early result of Hadamard [Had94] already established that there cannot be
a gap (A,B) if both A and B are countable, although this is most widely known
from [Hau36]. On the other hand, a gap (A,B) where |A| = |B| = 2ℵ0 can be
explicitly constructed. For example, in [Tod96, p 56–57] Todorčević gives a very
simple construction of a gap (A,B) where A and B are perfect sets: for x ∈ 2ω,
define ax := {x�n | x(n) = 0} and bx := {x�n | x(n) = 1}. Identifying 2<ω with
ω, it is not hard to see that ({ax | x ∈ 2ω} , {bx | x ∈ 2ω}) is a gap.

Hausdorff’s classical construction [Hau36] was very different. His gap (A,B)
was such that |A| = |B| = ℵ1, regardless of the size of the continuum; moreover,
A and B were σ-directed.

Definition 4.1.2.

1. A set A ⊆ [ω]ω is σ-directed if for every countable collection {an ∈ A | n ∈
ω}, there exists a ∈ A such that an ⊆∗ a for all n.

2. A pair (A,B) is called a Hausdorff gap if it is a gap and both A and B are
σ-directed.

In the literature, the definition of a Hausdorff gap usually requires that A and
B are well-ordered by ⊆∗, as the original construction from [Hau36] in fact was,
but for our purposes σ-directedness is sufficient.

That the perfect gap created by Todorčević in [Tod96, p 56–57] cannot be a
Hausdorff gap follows from the following result of the same paper:

Theorem 4.1.3 (Todorčević). Let (A,B) be a pre-gap such that both A and B
are σ-directed and A is analytic. Then (A,B) is not a gap.

Proof. See [Tod96, Corollary 1].

This is, to our knowledge, the only result that deals with Hausdorff gaps from
the definable point of view. We are interested in extending Todorčević’s result
in several directions and looking at Hausdorff gaps on definability levels beyond
the analytic. We shall use the following notation: if Γ is a projective pointclass,
we say that (A,B) is a (Γ,Γ)-Hausdorff gap if both A and B are in Γ, and a
(Γ, ·)-Hausdorff gap if A ∈ Γ and B is arbitrary. The theorem above says that
there are no (Σ1

1, ·)-Hausdorff gaps. Our main result from Sections 4.2 and 4.3
(Corollary 4.3.10) will show that the following are equivalent:
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1. there is no (Σ1
2, ·)-Hausdorff gap,

2. there is no (Σ1
2,Σ

1
2)-Hausdorff gap,

3. there is no (Π1
1, ·)-Hausdorff gap,

4. there is no (Π1
1,Π

1
1)-Hausdorff gap,

5. ∀r (ℵL[r]
1 < ℵ1).

The implications (1)⇒ (2)⇒ (4) and (1)⇒ (3)⇒ (4) are trivial; (5)⇒ (1)
will be proved in the next section, using a variation of the argument from [Tod96];
and (4) ⇒ (5) will be proved in Section 4.3 using the method of Miller [Mil89]
for the inductive construction of Π1

1 sets in L.
In Section 4.4 we show that in the Solovay model, there are no Hausdorff gaps

whatsoever, and in Section 4.5 we show that the same is true under ADR (the
axiom of real determinacy). In Section 4.6 we briefly look at non-Hausdorff gaps
and generalize a dichotomy proved in [Tod96, Theorem 2].

4.2 Hausdorff gaps on the second level

Because of the equivalence mentioned above, the statement “there is no (Σ1
2, ·)-

Hausdorff gap” has large cardinal strength, so it cannot be obtained by iterated
forcing over L. For the same reason, we cannot hope to have a forcing-style proof
of the implication “∀r (ℵL[r]

1 < ℵ1) =⇒ @(Σ1
2, ·)-Hausdorff gap”, as we did, say,

in Corollary 2.2.7. Indeed, Todorčević’s proof that there are no (Σ1
1, ·)-Hausdorff

gaps was forcing-free, relying instead on a classical construction similar to the
Cantor-Bendixson method. We will extend this method to prove the result about
(Σ1

2, ·)-Hausdorff gaps. The way our proof is derived from Todorčević’s original
proof is similar to the way the Mansfield-Solovay theorem (Theorem 1.3.14) is
derived from the theorem that all analytic sets satisfy the perfect set property
(compare, e.g., [Jec03, Theorem 25.23] and [Jec03, Theorem 11.17 (iii)]).

Here and in the future, it will be useful to look at the space ω↑ω of strictly
increasing functions from ω to ω and, as usual, to identify elements of [ω]ω with
their increasing enumerations. For the proof we need several definitions.

Definition 4.2.1. Let (A,B) be a pre-gap (not necessarily σ-directed).

1. Let C be a set. We say that A and B are C-separated if C ⊥ B and for
every a ∈ A there is c ∈ C such that a ⊆∗ c.

2. We say that A and B are σ-separated if they are C-separated by some
countable C.
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3. Let S be a tree on ω↑ω. We call S an (A,B)-tree if

(a) ∀σ ∈ S : {i ∈ ω | σ_ 〈i〉 ∈ S} has infinite intersection with some b ∈
B, and

(b) ∀x ∈ [S], ran(x) ⊆∗ a for some a ∈ A.

If (A,B) is not a gap, then it is σ-separated, but the converse need not be
true in general. It is, however, true whenever A is σ-directed. On the other hand,
the existence of an (A,B)-tree contradicts B being σ-directed.

Lemma 4.2.2. Let (A,B) be a pre-gap. If B is σ-directed, then there is no
(A,B)-tree.

Proof. Suppose, towards contradiction, that S is an (A,B)-tree. For each σ ∈ S,
fix some bσ ∈ B such that {i | σ_ 〈i〉 ∈ S} ∩ bσ is infinite. By σ-directedness,
there is a b ∈ B which almost contains every bσ. In particular, for each σ, the
set {i | σ_ 〈i〉 ∈ S} ∩ b is infinite. Therefore we can inductively pick i0, i1, i2 ∈ b
in such a way that 〈i0, i1, i2, . . . 〉 is a branch through S. Then by definition of
an (A,B)-tree {i0, i1, i2 . . . } ⊆∗ a for some a ∈ A. But that implies that a ∩ b is
infinite, contradicting the orthogonality of A and B.

Todorčević’s proof in fact shows the following dichotomy: if (A,B) is a pre-
gap and A is analytic, then either A and B are σ-separated or there exists an
(A,B)-tree. We prove a similar dichotomy for Σ1

2 sets, with separation by a
subset of L[r] replacing σ-separation.

Theorem 4.2.3. Let (A,B) be a pre-gap such that A is Σ1
2(r). Then:

1. either there is a C ⊆ L[r] which separates A from B, or

2. there exists an (A,B)-tree.

Proof. Let A∗ ⊆ ω↑ω be such that x ∈ A∗ iff ran(x) ∈ A. Let T be a tree on
ω × ω1, increasing in the first coordinate, such that A∗ = p[T ] and T ∈ L[r].
Define an operation on such trees T as follows

• for (s, h) ∈ T , let

c(s,h) := {i > max(ran(s)) | ∃(s′, h′) ∈ T extending (s, h) s.t. i ∈ ran(s′)}

• let T ′ := {(s, h) ∈ T | c(s,h) has infinite intersection with some b ∈ B}.

Now let T0 := T , Tα+1 := T ′α and Tλ =
⋂
α<λ Tα for limit λ. Note that this

definition is absolute for L[r] so all the trees Tα are in L[r].

Let α be least such that Tα = Tα+1. We distinguish two cases:
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• Case 1: Tα = ∅. Let x ∈ A∗ be given. Let f ∈ ωω1 be such that (x, f) ∈
[T0]. Let γ < α be such that (x, f) ∈ [Tγ] \ [Tγ+1], and let (s, h) ⊆ (x, f) be
such that (s, h) ∈ Tγ \ Tγ+1. Now let cx := c(s,h) and note that this set is in
L[r] since it is constructible from Tγ and (s, h) both of which are in L[r].
By assumption cx ⊥ B, and it is also clear that ran(x) ⊆∗ cx. It follows
that the collection C := {cx | x ∈ A∗}, with each cx defined as above, forms
a subset of L[r] which separates A from B.

• Case 2: Tα 6= ∅. In this case we will use the tree Tα to construct an (A,B)-
tree S. By induction, we will construct S and to each σ ∈ S associate
(sσ, hσ) ∈ Tα, satisfying the following conditions:

– σ ⊆ τ =⇒ (sσ, hσ) ⊆ (sτ , hτ ), and

– ran(σ) ⊆ ran(sσ).

First ∅ ∈ S, and we associate to it (s∅, h∅) := (∅,∅). Next, suppose σ ∈ S
has already been defined and (sσ, hσ) ∈ Tα associated to it. By assumption,
(sσ, hσ) ∈ T ′α, so c(sσ ,hσ) has infinite intersection with some b ∈ B. For
each i ∈ c(sσ ,hσ) we add σ_ 〈i〉 to S. Moreover, by assumption, for each
i ∈ c(sσ ,hσ) there exists (s′, h′) ∈ Tα extending (s, h) such that i ∈ ran(s′).
Now associate precisely these (s′, h′) to σ_ 〈i〉, i.e., let sσ_〈i〉 := s′ and
hσ_〈i〉 := h′. By induction, it follows that the condition ran(σ_ 〈i〉) ⊆
ran(sσ_〈i〉) is satisfied.

Now we have a tree S on ω↑ω. By definition, for every σ ∈ S the set of its
successors c(sσ ,hσ) has infinite intersection with some b ∈ B. Now let x ∈ [S].
By construction,

⋃
{(sσ, hσ) | σ ⊆ x} forms an infinite branch through Tα,

whose projection a :=
⋃
{sσ | σ ⊆ x} is a member of p[Tα] ⊆ p[T0] = A∗.

Since by assumption ran(σ) ⊆ ran(sσ) holds for all σ ⊆ x, it follows that
ran(x) ⊆ ran(a). This proves that S is an (A,B)-tree.

Corollary 4.2.4. If ∀r (ℵL[r]
1 < ℵ1) then there is no (Σ1

2, ·)-Hausdorff gap.

Proof. Let (A,B) be a pre-gap such that A and B are σ-directed and A is Σ1
2(r).

By Lemma 4.2.2, the second alternative of Theorem 4.2.3 is impossible, hence
there is a C ⊆ L[r] which separates A from B. Since the reals of L[r] are
countable, C is countable, so A and B are σ-separated. Since A is also σ-directed,
(A,B) cannot be a gap.

4.3 Inaccessibility by reals

It was already mentioned in [Tod96] that if V = L then there exists a (Π1
1,Π

1
1)-

Hausdorff gap, though a proof of this fact was not provided. In this section we
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give a proof of this result and, moreover, prove the stronger statement that the
non-existence of a (Π1

1,Π
1
1)-Hausdorff gap implies that ℵ1 is inaccessible in L.

This complements the result of the previous section, i.e., Corollary 4.2.4.
Since the argument will involve a modification of Hausdorff’s original con-

struction, let us briefly review it.
The (ω1, ω1)-gap Hausdorff constructed in [Hau36] had the form (A,B) where

A = {aα | α < ℵ1}, B = {bα | α < ℵ1}, both A and B are well-ordered by ⊆∗,
and, additionally, the following condition is satisfied:

∀α < ℵ1 ∀k ∈ ω ({γ < α | aα ∩ bγ ⊆ k} is finite). (HC)

We refer to this as Hausdorff’s condition (HC).

Lemma 4.3.1 (Hausdorff). Any pre-gap (A,B) satisfying HC is a gap.

Proof. Towards contradiction, suppose c separates A from B. For each α < ℵ1,
let nα be such that aα \ c ⊆ nα and bα ∩ c ⊆ nα. The values nα must be constant
on some uncountable set X ⊆ ω1, i.e., there is n such that nα = n for all α ∈ X.
Pick any α ∈ X such that there are infinitely many γ below α in X. For all of
these γ, we have aα ∩ bγ ⊆ (aα \ c) ∪ (bγ ∩ c) ⊆ n, contradicting HC.

The point of Hausdorff’s condition is that it provides an absolute way to prove
that (A,B) cannot be separated. In general, the notion of a gap is not absolute,
i.e., a gap existing in some model could become a non-gap if a real c separating
A from B is generically added to the model. However, if the original gap satisfies
Hausdorff’s condition, then this cannot happen as long as ℵ1 is preserved.

Lemma 4.3.2. Let (A,B) be a pre-gap in V , satisfying HC. Let W be a larger
model with ℵW1 = ℵV1 . Then in W , (A,B) is still a gap.

Proof. Apply the same argument as before.

In particular, if (A,B) is a pre-gap in L[r] and ℵL[r]
1 = ℵ1, then (A,B) is still

a gap in V . Therefore our goal is to construct a pre-gap (A,B) in L[r] satisfying
HC, with both A and B being Π1

1, and in such a way that the same Π1
1 definition

can work in V , too.
For starters, let us see how to construct a (Σ1

2,Σ
1
2)-gap satisfying HC in L.

The Π1
1 construction will then be a subtle modification of it using a method

developed by Arnold Miller in [Mil89]. Hausdorff constructed his gap by induction
on α < ℵ1, using the following instrumental Lemma at each induction step.

Lemma 4.3.3 (Hausdorff). Let α be some countable ordinal, and let ({aγ | γ <
α}, {bγ | γ < α}) be a pre-gap well-ordered by ⊆∗ and satisfying HC. Then there
exist sets c, d such that ({aγ | γ < α} ∪ {c}, {bγ | γ < α} ∪ {d}) is still a pre-gap,
is well-ordered by ⊆∗, and satisfies HC.
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Proof. See [Hau36] or [Sch93, Theorem 10].

An (ω1, ω1)-gap satisfying HC can now inductively be constructed using this
lemma. And just as we have already seen many times (cf. Fact 1.2.11, Fact
1.3.8, Theorem 3.2.1 etc.), in L this construction can be modified to produce a
Σ1

2 definable gap. So, at step α, instead of just picking an arbitrary pair (c, d)
given by Lemma 4.3.3, pick the <L-least such. Let A = {aα | α < ℵ1} and
B = {aα | α < ℵ1} be the resulting sets. Now, as before, we may write a ∈ A iff
∃Lδ (a ∈ Lδ ∧ Lδ |= a ∈ A), or equivalently: there is E ⊆ ω × ω such that

1. E is well-founded,

2. (ω,E) |= Θ,

3. ∃n (a = πE(n) and (ω,E) |= n ∈ π−1
E [A]).

This statement is Σ1
2. Clearly, the same can be done for the setB. Notice also that

the Σ1
2 definitions of A and B define the same sets in any larger model, i.e., even

when V 6= L, the set of all a satisfying the sentence ∃Lδ (a ∈ Lδ ∧ Lδ |= a ∈ A)
defines the same subset of L, and the same holds for B. It is also clear that
we can replace L with an arbitrary L[r] in this argument. We have now already
proved the following:

Proposition 4.3.4. If there is no (Σ1
2,Σ

1
2)-Hausdorff gap, then ∀r (ℵL[r]

1 < ℵ1).

Proof. Assume r is such that ℵL[r]
1 = ℵ1. In L[r], construct a (Σ1

2(r),Σ1
2(r))-

Hausdorff gap, satisfying HC, as described above. By Lemma 4.3.2, it is still a
gap in V .

In [Mil89], Miller introduced a method by which many inductive constructions
in L, like the one above, could be rendered not only Σ1

2 definable, but Π1
1 defin-

able. The idea is to eliminate the existential quantifier in the sentence “∃Lδ . . . ”,
or “∃E ⊆ ω × ω . . . ”, by coding E directly into the real a constructed at each
stage. This would allow us to write “a ∈ A ⇐⇒ e(a) is well-founded, etc.”,
where e is a recursive “decoding” function recovering the relation E ⊆ ω×ω from
a. Quoting Miller:

“The general principle is that if a transfinite construction can be done
so that at each stage an arbitrary real can be encoded into the real con-
structed at that stage then the set being constructed will be Π1

1. The
reason is basically that then each element of the set can encode the
entire construction up to that point at which it itself is constructed.”

[Mil89, p. 194]
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Figure 4.1: Partition of ω.

Miller himself applied this principle to show that in L there is a Π1
1 subset of

R2 meeting every line in exactly two points, a Π1
1 mad family, and a Π1

1 Hamel
basis for R over Q. In [KSZ08, Theorem 3.1] the authors used the same method
to show that in L there is a Π1

1 ω-mad family. Other applications exist in the
literature, for instance the recent [FT10] showing that in L there is a Π1

1 maximal
set of orthogonal measures on Cantor space.

To apply Miller’s method, we need to prove a Coding Lemma: a stronger
version of Lemma 4.3.3 stating that the c and d constructed at each induction
step can encode an arbitrary relation E ⊆ ω × ω. First, we recursively partition
ω into three infinite sets: H, X and G. Further, we recursively partition H
into infinitely many infinite sets Hn, and G into infinitely many infinite sets Gn.
All the essential properties of Hausdorff’s construction will take place within X,
while the areas H and G will be used for coding purposes only. The plan is to
encode an arbitrary real z ∈ 2ω into a set a ∈ [ω]ω by making sure that |Hn∩a| is
even if z(n) = 1 and odd if z(n) = 0, and the same for b and the Gn. A relation
E ⊆ ω × ω can easily be encoded into a real z ∈ 2ω (using a recursive bijection
between ω and ω × ω).

Lemma 4.3.5 (Coding Lemma). Let α be some countable ordinal and let ({aγ |
γ < α}, {bγ | γ < α}) be a pre-gap with aγ ⊆ H ∪X and bγ ⊆ X ∪ G, which is
well-ordered by ⊆∗, satisfies HC, and also satisfies the following condition:

(∗) ∀n ∈ ω ∀γ < α (|aγ ∩Hn| < ω and |bγ ∩Gn| < ω).

Let E ⊆ ω × ω be an arbitrary relation. Then there exist infinite sets c, d, with
c ⊆ H ∪X, d ⊆ X ∪G, such that ({aγ | γ < α} ∪ {c}, {bγ | γ < α} ∪ {d}) is still
a pre-gap, well-ordered by ⊆∗, satisfies HC, satisfies condition (∗), and moreover
both c and d recursively encode E.
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Proof. First, we consider the restriction of the pre-gap to X: ({aγ ∩ X | γ <
α}, {bγ ∩ X | γ < α}). Note that this is also a pre-gap well-ordered by ⊆∗.
Moreover, since for all γ, γ′ we know that aγ is disjoint from bγ′ everywhere outside
of X, the restricted pre-gap must satisfy HC, too. Using a bijection between X
and ω we can apply Hausdorff’s original Lemma 4.3.3 to the restricted pre-gap,
and get new sets c′, d′ ⊆ X, such that ({aγ ∩ X | γ < α} ∪ {c′}, {bγ ∩ X | γ <
α} ∪ {d′}) is a pre-gap, is well-ordered by ⊆∗, and satisfies HC.

We now describe what happens inside H and G. Let {a′n | n < ω} and {b′n | n <
ω} be a re-enumeration of the countable sets {aγ | γ < α} and {bγ | γ < α}.
Let z ∈ 2ω be a real recursively coding the relation E. Now pick cn ⊆ Hn and
dn ⊆ Gn such that

1. cn and dn are finite,

2.
⋃
m≤n(a′m ∩Hn) ⊆ cn,

3.
⋃
m≤n(b′m ∩Gn) ⊆ dn, and

4. |cn| and |dn| are even if z(n) = 1, and odd if z(n) = 0.

That this can always be done follows from condition (∗) of the induction hypoth-
esis.

Now we set c := c′ ∪
⋃
n cn and d := d′ ∪

⋃
n dn, and claim that the new pair of

sequences ({aγ | γ < α} ∪ {c}, {bγ | γ < α} ∪ {d}) satisfies all the requirements
of the lemma. It is obvious that it is a pre-gap and satisfies HC. Condition (∗) is
also clear, since c ∩Hn = cn and d ∩ Gn = dn and we defined these to be finite.
To show that it is well-ordered by ⊆∗, pick any aγ. We must show that aγ ⊆∗ c,
and for that, we need to show that aγ ∩ X ⊆∗ c ∩ X, and aγ ∩ H ⊆∗ c ∩ H.
The former is clear, because on X we have applied Lemma 4.3.3. For the latter,
suppose aγ = a′n in the re-enumeration used. For k ≥ n, the definition implies
that a′n ∩ Hk ⊆ ck. Moreover,

⋃
k<n(a′n ∩ Hk) is finite by property (∗) of the

induction hypothesis. This shows that indeed a′n ∩ H ⊆∗
⋃
k ck as had to be

shown. Analogously, we can show bγ ⊆∗ d.

Finally, it is clear that c and d recursively encode the relation E.

Now define the two decoding functions e0, e1 : [ω]ω → 2ω by

e0(a)(n) :=

{
1 if |Hn ∩ a| is even
0 if |Hn ∩ a| is odd

e1(b)(n) :=

{
1 if |Gn ∩ b| is even
0 if |Gn ∩ b| is odd

and by identifying z with the relation E ⊆ ω × ω that it recursively codes, we
consider e0 and e1 as functions from [ω]ω to P(ω × ω).
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In order to use Miller’s method, some special properties of the constructible
hierarchy are needed, which we now present as black box results.

Definition 4.3.6 (Miller). For a countable limit ordinal α, an Lα is called point-
definable if there exists E ∈ Lα+ω such that (ω,E) ∼= (Lα,∈).

Fact 4.3.7 (Miller).

1. There are unboundedly many α < ℵ1 such that Lα is point-definable.

2. Suppose Lα is point-definable. For any β ≤ α, if Lβ is point-definable then
Lα+ω |=“Lβ is point-definable”.

3. If Lα is point-definable and E is such that (ω,E) ∼= (Lα,∈), then there
is a recursive function mapping E to another relation, E+ω, such that
(ω,E+ω) ∼= (Lα+ω,∈).

Proof. The point-definable Lα’s are those levels of the constructible hierarchy
whose closure under the definable Skolem functions of L is isomorphic to itself.
For a detailed proof, see [KSZ08], specifically Lemmas 3.4, 3.5 and 3.6, and the
relevant comments regarding absoluteness of the definitions.

Fix an enumeration {ξα | α < ℵ1} of those countable limit ordinals for which
Lξα is point-definable. We may assume without loss of generality that ξα + ω <
ξα+1 for all α. By induction on α < ℵ1, we can now build our sets {aα | α < ℵ1}
and {bα | α < ℵ1}, with an induction hypothesis guaranteeing that aα and bα are
members of Lξα+ω.

Suppose {aγ | γ < α} and {bγ | γ < α} has been constructed and satisfies
all the relevant conditions, i.e., is a pre-gap, is well-ordered by ⊆∗, satisfies HC,
and satisfies condition (∗) from the Coding Lemma (Lemma 4.3.5). Also, assume
aγ, bγ ∈ Lξγ+ω for each γ < α. Then in fact aγ, bγ ∈ Lξγ+1 ⊆ Lξα , therefore the sets
{aγ | γ < α} and {bγ | γ < α} are in Lξα+1. Moreover, since Lξα+ω contains an E
satisfying (ω,E) ∼= (Lξα ,∈), it follows that Lξα+ω |= α is countable. In particular,
the two initial segments of the Hausdorff gap are countable in Lξα+ω, so we can
apply the Coding Lemma inside Lξα+ω to get two sets c, d in Lξα+ω which both
recursively encode E. We choose aα and bα to be the <L-least (or <Lξα+ω

-least)
such c and d. The Coding Lemma guarantees that all the requirements to proceed
with the induction are satisfied by the extended initial segments {aγ | γ ≤ α}
and {bγ | γ ≤ α}.

Let A := {aα | α < ℵ1} and B := {bα | α < ℵ1} be the sets thus constructed.
It is clear that (A,B) is a Hausdorff gap satisfying HC. Now recall the decoding
functions e0 and e1. By Fact 4.3.7 (3), there are also recursive functions e+ω

0 and
e+ω

1 such that if (ω, ei(a)) ∼= (Lξα ,∈) for some ξα, then (ω, e+ω
i (a)) ∼= (Lξα+ω,∈).

Now it only remains to prove the following:
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Claim 4.3.8.

1. For all a ∈ [ω]ω, a ∈ A ⇐⇒

(a) e0(a) is well-founded,

(b) (ω, e0(a)) |= Θ,

(c) ∃n ∈ ω (a = πe+ω0 (a)(n) and (ω, e+ω
0 (a)) |= n ∈ π−1

e+ω0 (a)
[A]).

2. For all b ∈ [ω]ω, b ∈ B ⇐⇒

(a) e1(b) is well-founded,

(b) (ω, e1(b)) |= Θ,

(c) ∃n ∈ ω (b = πe+ω1 (b)(n) and (ω, e+ω
1 (b)) |= n ∈ π−1

e+ω1 (b)
[B]).

Proof. The two parts are obviously analogous so let us check the first one. If
a ∈ A, then a = aα for some α. Let E := e0(a). Then by construction (ω,E) ∼=
(Lξα ,∈), so points (a) and (b) are satisfied. Moreover, note that the way we
picked aα in Lξα+ω using Lemma 4.3.5 was absolute between Lξα+ω and L because
the relevant initial segment of the construction was in Lξα+ω and we picked the
<L-least such aα. Therefore Lξα+ω |= a ∈ A, so point (c) is satisfied.

Conversely, suppose a satisfies points (a), (b) and (c). Let E := e0(a). Then
(ω,E) ∼= (Lδ,∈) for some countable limit ordinal δ, a ∈ Lδ+ω and Lδ+ω |= a ∈
A. Then Lδ+ω |= (ω, e0(a)) ∼= (Lξα ,∈) for some ξα < δ + ω. But since this
isomorphism must be absolute, in fact ξα = δ, so Lξα+ω |= a ∈ A. Then the
absoluteness of the definition of A implies that a ∈ A holds in L, too (in fact
a = aα).

The claim gives us a Π1
1 definition of both A and B, since part (a) is a Π1

1

statement and the others are arithmetical. As before, it is also clear that in any
larger model V , the sets A and B defined as in the claim are still exactly the
same subsets of L. Also, L can be replaced by an arbitrary L[r] in all the above
arguments. As a result, we have shown the following:

Theorem 4.3.9. If there is no (Π1
1,Π

1
1)-Hausdorff gap, then ∀r (ℵL[r]

1 < ℵ1).

Combining this result with what we proved in the last section, we get, as
promised, the following corollary:

Corollary 4.3.10. The following are equivalent:

1. there is no (Σ1
2, ·)-Hausdorff gap,

2. there is no (Σ1
2,Σ

1
2)-Hausdorff gap,

3. there is no (Π1
1, ·)-Hausdorff gap,
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4. there is no (Π1
1,Π

1
1)-Hausdorff gap,

5. ∀r (ℵL[r]
1 < ℵ1).

Proof. The direction (5)⇒ (1) is Corollary 4.2.4 and (4)⇒ (5) is Theorem 4.3.9.
The other implications are obvious.

4.4 Solovay model

We now turn our attention to the Solovay model, and the question whether Haus-
dorff gaps have to exist at all, not assuming AC.

Theorem 4.4.1. Let V be a model with an inaccessible cardinal κ and V [G] the
Lévy collapse of κ. In V [G], let (A,B) be a pre-gap with A and B definable from
a countable sequence of ordinals. Then

1. either A and B are σ-separated, or

2. there exists an (A,B)-tree.

Proof. In V [G], let s ∈ Ordω be such that A is definable by ϕ(s, x) and B is
definable by ψ(s, x). By standard properties of the Lévy collapse (Lemma 1.2.20),
there are formulas ϕ̃ and ψ̃ such that for all x, V [G] |= ϕ(s, x) iff V [s][x] |= ϕ̃(s, x),
and V [G] |= ψ(s, x) iff V [s][x] |= ψ̃(s, x).

Assume that A and B are not σ-separated. Since κ is inaccessible in V [s], there
are countably many reals in V [s], so A and B are not V [s]-separated (in the sense
of Definition 4.2.1 (1)). Hence, there exists an a ∈ A such that for all c ∈ V [s], if
a ⊆∗ c then c 6⊥B. Let x ∈ ω↑ω be the increasing enumeration of a. The sentence

Φ(x) ≡ ∀c ∈ V [s] (ran(x) ⊆∗ c → ∃b (V [s][b] |= ψ̃(s, b) ∧ |c ∩ b| = ℵ0))

is true in V [G]. By another standard property of the Lévy collapse, there is a
generic H such that V [s][H] = V [G], and moreover there is a partial suborder
Q of the Lévy collapse (depending on x), such that Q ∈ V [s], |Q| < κ and
x ∈ V [s][Q∩H]. Then in V [s] there is a name ẋ and a condition p ∈ Q such that

p 
 Φ(ẋ) ∧ V [s][ẋ] |= ϕ̃(s, ẋ).

Let {Di | i ∈ ω} enumerate all the Q-dense sets in V [s] (there are only countably
many because κ is inaccessible in V [s]).

Now we inductively construct a tree S ⊆ ω<↑ω, and for every t ∈ S a condition
pt ≤ p and an infinite set ct ∈ V [s], such that the following conditions are satisfied:

1. s ⊆ t ⇐⇒ pt ≤ ps,
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2. for every t, pt ∈ D|t|,

3. for every t, pt 
 ran(t) ⊆ ran(ẋ), and

4. for every t, pt 
 ran(ẋ) ⊆∗ čt.

Let p∅ ≤ p be any condition in D0. Clearly conditions (2) and (3) are satisfied.

Assume pt is already defined for t ∈ S, and satisfies condition (3). Let

ct := {i | i > max(t) and ∃q ≤ pt (q 
 i ∈ ran(ẋ))}.

Then ct is in V [s] and condition (4) is satisfied (at stage t). For every i ∈ ct, let
t_ 〈i〉 also be an element of the tree S, and let pt_〈i〉 ≤ p be a condition such
that pt_〈i〉 
 i ∈ ran(ẋ) and pt_〈i〉 ∈ D|t|+1. Now each such pt_〈i〉 also satisfies
condition (3) (at stage t_ 〈i〉), completing the induction step.

Thus we have constructed the tree S, and now we claim that it is an (A,B)-tree.
For every t ∈ S, ct is the set of immediate successors of t in S. By condition
(4), pt 
 ran(ẋ) ⊆∗ čt, and since pt 
 Φ(ẋ) and obviously pt 
 čt ∈ V [s],
it follows that some q ≤ pt forces the consequent of Φ(ẋ), i.e., the statement
“∃b (V [s][b] |= ψ̃(s, b) ∧ |b ∩ ct| = ℵ0)”. Then for some H ′ Q-generic over
V [s] containing q, this statement holds in V [s][H ′], and therefore there exists
a b such that V [s][b] |= ψ̃(s, b) and |b ∩ ct| = ℵ0, i.e., there exists b ∈ B such
that |b ∩ ct| = ℵ0. Since this holds for every ct, one part of the definition of an
(A,B)-tree is fulfilled.

It remains to prove that every branch through S is contained in an element of
A. Let z ∈ [S], and let Hz be the filter over Q generated by {pt | t ⊆ z}.
By construction, Hz is Q-generic over V [S]. Since all pt force the statement
“V [s][ẋ] |= ϕ̃(s, ẋ)”, we get that V [s][ẋHz ] |= ϕ̃(s, ẋHz), and therefore ẋHz ∈ A
(here we have identified ẋHz with its range, but it should be clear that this is fine).
Moreover, since by condition (3) we have, for every t ⊆ z, that pt 
 ran(t) ⊆
ran(ẋ), it follows that ran(t) ⊆ ran(ẋHz) holds for every t ⊆ z, and therefore
ran(z) ⊆ ran(ẋHz) ∈ A. This is what we wanted to show.

Corollary 4.4.2. Let V be a model with an inaccessible cardinal κ and V [G] the
Lévy collapse. If (A,B) is a pre-gap in V [G] such that A and B are definable
from a countable sequence of ordinals, and moreover A and B are σ-directed, then
(A,B) is not a gap.

Proof. As before, if B is σ-directed then there cannot be an (A,B)-tree by Lemma
4.2.2, and if A is also σ-directed then alternative 1 from Theorem 4.4.1 implies
that A and B are separated.

Corollary 4.4.3. Con(ZFC+“there are no projective Hausdorff gaps”) and
Con(ZF + DC+“there are no Hausdorff gaps”).
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4.5 Axiom of real determinacy

The determinacy of infinite games is often used as a tool to prove regularity
properties. The strongest result we could hope to prove in this setting is that AD
implies that there are no Hausdorff gaps. We were not able to prove this, but,
as already discussed in Question 2.6.4 and Question 2.6.5, ADR may be a more
appropriate axiom in this case. So, we will take ZF+ADR as the ambient theory
in this section, and construct a game with real moves whose determinacy proves
the non-existence of Hausdorff gaps.

Definition 4.5.1. Let (A,B) be a pre-gap. The game GH(A,B) is played as
follows:

I : c0 (s1, c1) (s2, c2) . . .
II : i0 i1 i2 . . .

where sn ∈ ω<ω, cn ∈ [ω]ω and in ∈ ω. The conditions for player I are that

1. min(sn) > max(sn−1) for all n ≥ 1,

2. min(cn) > max(sn),

3. cn 6⊥B for all n, and

4. in ∈ ran(sn+1) for all n.

Conditions for player II are that

5. in ∈ cn for all n.

If all five conditions are satisfied, let s∗ := s1
_s2

_ . . . be an infinite increasing
sequence formed by the play of the game. Player I wins iff ran(s∗) ∈ A.

Theorem 4.5.2.

1. If player I has a winning strategy in GH(A,B) then there exists an (A,B)-
tree.

2. If player II has a winning strategy in GH(A,B) then A and B are σ-
separated.

Proof. 1. Let σ be a winning strategy for player I and let Tσ be the tree of
partial positions according to σ. If p ∈ Tσ is a position of the form p =
〈c0, i0, (s1, c1), i1, . . . , (sn, cn)〉, we use the notation p∗ := s1

_ . . ._sn.

Now we use Tσ to inductively construct the tree S. To each s ∈ S we associate a
ps ∈ Tσ (of odd length), such that

1. s ⊆ t iff ps ⊆ pt, and
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2. ran(s) ⊆ ran(p∗s).

First ∅ ∈ S and p∅ = ∅. Suppose s ∈ S and ps are already defined and
ran(s) ⊆ ran(p∗s) holds. Assume ps = 〈. . . , (sn, cn)〉. For every in ∈ cn, let
(sn+1, cn+1) be the response of the strategy σ to ps

_ 〈in〉. Let s_ 〈in〉 be in S and
associate to it ps_〈in〉 := ps

_ 〈in〉_ 〈(sn+1, cn+1)〉. Since for each in ∈ cn we know
that in ∈ ran(sn+1), it follows that ran(s_ 〈in〉) ⊆ ran(p∗s_〈in〉), completing the
induction step.

Now it is clear that the tree S has exactly the cn’s as the branching-points, which
all have infinite intersection with some b ∈ B by assumption. Moreover, if x is
a branch through S, then by construction z :=

⋃
{ps | s ⊆ x} forms a branch

through Tσ satisfying ran(x) ⊆ ran(z∗). Since z is an infinite play of the game
according to the winning strategy σ, it follows that ran(z∗) ∈ A, so S is an
(A,B)-tree.

2. Now let τ be a winning strategy for player II, and let Tτ be the tree of partial
plays according to τ . Our method will be similar to the proof of the standard
Banach-Mazur theorem, but the problem is that the tree Tτ has uncountable
branching. Therefore we first thin it out to another tree T̃τ , as follows: for every
node of even length p = 〈. . . , (sn, cn), in〉 ∈ Tτ , fix s and i and consider the
collection SuccTτ (p, s, i) := {(s, c) | p_ 〈(s, c)〉_ 〈i〉 ∈ Tτ}. In other words, this
is the collection of all valid moves by player I following position p, such that the
first component of the move is s, and such that II’s next move according to τ
is i. If this collection is non-empty, throw away all members of SuccTτ (p, s, i),
and their generated subtrees, except for one, so that SuccTτ (p, s, i) becomes a
singleton. Notice that this construction is justified because, since we are working
under ADR, we have to our disposal the fragment of the Axiom of Choice allowing
us to choose from collections indexed by real numbers. Therefore, we can perform
this “pruning” operation for every s ∈ ω<ω and every i ∈ ω, and inductively form
the new tree T̃τ—this is also going to be a tree of positions according to τ , but
it will be a countably branching tree. Now we can use a Banach-Mazur-style
argument on T̃τ .

For every p ∈ T̃τ and x ∈ ω↑ω, where p = 〈. . . (sn, cn), in〉, we say that p is
compatible with x if p∗ ⊆ x and in ∈ ran(x). We say that p rejects x if it is
compatible with x and maximally so with respect to T̃τ , i.e., if for every (s, c)
such that p_ 〈(s, c)〉 ∈ T̃τ and p∗_s ⊆ x, i := τ(p_ 〈(s, c)〉) /∈ ran(x).

It is clear that for every x with ran(x) ∈ A there is a p ∈ T̃τ which rejects x—
otherwise we could inductively find an infinite branch z through T̃τ such that
z∗ = x, implying that ran(x) /∈ A since z is a play according to a strategy that
was winning for player II. For each p ∈ T̃τ let Kp := {x | p rejects x}. Also, write
K∗p := {ran(x) | p rejects x}. Since A ⊆

⋃
p∈T̃τ K

∗
p and T̃τ is countable, the result

will follow if we can prove that each K∗p is σ-separated from B.
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For this, fix some p = 〈. . . (sn, cn), in〉, and for every s ∈ ω<ω such that in ∈ ran(s)
and min(s) > max(p∗), consider the set

as :=
⋃
{ran(x) | x ∈ Kp and p∗_s ⊆ x}.

We claim that the collection {as | in ∈ ran(s) and min(s) > max(p∗)} σ-separates
K∗p from B. First, clearly if x ∈ Kp then there exists some s, satisfying the
conditions, such that p∗_s ⊆ x, so that ran(x) ⊆ as. Secondly, suppose that
there is some s, with in ∈ ran(s) and min(s) > max(p∗), such that as has infinite
intersection with some b ∈ B. Let a′s := as \ max(s). According to the rules of
the game, player I is then allowed to play the move “(s, a′s)” after position p. The
only problem is that p_ 〈(s, a′s)〉 might not be in T̃τ . However, by construction
there is some c such that i := τ(p_ 〈(s, c)〉) = τ(p_ 〈(s, a′s)〉) and p_ 〈(s, c)〉 ∈ T̃τ .
But then we must have i ∈ a′s, so by definition there is some x ∈ Kp such that
p∗_s ⊆ x and i ∈ ran(x). But then p_ 〈(s, c)〉_ 〈i〉 is still compatible with x and
hence p does not reject x, contradicting x ∈ Kp.

So we must have as ⊥B for all s, and this completes the proof.

Corollary 4.5.3. ADR implies that every pre-gap (A,B) is either σ-separated or
there exists an (A,B)-tree.

Corollary 4.5.4. ADR implies that there are no Hausdorff gaps.

4.6 Other gaps

In the last section, we briefly consider non-Hausdorff gaps, i.e., gaps (A,B) in
which A and B are not necessarily σ-directed, and extend the second main theo-
rem of [Tod96], by combining its proof with results from [Fen93].

As we know, such gaps can be quite explicitly defined. Let us recall the
example we mentioned in the introduction: A := {ax | x ∈ 2ω} and B :=
{bx | x ∈ 2ω}, where ax := {x�n | x(n) = 0} and bx := {x�n | x(n) = 1} for
every x ∈ 2ω. In [Tod96, p 57], Todorčević isolated the main ingredient of this
construction and defined a concept that he called a perfect Luzin gap.

Definition 4.6.1. (A,B) is called a perfect Luzin gap if A can be written as
{ax | x ∈ 2ω} and B can be written as {bx | x ∈ 2ω}, such that the functions
x 7→ ax and x 7→ bx are continuous, and so that the following condition (Luzin’s
condition) is satisfied: there exists some n ∈ ω such that

1. for every x ∈ 2ω, ax ∩ bx ⊆ n, and

2. for every x 6= y, either ax ∩ by * n or ay ∩ bx * n.
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Any pre-gap (A,B) satisfying Luzin’s condition can be shown to be a gap
(see, e.g., [Sch93] for details), and moreover, A and B are perfect subsets of [ω]ω.
The second main result of Todorčević [Tod96, Theorem 2] shows that a perfect
Luzin gap is essentially the only type of analytic gap. First we need a weaker
notion of separation.

Definition 4.6.2. A pre-gap (A,B) is weakly σ-separated if there is a countable
set C such that for every a ∈ A and b ∈ B, there is a c ∈ C such that a ⊆∗ c and
c ∩ b is finite.

If (A,B) are σ-separated then they are also weakly σ-separated, though the
converse need not be true. Of course, in the case of a Hausdorff gap, the two
notions are the same, and are equivalent to (A,B) being separated, but in general
we should be more careful.

Definition 4.6.3. We say that a pre-gap (A,B) satisfies the perfect Luzin di-
chotomy if either

1. (A,B) is weakly σ-separated, or

2. there is a perfect Luzin sub-gap (A′, B′) of (A,B) (i.e., A′ ⊆ A and B′ ⊆ B).

Theorem 4.6.4 (Todorčević). Every (Σ1
1,Σ

1
1)-pre-gap satisfies the perfect Luzin

dichotomy.

Proof. See [Tod96, Theorem 2]

Can we extend this theorem, and prove results similar to the ones we proved
about Hausdorff gaps? We will show that this is indeed the case, and, in fact,
it follows by putting together several existing results. First, we note that the
main ingredient of the proof of [Tod96, Theorem 2] is a perfect set version of the
Open Colouring Axiom studied by Qi Feng in [Fen93], itself being a variant of
the original Open Colouring Axiom (OCA) introduced by Todorčević in [Tod89].

Definition 4.6.5 (Feng). A set A satisfies OCAP if for every partition [A]2 =
K0 ∪ K1, where K0 is open in the relative topology of A, one of the following
holds:

1. there exists a perfect set P ⊆ A such that [P ]2 ⊆ K0, or

2. A =
⋃
nAn, for some An satisfying [An]2 ⊆ K1.

We write Γ(OCAP ) to mean that every set in Γ satisfies OCAP .

Theorem 4.6.6 (Feng).

1. Σ1
1(OCAP ),
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2. the following are equivalent:

(a) Σ1
2(OCAP ),

(b) Π1
1(OCAP ),

(c) ∀r (ℵL[r]
1 < ℵ1).

3. in the Solovay model, all sets satisfy OCAP , and

4. AD =⇒ OCAP .

Proof. See Theorem 1.1, Corollary 2.2, Theorem 4.1 and Theorem 3.3 of [Fen93],
respectively.

The proof of [Tod96, Theorem 2] in fact shows the following stronger result:

Theorem 4.6.7 (Todorčević). For any pointclass Γ, if Γ(OCAP ) holds then every
(Γ,Γ)-pre-gap satisfies the perfect Luzin dichotomy.

Combining this with Theorem 4.6.6, we immediately get:

Corollary 4.6.8.

1. The following are equivalent:

(a) Every (Σ1
2,Σ

1
2)-pre-gap satisfies the perfect Luzin dichotomy,

(b) Every (Π1
1,Π

1
1)-pre-gap satisfies the perfect Luzin dichotomy,

(c) ∀r (ℵL[r]
1 < ℵ1).

2. in the Solovay model, all pre-gaps satisfy the perfect Luzin dichotomy, and

3. AD implies that all pre-gaps satisfy the perfect Luzin dichotomy.

Proof. The only non-trivial direction is (b)⇒ (c) from part (1). For this, simply
use the construction from Section 4.3, i.e., the (Π1

1,Π
1
1)-Hausdorff gap satisfying

HC in L. Clearly, it is not weakly σ-separated. On the other hand, if it would
contain a perfect Luzin sub-gap (A′, B′), then (A′, B′) would be a Hausdorff gap
with a perfect set A′, contradicting Theorem 4.1.3.

Note that here we have an implication from AD rather than just ADR. Whether
the same could be done for Corollary 4.5.4 is still open.

Question 4.6.9. Does AD imply that there are no Hausdorff gaps?



Chapter 5

Mad families

In this chapter, we turn our attention to another kind of combinatorial object,
maximal almost disjoint (mad) families, from the descriptive point of view. De-
spite the relative simplicity with which a mad family is defined (as opposed to,
say, a Hausdorff gap), its properties remain elusive, and many questions about
these objects, especially in the definability context, remain unresolved. We will
focus on one particular such question, the relationship between Σ1

2 definable mad
families and dominating reals. Motivated by the need to preserve mad families
while adding dominating reals, we are led to the introduction of a new cardinal
invariant aB, defined as the least number of Borel almost disjoint sets whose union
is a mad family. Our main result is the consistency of aB < b, which, with only a
slight modification, proves the consistency of Σ1

2(L)+“there is a Σ1
2 mad family”

and also the consistency of b > ℵ1+ “there is a Σ1
2 mad family”. This answers a

question recently posed by Friedman and Zdomskyy in [FZ10, Question 16]. The
results of this chapter are joint work with Jörg Brendle.

5.1 Introduction

Recall that two sets a, b ∈ [ω]ω are called almost disjoint (a.d.) if |a ∩ b| < ω,
and a set A ⊆ [ω]ω is called almost disjoint (a.d.) if every two elements a, b ∈ A
are almost disjoint. A set A is called maximal almost disjoint, or mad, if it is
an infinite a.d. family and maximal with respect to that property, i.e., ∀a ∃b ∈
A(|a∩b| = ω). It will also be assumed, throughout this chapter, that mad families
are infinite, since finite ones are of no interest (e.g., any partition of ω into two
disjoint sets is mad according to the above definition).

Mad families have been studied for a long time and have applications in various
fields of mathematics. They can easily be constructed using a well-ordering of the
reals: by induction on α < 2ℵ0 , pick the least a ∈ [ω]ω which is still almost disjoint
from all the previously chosen ones. Of course, such objects are in general not
definable. Non-maximal almost disjoint families of size 2ℵ0 , on the other hand,
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can be explicitly defined: for each x ∈ ωω, let ax := {σ ∈ ω<ω | σ ⊆ x}. If
x 6= y then |ax ∩ ay| < ω, hence {ax | x ∈ ωω} is an a.d. family in [ω<ω]ω,
which can be seen as an a.d. family in [ω]ω upon identification of ω with ω<ω.
Topologically, this is a perfect subset of [ω]ω. It is clearly not maximal—for
example, a := {σ ∈ ω<ω | |σ| = 1} is almost disjoint from it. It can be extended
to a mad family using the well-ordering of the reals, but of course at the expense
of definability. This is not coincidental, for an early result of Adrian Mathias
[Mat77, Corollary 4.7] shows the following:

Theorem 5.1.1 (Mathias). There is no analytic mad family.

It is easy to see that if V = L, then there is a Σ1
2 definable mad family.

Also, if A is a Σ1
2 mad family then it must be ∆1

2: if φ(a) defines A, then
ψ(a) ≡ ∃b (φ(b) ∧ a 6= b ∧ |a ∩ b| = ω) defines the complement of A. In fact this
shows that any Σ1

n mad family must be ∆1
n.

A more subtle result is the following theorem of Arnold Miller [Mil89, Theorem
8.23], proved by the same method that we used in the proof of Theorem 4.3.9.

Theorem 5.1.2 (Miller). If V = L then there is a Π1
1 mad family.

Note that, as in Chapter 4, the non-existence of mad families can be considered
a regularity hypothesis, and we can look at this on the projective level. In general,
there are many open questions here: for example, it is not clear whether the
hypotheses “there is no Σ1

2 mad family” and “there is no Π1
1 mad family” are

equivalent; there is no characterization theorem connecting such hypotheses with
a transcendence statement over L. Most notably, it is unknown whether the
consistency strength of “there are no mad families” is an inaccessible cardinal or
higher, i.e., whether collapsing an inaccessible κ is sufficient to obtain a model
where there are no mad families (as is the case with most regularity properties).
By [Mat77, Metatheorem 5.3], it can be done assuming the existence of a Mahlo
cardinal, but the assumption seems stronger than necessary in this context.

But can we say anything about the existence of Π1
1 mad families in models

larger than L? In the proof of Theorem 5.1.2 above, just as in our proof of
Theorem 4.3.9, the Π1

1 definition of a mad family A ⊆ L defines the same object
A in any larger model V . However, in V , A may fail to be a mad family because V
may contain new reals which are almost disjoint from all a ∈ A. So the question
is: can we construct a Π1

1 mad family in L for which this does not happen? This
leads to the following concept:

Definition 5.1.3. Let P be a forcing partial order and A a mad family. A is
said to be P-indestructible if in the generic extension V [G] by P, A is still a mad
family.

Indestructibility of mad families has been widely researched, among others
in [Kur01, Hru01, HGF03, BY05, Rag09]. For many standard partial orders
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P, combinatorial conditions on mad families have been isolated which ensure
P-indestructibility. One particular condition involves the strengthening of the
definition of a mad family to a so-called ω-mad family (sometimes called strongly
mad family). By Corollary 37, Corollary 53 and Theorem 65 of [Rag09], such
ω-mad families are preserved in iterations of Cohen, Sacks and Miller forcing. On
the other hand, by [KSZ08, Theorem 3.1], Π1

1 definable ω-mad families exist in
L. Putting this together, we obtain the following result:

Fact 5.1.4. Con(¬CH + “there is a Π1
1 mad family”).

Proof. Construct a Π1
1 ω-mad family A in L. Extend L via an ℵ2-iteration of

Cohen, Sacks or Miller forcing. Then in the extension 2ℵ0 = ℵ2, A still has a Π1
1

definition (this is just like in the proof of Theorem 4.3.9), and is still maximal.

If we use Cohen forcing in the above result, we obtain the stronger statement
Con(cov(M) > ℵ1+“there is a Π1

1 mad family”), and also Con(∆1
2(Baire)+“there

is a Π1
1 mad family”).

But what can be said of forcing iterations that have stronger transcendence
properties? In particular, what happens if the forcing adds dominating reals?
Recall the cardinal invariant a, defined as the smallest size of an (infinite) mad
family, and b, the smallest size of an unbounded family. It is well-known that
b ≤ a. In fact, the proof of this inequality tells us that if A is a mad family in V
and P adds a dominating real, then in the generic extension V [G] by P, A is no
longer a mad family—in other words, there are no P-indestructible mad families
for forcings P which add a dominating real.

This raises the following question: can we iterate a forcing that adds domi-
nating reals, and still have a Π1

1 mad family, or at least a Σ1
2 mad family, in the

extension? Another formulation of the same question is: is b > ℵ1+ “there is a
Σ1

2 mad family” consistent? Initially, one might think that the answer is negative
since the method we used so far (i.e., constructing a definable mad family in L
and preserving it) cannot possibly work here.

This question was recently asked by Friedman and Zdomskyy in [FZ10, Ques-
tion 16], who proved the following:

Theorem 5.1.5 (Friedman & Zdomskyy). Con(b > ℵ1 + “there is a Π1
2 ω-mad

family”).

This result is optimal for ω-mad families: if A were a Σ1
2 definable ω-mad

family, then by Mansfield-Solovay (Theorem 1.3.14) it would either be a subset
of L or would contain a perfect set. The former is false because ℵ1 < b ≤ a
and the latter is impossible because, by [Rag09, Corollary 38], an ω-mad family
cannot contain a perfect set. However, it was not clear whether this result was
also optimal for the more general case of a mad family instead of an ω-mad family.
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We answer the question of Friedman and Zdomskyy positively by showing
that it is consistent that b > ℵ1 and there exists a Σ1

2 mad family.
To avoid the problem with dominating reals we need a somewhat new approach

to preservation.

Definition 5.1.6.

1. A ⊆ [ω]ω is called an ℵ1-Borel mad family if A =
⋃
α<ℵ1 Aα, where each Aα

is a Borel a.d. family and A is a mad family.

2. Let P be a forcing partial order. An ℵ1-Borel mad family A is called P-
indestructible if in the generic extension V [G] by P,

AV [G] :=
⋃
α<ℵ1

AV [G]
α

is a mad family.

In fact, our families A will be unions of ℵ1 perfect sets Aα. Since by P-
preservation we are now referring to the re-interpreted perfect sets A

V [G]
α , a dom-

inating real does not necessarily create a problem. Thus, the main focus of our
work is the construction of an ℵ1-Borel mad family in L which is preserved by an
iteration of a forcing adding dominating reals.

Notice that in Definition 5.1.6, we could replace ℵ1 by an arbitrary cardinal
κ and define κ-Borel mad families analogously. A closer look at this allows us to
isolate a new cardinal invariant.

Definition 5.1.7. Let aB (the Borel almost-disjointness number) be the least
infinite cardinal κ such that there exists a sequence {Aα | α < κ} of Borel a.d.
sets whose union is a mad family.

Notice that aB must be uncountable since a countable union of Borel sets is
itself Borel, thus cannot be mad by Theorem 5.1.1. It is also clear that aB ≤ a.
Moreover, if aB > ℵ1 then there are no Σ1

2 mad families, since a Σ1
2 set is a union

of ℵ1 Borel sets. Indeed, the cardinal invariant aB is related to the existence of
Σ1

2 mad families in the same way as the covering number of the σ-ideal I was
related to I-regularity in Section 2.3 (cf. Corollary 2.3.9 and the discussion after
that). Also, the following is an unpublished result of Dilip Raghavan (private
communication). For the definition of t, see Definition 1.2.28.

Theorem 5.1.8 (Raghavan). t ≤ aB.

As a consequence, if t > ℵ1 then there are no Σ1
2 mad families. In particular,

this holds under Martin’s Axiom.

Our main result shows that aB < b is consistent. To obtain this, we construct
a model where aB = ℵ1 and b = ℵ2, by using an ℵ2-iteration of Hechler forcing



5.2. Preparing for the construction 107

starting with a model of CH. In the proof, we use an essential property of Hechler
forcing—preservation of ω-splitting families—first established by Baumgartner
and Dordal in [BD85]. This allows us to construct an ℵ1-Borel mad family in the
ground model which is preserved by the Hechler iteration.

For simplicity, we will first present the proof of this cardinal inequality. Af-
terwards, it will be an easy matter to modify the proof so that it yields the
consistency of b > ℵ1+“there is a Σ1

2 mad family” or of Σ1
2(L)+“there is a Σ1

2

mad family”.

5.2 Preparing for the construction

To begin with, we do some preparatory work and lay the foundations necessary
for the construction of a Hechler-indestructible mad family.

As the primary component, we will consider partitions of an infinite subset of
ω into infinitely many infinite sets, each one indexed by a finite sequence σ ∈ ω<ω.
To be precise, let D be an infinite subset of ω, and let

P := {Pσ | σ ∈ ω<ω}

be a disjoint partition of D into infinite sets. We will call D the domain of P ,
and the elements of each Pσ will be enumerated in order, and we will denote them
by Pσ = {pσ(0), pσ(1), pσ(2), . . . }.

The partition P leads to a natural homeomorphism. Consider ϕ : ω<ω \
{∅} −→ [D]<ω defined by

ϕ(σ) := {pσ�n(σ(n)) | n < |σ|}

and its limit function Φ : ωω −→ [D]ω defined by

Φ(f) := {pf�n(f(n)) | n < ω}.

The function Φ is clearly injective and continuous. Also, we define the function
ψ : ω<ω \ {∅} −→ D as follows: if σ ∈ ω<ω \ {∅} and n := |σ| − 1 then

ψ(σ) := pσ�n(σ(n)).

Note that ψ is a bijection between ω<ω \ {∅} and D, and that ϕ(σ) = {ψ(σ�n) |
1 ≤ n ≤ |σ|} and Φ(f) = {ψ(f�n) | n < ω}.

For a fixed partition P of D, define AP := {Φ(f) | f ∈ ωω}. This is an almost
disjoint subfamily of D of size 2ℵ0 , which forms a perfect set in the natural
topology on [D]ω, with Φ a homeomorphism between ωω and AP . Any model of
set theory containing the partition P can interpret the perfect set AP according
to its own reals. Sets of the form AP will form the basic components of our
indestructible mad family, where “indestructibility” will refer to the collection of
the re-interpreted perfect sets AP .
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P∅

P〈0 〉

P〈1〉

P〈2〉

P〈0,0〉

P〈0,1〉

P〈1,0〉

P〈1,1〉

P〈2,0〉

P〈2,1〉

p∅ 1 

p〈1, 0〉1

p〈1〉 0

〈1, 0,1, ...〉

Figure 5.1: A partition P of D.

By Mathias’s theorem (Theorem 5.1.1), AP cannot be a mad family. Hence,
there is an infinite set D′ which is almost disjoint from every member of AP . We
can then partition D′ into a new collection P ′ and repeat the same construction as
above to form AP ′ . Clearly, AP ∪AP ′ is still an a.d. family, and we can continue
the process. Since any countable union of closed a.d. families is still not maximal,
we can even continue this process into the transfinite. In a model of CH, we could
thus construct a mad family

⋃
{APα | α < ℵ1} consisting of ℵ1 perfect sets based

on the partitions Pα.

Of itself, however, this construction is of little use because it does not tell
us anything about the indestructibility in forcing extensions. Therefore we will
consider another method of extending a given a.d. family AP . This is a brief
prelude to the actual construction.

For a partition P and σ ∈ ω<ω \ {∅}, define Ĩ(σ) := {ψ(τ) | τ ⊆ σ or σ ⊆ τ}.
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Equivalently, we have Ĩ(σ) :=
⋃

Φ“[σ]. For m ∈ D, define I(m) := Ĩ(ψ−1(m)).
Each I(m) is an infinite subset of D, and we let IP be the ideal generated by
all such I(m), i.e., a set X ⊆ ω is defined to be in IP if there are finitely many
m0, . . . ,mk such that X ⊆∗

⋃k
i=0 I(mi). It is clear that IP is a proper ideal, i.e.,

that D (and hence ω) is not in the ideal.

...

...

...

p∅1
p〈1〉 0=m P 〈1,0 〉

...

I 〈1,0 〉=I m 

Figure 5.2: The ideal Ĩ(σ) = I(m)

Now, suppose M is a countable model of ZFC, and P ∈ M is a partition of
some D, as defined above. Using finite conditions (i.e., Cohen forcing) in M , we
can add a new partition C = {Cσ | σ ∈ ω<ω} of some domain DC , such that for
all σ,

Cσ ∩
⋃
m<|σ|

I(m) = ∅.

To be precise, in M , define the partial order of functions p : ω<ω × ω → 2 with
finite domain, ordered by extension, and additionally satisfying the following
conditions:

1. for all σ, n, if p(σ, n) = 1 then n /∈
⋃
m<|σ| I(m), and

2. for all σ 6= τ , there is no n such that p(σ, n) = p(τ, n) = 1.

Once in the extension, define Cσ := {n ∈ ω | (
⋃
G)(σ, n) = 1}, where G is

generic over M . Using standard genericity arguments for Cohen forcing, plus the
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fact that the ideal IP is proper, it is easy to see that C := {Cσ | σ ∈ ω<ω} forms
a partition and satisfies the requirement.

We can now use C to define a new perfect a.d. family AC . Let the functions
ΦC , ϕC , ψC , the sets IC(m) and the ideal IC be defined analogously using the
new partition C. Moreover, let IP+C denote the ideal generated by the I(m)’s
as well as the IC(m)’s, i.e., a set X ⊆ ω is in the ideal if there are `0, . . . , `k and
m0, . . . ,mr such that X ⊆∗ I(`0) ∪ · · · ∪ I(`k) ∪ IC(m0) ∪ · · · ∪ IC(mr).

We claim the following:

Lemma 5.2.1.

1. AP ∪ AC is still almost disjoint, and

2. IP+C is still a proper ideal on D ∪DC.

Proof.

1. Let f, h ∈ ωω, and we must show that Φ(f)∩ΦC(h) is finite. Let m be any
member of Φ(f), and let σ ⊆ h be sufficiently long so that m < |σ|. Then
for all τ with σ ⊆ τ ⊆ h, Cτ is disjoint from I(m), hence ΦC(h) is a.d. from
I(m). On the other hand, Φ(f) is almost contained in I(m). Therefore
Φ(f) ∩ ΦC(h) is finite.

2. Consider a finite union I(`0)∪· · ·∪I(`k)∪IC(m0)∪· · ·∪IC(mr). By standard
genericity arguments, the Cohen real C∅ splits all reals in M . Since the
I(`i)’s are defined from P , it is clear that ω \ I(`0) ∪ · · · ∪ I(`k) ∈ M .
Therefore, there are infinitely many numbers in C∅ \ I(`0)∪ · · · ∪ I(`k), and
from these, only finitely many can be in IC(m0) ∪ · · · ∪ IC(mr).

It is not hard to see that this way of extending AP can also be used to extend
any countable collection of a.d. families AP i contained in a countable model M—
in that case, Cσ is defined so that it is disjoint from

⋃
m,i<|σ| Ii(m). This will be

the main idea of our construction, but to guarantee that it is indestructible by
an iteration of Hechler forcing, we must adjust and fine-tune this method.

5.3 The Hechler-indestructible mad family

Recall the Hechler forcing partial order D consisting of conditions of the form
(s, f) ∈ ω<ω × ωω with s ⊆ f , ordered by (s′, f ′) ≤ (s, f) iff s ⊆ s′ and f ′ ≥
f . Hechler forcing satisfies the c.c.c., generically adds a dominating real, and
moreover has many useful preservation properties. The one we will rely on in
this proof is preservation of ω-splitting families. We state it in a slightly stronger
form.
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Fact 5.3.1. Let ȧ be a D-name for an element of [ω]ω. Then there exist {ai | i <
ω}, explicitly definable from the name ȧ, such that if c splits all ai, then 
D “č
splits ȧ”. This is still true in any iteration of D with finite support.

For a proof, see [Bre09, Main Lemma 3.8]. This property of Hechler forcing
can be used to show that if X ⊆ [ω]ω is an ω-splitting family, then it will remain so
in the Hechler extension, and even in the iterated Hechler extension. We will use
it for a slightly different purpose, a kind of “properness”-version of preservation
of ω-splitting families.

Fact 5.3.2. Let M be a countable elementary submodel of some sufficiently large
structure Hθ. Suppose c ∈ [ω]ω splits all reals in M . Then in the (iterated)
Hechler extension V [G], c splits all reals in M [G].

To see why this follows, note that if a ∈ M [G] then it has a name ȧ ∈ M ,
so the ai from Fact 5.3.1 will also be in M because they are definable from ȧ.
Therefore, c will split all ai, and hence 
D “č splits ȧ” (and the same is still true
in an iteration of D with finite support).

We can now state our main result.

Theorem 5.3.3 (Main Theorem). In the ℵ2-iteration of Hechler forcing (with
finite support) starting from a model of CH, b = ℵ2 while aB = ℵ1.

To prove this theorem, we construct an ℵ1-Borel mad family in the ground
model V satisfying CH, i.e., a mad family A =

⋃
α<ℵ1 Aα, where each Aα is a

Borel (in fact perfect) a.d. set. Then we will show that in V [Gℵ2 ], the iteration

of Hechler forcing of length ℵ2, AV [Gℵ2 ] :=
⋃
α<ℵ1 A

V [Gℵ2 ]
α is still maximal.

We will construct A by induction on α < ℵ1, using ideas described in the
previous section. Most of the effort will go into proving the main technical lemma
concerned with the induction step, which we now state.

Lemma 5.3.4 (Main Lemma). Let M be a countable elementary submodel of
a sufficiently large structure Hθ. Let {P i | i ∈ ω} be a sequence of partitions
contained in M . Denote by ϕi,Φi, ψi, Ii and Ai all the objects derived from the
partition P i, and let IP be the ideal generated by the Ii(m)’s, for all i ∈ ω (i.e.,
IP := IP 0+P 1+P 2+...). Assume that this ideal is proper, i.e., ω is not in the ideal.

Then there exists a partition C := {Cσ | σ ∈ ω<ω} of some domain DC, satisfying
the following properties:

1. for every f, h ∈ ωω and every i ∈ ω: Φi(f) and ΦC(h) are almost disjoint,

2. the ideal IP+C is proper,

3. for every Y ∈M , if Y is almost disjoint from Φi(f) for every f and every
i ∈ ω, then there exists an h ∈ ωω such that ΦC(h) ⊆ Y , and
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3∗ if G is generic for any iteration of Hechler forcing, then for every Y ∈M [G],
if Y is almost disjoint from Φi(f) for every f ∈ V [G] and every i ∈ ω, then
there exists an h ∈ V [G] such that ΦC(h) ⊆ Y .

In the proof of the lemma, conditions 3 and 3∗ are proved analogously, where
the argument for 3∗ follows from the argument for 3 using Fact 5.3.2. We will
prove condition 3 in detail, and then explain how to modify the construction to
yield a proof of 3∗ (the details will then be left out). Most of the work will go into
defining a combinatorially involved construction so that condition 3 is satisfied.

Note that if we add C generically using finite conditions, as we did in the
previous section, we can easily satisfy conditions 1 and 2. Moreover, recall that
Cohen reals are splitting over the ground model. To be precise, in the construction
of the previous section, each Cσ was a Cohen subset of ω \

⋃
m,i<|σ| Ii(m), and

thus split every set Y ∈M which had infinite intersection with ω \
⋃
m,i<|σ| Ii(m).

This provides an idea for proving condition 3: if we could guarantee that the set
Y ∈M has infinite intersection with ω\

⋃
m,i<|σ| Ii(m) for arbitrarily large σ, then

we could inductively pick h(n) so as to satisfy ΦC(h) ⊆ Y , using the splitting
property of every Ch�n. But, in general, this is clearly impossible: if Y ⊆ Ii(m)
for some m, then eventually σ will be long enough so that i,m < |σ|, and then
Y will not have infinite intersection with the required set and we will not be able
to use the splitting property of Cσ.

So we need to modify the construction, but the problem is that we must
still guarantee condition 1. This turns out to be more tricky than may seem
at first glance. To appreciate the difficulty, suppose Y ∈ M is an infinite set
which is “very close” to some Φi(f) but still almost disjoint from it, e.g., Y =
{pif�n(f(n) + 1) | n ∈ ω}. If condition 1 of the lemma is to be satisfied, then
ΦC(h) must be almost disjoint from Φi(f) for any h. But how can this be achieved
without the side-effect that ΦC(h) is also almost disjoint from Y , making condition
3 impossible to satisfy? To alleviate this apparent tension between conditions 1
and 3 we will use a careful construction, such that, as σ grows longer, Cσ is
disjoint from more and more sets of the form Ii(m), but a special selection of
those is excluded from this process. This will allow us, inductively, to select h so
that every Ch�n splits Y , while making sure that condition 1 is not violated.

Proof of main lemma. The proof will proceed in three steps. First, we will give
an inductive definition of C as we wish to have it, then we show that such a
construction actually exists, and finally we show that it satisfies conditions 1–3∗

of the lemma.

Part 1. The sets Cσ are defined by induction on the length of σ. Moreover, to
each σ and each j < |σ|, we associate another sequence τj(σ), called a marker,
satisfying |τj(σ)| = |σ| and σ ⊆ σ′ =⇒ τj(σ) ⊆ τj(σ

′). This gives rise to the
limit function τ̄j : ωω → ωω defined by τ̄j(f) :=

⋃
n>j τj(f�n). The following
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convention will be useful here: variables i0, i1, . . . denote the digits of σ whereas
i0j , i

1
j , . . . denote those of the markers τj(σ), and similarly for f versus τ̄j(f).

The variable Θ will be used to denote elements of (ω<ω)<ω, where for all i < |Θ|,
|Θ(i)| = |Θ|.
We describe the first few steps of the inductive construction explicitly.

• (k = 0)

– C∅ is the disjoint union of infinitely many infinite sets C
〈〈i00〉〉
∅ , where

i00 is an arbitrary integer. Each C
〈〈i00〉〉
∅ splits every Y ∈M .

– Require that for every i00, ψ0(〈i00〉) /∈ C
〈〈i00〉〉
∅ (this is called an excluded

point).

– For every i0 ∈ ω, define

τ0(
〈
i0
〉
) :=

〈
i00
〉

:⇐⇒ c∅(i0) ∈ C〈〈i
0
0〉〉

∅

(here c∅(i0) refers to the enumeration of C∅ in increasing order, as
defined in Section 5.2).

• (k = 1) The markers τ0(〈i0〉) = 〈i00〉 have already been defined in the previ-
ous step.

– Let σ := 〈i0〉. Call i10 a forbidden value if ψ0(〈i00, i10〉) = ψC(〈i0〉).

– C〈i0〉 is the disjoint union of infinitely many infinite sets C
〈〈i00,i10〉,〈i01,i11〉〉
〈i0〉 ,

where τ0(〈i0〉) = 〈i00〉, i10 is any natural number which is not a forbidden
value, and i01, i

1
1 are arbitrary. Define

Xσ :=
⋃
{Ij(`) | j, ` < 1 and ψ−1

j (`)⊥
〈
i0j
〉
}.

Each C
〈〈i00,i10〉,〈i01,i11〉〉
〈i0〉 is disjoint from Xσ and splits every Y which has

infinite intersection with ω \Xσ.

– Require that ψ0(〈i00〉), ψ0(〈i00, i10〉), ψ1(〈i01〉), ψ1(〈i01, i11〉) /∈ C
〈〈i00,i10〉,〈i01,i11〉〉
〈i0〉 ,

or, in other words, ϕj(
〈
i0j , i

1
j

〉
) ∩ C〈〈i

0
0,i

1
0〉,〈i01,i11〉〉

〈i0〉 = ∅, for j = 0, 1 (ex-

cluded points).

– For every i1 ∈ ω, define

τ0(〈i0, i1〉) := 〈i00, i10〉
and

τ1(〈i0, i1〉) := 〈i01, i11〉

 :⇐⇒ c〈i0〉(i
1) ∈ C〈〈i

0
0,i

1
0〉,〈i01,i11〉〉

〈i0〉 .
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• (k = 2) The markers τ0(〈i0, i1〉) = 〈i00, i10〉 and τ1(〈i0, i1〉 = 〈i01, i11〉) have
already been defined in the first two steps.

– Let σ := 〈i0, i1〉. Call i20 a forbidden value if ψ0(〈i00, i10, i20〉) ∈ {ψC(〈i0〉),
ψC(〈i0, i1〉)} and call i21 a forbidden value if ψ1(〈i01, i11, i21〉) = ψC(〈i0, i1〉).

– C〈i0,i1〉 is the disjoint union of infinitely many infinite sets

C
〈〈i00,i10,i20〉,〈i01,i11,i21〉,〈i02,i12,i22〉〉
〈i0,i1〉

where τ0(〈i0, i1〉) = 〈i00, i10〉, τ1(〈i0, i1〉) = 〈i01, i11〉, i20 and i21 are any nat-
ural number which are not forbidden values, and i02, i

1
2, i

2
2 are arbitrary.

Define
Xσ :=

⋃
{Ij(`) | j, ` < 2 and ψ−1

j (`)⊥
〈
i0j , i

1
j

〉
}.

Each C
〈〈i00,i10,i20〉,〈i01,i11,i21〉,〈i02,i12,i22〉〉
〈i0,i1〉 is disjoint from Xσ and splits every Y

which has infinite intersection with ω \Xσ.

– Require that ϕj(
〈
i0j , i

1
j , i

2
j

〉
) ∩ C〈〈i

0
0,i

1
0,i

2
0〉,〈i01,i11,i21〉,〈i02,i12,i22〉〉

〈i0,i1〉 = ∅, for j =

0, 1, 2 (excluded points).

– For every i2 ∈ ω, define

τ0(〈i0, i1, i2〉) := 〈i00, i10, i20〉
and

τ1(〈i0, i1, i2〉) := 〈i01, i11, i21〉
and

τ2(〈i0, i1, i2〉) := 〈i02, i12, i22〉

 :⇐⇒
c〈i0,i1〉(i

2) ∈

C
〈〈i00,i10,i20〉,〈i01,i11,i21〉,〈i02,i12,i22〉〉
〈i0,i1〉 .

This construction is continued in a similar fashion. The general inductive step
looks as follows:

• (any k) The markers τj(σ) have been defined for all σ with |σ| = k and
j < k.

– Fix σ such that |σ| = k. For j < k, call ikj a forbidden value if

ψj(τj(σ)_
〈
ikj
〉
) ∈ {ψC(σ�m) | j < m ≤ k}.

– Cσ is the disjoint union of infinitely many sets CΘ
σ , where

Θ :=
〈
τ0(σ)_

〈
ik0
〉
, . . . , τk−1(σ)_

〈
ikk−1

〉
,
〈
i0k, . . . , i

k
k

〉〉
,

with ikj not forbidden and i0k, . . . , i
k
k arbitrary. Define

Xσ :=
⋃
{Ij(`) | j, ` < k and ψ−1

j (`)⊥ τj(σ)}.

Each CΘ
σ is disjoint from Xσ and splits all Y ∈M which have infinite

intersection with ω \Xσ.
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– Require that ϕj(τj(σ)_
〈
ikj
〉
)∩CΘ

σ = ∅ for all j < k (excluded points).

– For every ik, define

∀j < k
[
τj(σ

_
〈
ik
〉
) := τj(σ)_

〈
ikj
〉]

and
τk(σ

_
〈
ik
〉
) :=

〈
ik0, . . . , i

k
k

〉
 :⇐⇒ cσ(ik) ∈ CΘ

σ .

Thus we have completed the inductive definition of C.

Part 2. We show that the construction of C, as described above, does indeed
exist. Since this time we don’t just want every Cσ to be splitting, but every CΘ

σ

considered in the construction, we must add finite conditions in such a way that
each CΘ

σ is essentially a Cohen real over M . At first glance, a potential difficulty
seems to arise from the fact that, in order to construct Cσ, we need to know the
values of τj(σ

′) for σ′ ⊆ σ, and these values are only known when the Cohen real
has been added. However, we can avoid this difficulty by first adding CΘ

σ for all
possible combinations of σ and Θ, each one being a Cohen subset of the relevant
set. Afterwards, we can prune the tree to remove many of the CΘ

σ ’s and leave
only the ones that correspond to the construction described above.

To be precise, consider partial functions p with dom(p) being a finite subset of

{(σ,Θ, n) ∈ ω<ω × (ω<ω)
<ω × ω | |Θ| = |σ|+ 1}

and ran(p) = 2, ordered by extension, and satisfying the following conditions:

1. For every σ,Θ and n, if p(σ,Θ, n) = 1 then n /∈ Xσ,Θ, where

Xσ,Θ :=
⋃
{Ij(m) | j,m < |σ| and ψ−1

j (`)⊥ (prj(Θ)�|Θ| − 1)}, and

2. for all σ, σ′,Θ,Θ′ such that (σ,Θ) 6= (σ′,Θ′), there is no n such that
p(σ,Θ, n) = p(σ′,Θ′, n) = 1.

Let G be the M -generic filter for this partial order, and in M [G] define CΘ
σ :=

{n ∈ ω | (
⋃
G)(σ,Θ, n) = 1}. Genericity arguments for Cohen forcing show that

all the CΘ
σ are pairwise disjoint, and that every CΘ

σ is disjoint from Xσ,Θ and
splits every Y ∈M which has infinite intersection with ω \Xσ,Θ.

Now, by induction on the length of σ, we can prune the tree given by the CΘ
σ ’s and

define the markers τj(σ) and the forbidden values accordingly. To be more precise,
let σ be of length k and suppose that Cσ�j is already known for j < k. Since the
values of τj(σ) for j < k are then also known, we can compute the forbidden values
at this step. Then, we throw away all CΘ

σ except those where Θ is compatible
with the already determined sequence of markers τj(σ) and the forbidden values,
i.e., we keep only those CΘ

σ where prj(Θ) is of the form τj(σ)_
〈
ikj
〉

and ikj is
not forbidden. After that, we still need to remove the excluded points from each
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relevant CΘ
σ . Since this only requires changing finitely many elements, this does

not affect the property of CΘ
σ being a Cohen real.

Now Cσ can be defined as the union of the CΘ
σ that we left behind and removed

excluded points from. This allows us to extend τj and continue pruning the next
levels. It is clear that in this manner we can achieve precisely the construction
described above.

Part 3. Finally we show that C satisfies conditions 1–3.

1. Let f, h ∈ ωω and j ∈ ω be fixed. We must prove that Φj(f) ∩ ΦC(h) is
finite. There are now two methods for proving this. If f does not happen
to be τ̄j(h), we can use an argument similar to Lemma 5.2.1. Otherwise,
we will rely on the excluded points and the forbidden values.

Case 1: f 6= τ̄j(h). Let σ ⊆ h and τ ⊆ f be long enough so that τj(σ)⊥ τ .
Let ` := ψj(τ). Then clearly Φj(f) ⊆ Ij(`). Moreover, for any σ′

such that σ ⊆ σ′ ⊆ h and |σ′| > j, `, we know that ψ−1
j (`) ⊥ τj(σ′),

so, by construction, we know that CΘ
σ′ ∩ Ij(`) = ∅. This implies that

ΦC(h) ∩ Φj(f) is at most finite.

Case 2: f = τ̄j(h). Ignore the first j values of Φj(f), and let σ := h�(k+1),
for k > j. Let τ := f�(m + 1) for any m. Clearly, it is sufficient to
show that ψC(σ) 6= ψj(τ).

Case (a) : m ≤ k. Then at stage k of the construction, ψj(τ) is an

excluded point of C
〈...,τj(σ),... 〉
σ�k . But ψC(σ) ∈ C〈...,τj(σ),... 〉

σ�k , so indeed
ψC(σ) 6= ψj(τ).

Case (b) : k < m. Let imj := τ(m). Then at stage m of the con-
struction, imj cannot be a forbidden value. Then, by definition,
ψj(τ) 6= ψC(h�r) for any r with j < r ≤ m, in particular for
r = k + 1. Therefore ψj(τ) 6= ψC(σ).

2. To show that IP+C is proper, consider any finite union Ij0(`0)∪· · ·∪Ijk(`k)∪
IC(m0) ∪ · · · ∪ IC(mr). Let Z := Ij0(`0) ∪ · · · ∪ Ijk(`k), and note that Z is
in M , since it is constructed from partitions contained in M . Recall that,
by construction, every CΘ

∅ splits every real in M , so in particular, it splits
ω \Z. Therefore, there are infinitely many elements in CΘ

∅ \Z. From those,
only finitely many can be in IC(m0)∪ · · · ∪ IC(mr). Hence, infinitely many
elements are not in Ij0(`0) ∪ · · · ∪ Ijk(`k) ∪ IC(m0) ∪ · · · ∪ IC(mr).

3. This is the essence of the proof, and the main reason for setting up the
construction as we have done it. Suppose Y is an infinite subset of ω in M ,
and Y ∩ Φj(g) is finite for all j and all g ∈ ωω. The goal is to construct an
h such that ΦC(h) ⊆ Y .
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First, we build functions gj ∈ ωω, for every j, and a sequence Y ⊇ Y0 ⊇
Y1 ⊇ Y2 ⊇ . . . of infinite sets in M , making sure that for every j the
following condition is satisfied:

(∗)j : Yj ∩ Ĩj(ρ) is finite for every ρ incompatible with gj.

Start by constructing g0 := 〈i00, i10, i20, . . . 〉, taking care of the partition P 0.
Consider two cases: (a) there exists an i00 such that Y ∩ Ĩ0(〈i00〉) is infinite,
and (b) Y ∩ Ĩ0(〈i00〉) is finite for any choice of i00. If case (b) occurs, pick all
the i00, i

1
0, . . . arbitrarily (they are irrelevant), and set K0 := 0 (this encodes

the fact that case (b) occurred at the 0-th step). If case (a) occurs, fix
this i00 and continue. Consider two cases: (a) there exists an i10 such that
Y ∩ Ĩ0(〈i00, i10〉) is infinite, and (b) Y ∩ Ĩ0(〈i00, i10〉) is finite for any choice of
i10. If case (b) occurs, pick all the remaining i10, i

2
0, . . . arbitrarily, and set

K0 := 1; if case (a) occurs, fix this i10 and continue. Go on in a similar
fashion: if g0�k is defined, there are two cases: (a) there exists an ik0 such
that Y ∩ Ĩ0(g0�k_〈ik0〉) is infinite, and (b) Y ∩ Ĩ0(g0�k_〈ik0〉) is finite for any
choice of ik0. In case (b) pick ik0, i

k+1
0 , . . . arbitrarily and set K0 := k; in case

(a) fix ik0 and continue.

This way we define g0 = 〈i00, i10, i20, . . . 〉. If case (b) occurred at any finite
stage k, we also have K0 := k, otherwise K0 is undefined. Now, we want
to shrink Y to a new infinite set Y0, in such a way that condition (∗)0 is
satisfied. There are two possibilities.

(i) If case (b) occurred at some stage, then let Y0 := Y ∩ Ĩ0(g0�K0) (or
Y0 = Y if K0 = 0). By construction, Y0 is infinite, and it is not
hard to check that Y0 has finite intersection with Ĩ0(ρ) whenever ρ is
incompatible with g0 (in fact, this holds for all ρ except ρ ⊆ g0�K0).
Therefore, condition (∗)0 is satisfied by Y0.

(ii) If case (a) occurred throughout the construction, then notice the fol-
lowing: for every n, there is a y ∈ Y such that g0�n ⊆ ψ−1

0 (y). So, for
each n, pick one such yn, and let Y0 := {y0, y1, y2, . . . }. Clearly Y0 is
an infinite subset of Y . Moreover, if ρ is any sequence incompatible
with g0, then, letting n be least such that ρ(n) 6= g0(n), we see that
Ĩ0(ρ) can contain at most n members of Y (because for any ym for
m > n we have g0�m ⊆ ψ−1

0 (ym) and hence ym /∈ Ĩ0(ρ)). Therefore
condition (∗)0 is satisfied by Y0.

Note that, in either case, Y0 is explicitly constructed using information
encoded in the partition P0 ∈M , so Y0 is also in M .

Now we continue with the construction of g1 := 〈i01, i11, i21, . . . 〉 using Y0

instead of Y , taking care of the partition P 1 instead of P 0. Consider two
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cases: (a) there exists an i01 such that Y0 ∩ Ĩ1(〈i00〉) is infinite, and (b)
Y0 ∩ Ĩ1(〈i01〉) is finite for any choice of i01. If case (b) occurs, pick all the
i01, i

1
1, . . . arbitrarily and set K1 := 0; if case (a) occurs, fix this i01 and

continue, etc. After we have defined g1, let Y1 be an infinite subset of Y0,
constructed in the same way as Y0 was constructed out of Y , i.e., so that
condition (∗)1 is satisfied, and again Y1 ∈M .

It is clear that this method can be continued, so at each step j we deal
with the partition P j, define gj =

〈
i0j , i

1
j , i

2
k, . . .

〉
and an infinite set Yj ∈M ,

following the same procedure, and make sure that condition (∗)j is satisfied.

Now, we can define the function h := 〈i0, i1, i2, . . . 〉 so that the following
three conditions are satisfied for every k:

1. c〈i0,...,ik−1〉(i
k) ∈ C〈〈i

0
0,...,i

k
0〉,...,〈i0k,...,ikk〉〉

〈i0,...,ik−1〉 ,

2. c〈i0,...,ik−1〉(i
k) ∈ Yk, and

3. c〈i0,...,ik−1〉(i
k) /∈

⋃
j≤k Φj(gj).

The first condition inductively guarantees that for every k and j < k,
τj(
〈
i0, . . . , ik

〉
) =

〈
i0j , . . . , i

k
j

〉
. The third condition is crucial: it is to ensure

that we will not run into trouble with forbidden values imj for j ≤ k < m
in the future. This is the only place in the argument where the assumption
that Y is a.d. from all Φj(g) is needed.

To see that numbers ik satisfying conditions 1–3 can indeed be chosen,
proceed inductively. Suppose

〈
i0, . . . , ik−1

〉
has already been defined. Con-

dition 3 inductively implies that ikj for j < k are not forbidden values,

therefore we can consider the set C
〈〈i00,...,ik0〉,...,〈i0k,...,ikk〉〉
〈i0,...,ik−1〉 . Recall that this set

was defined so that it splits every Y ′ ∈ M which has infinite intersection
with ω \X〈i0,...,ik−1〉, where

X〈i0,...,ik−1〉 =
⋃
{Ij(`) | j, ` < k and ψ−1

j (`)⊥
〈
i0j , . . . , i

k−1
j

〉
}.

But condition (∗)k implies that Yk is almost disjoint from any Ij(`) with
ψ−1
j (`) ⊥ gj. In particular, it is almost disjoint from any Ij(`) with ψ−1

j (`)

⊥
〈
i0j , . . . , i

k−1
j

〉
. But then Yk must be almost disjoint from a finite union of

such sets, and therefore, have infinite intersection with ω \X〈i0,...,ik−1〉.

Therefore C
〈〈i00,...,ik0〉,...,〈i0k,...,ikk〉〉
〈i0,...,ik−1〉 splits Yk, so there are infinitely many num-

bers n in the set Yk ∩C
〈〈i00,...,ik0〉,...,〈i0k,...,ikk〉〉
〈i0,...,ik−1〉 . Now we recall the fact that, by
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assumption, |Yk ∩ Φj(gj)| < ω for every j ≤ k. Therefore, it is possible to
pick an n even so that condition 3 (at induction step k) is also satisfied.
So we pick such an n and let ik be such that C〈i0,...,ik−1〉(i

k) = n. This

completes the induction step.

We thus construct the entire function h = 〈i0, i1, . . . 〉. The second condition
implies that ΦC(h) ⊆ Y , as had to be shown.

3.∗ Let G be generic for any iteration of Hechler forcing. It is clear that con-
dition 3∗ differs from condition 3 only in the sense that it says something
about the model M [G] (with respect to V [G]) instead of M (with respect
to V ). For this, we note that the entire proof of 3 above can be repeated,
using the preservation property of Hechler forcing, Fact 5.3.2. It is clear
that in the statement of Fact 5.3.2 we can replace splitting in the space
[ω]ω by splitting in the space [D]ω for some infinite subset of ω (provided
D is in M). In our case, we have constructed the new partition C out of
many reals of the form CΘ

σ , where each CΘ
σ was a splitting real over M in

the sense of the space [ω \Xσ]ω, where

Xσ :=
⋃
{Ij(`) | j, ` < 1 and ψ−1

j (`)⊥
〈
i0j
〉
}.

Applying Fact 5.3.2 to the same real CΘ
σ , we see that it is still splitting over

the extended model M [G], in the sense of the space [ω \Xσ]ω, interpreted
in V [G].

Therefore we can repeat the same argument in V [G]. If Y is a real in M [G],
and if |Y ∩ Φi(g)| < ω for every g ∈ ωω ∩ V [G], we construct functions
gj the same way as before, except that now gj ∈ V [G]. However, the sets
Xσ have not changed, and the CΘ

σ split all Y ′ ∈ M [G] which have infinite
intersection with ω \ Xσ, so we can apply the same reasoning to produce
a real h ∈ ωω ∩ V [G], such that V [G] |= ΦC(h) ⊆ Y . This completes the
proof. (Main Lemma)

Proof of main theorem. Let V be a model of CH. We will construct a Dℵ2-
indestructible ℵ1-Borel mad family in V . If A is such a family, we will denote
by AV [Gℵ2 ] the re-interpreted ℵ1-Borel mad family, i.e., the ℵ1-union of the re-
interpreted Borel sets. Before proceeding with the construction, we show that
preservation in iterations of length ℵ1 is sufficient.

Claim. If an ℵ1-Borel mad family A is Dℵ1-indestructible, then it is also Dℵ2-
indestructible.

Proof. For a countable set S ⊆ ℵ2, let DS denote the iteration of Hechler forcing
with support S. It is known that the ℵ2-iteration of Hechler forcing is the direct
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limit of iterations DS where S ranges over countable subsets of ℵ2. This is true
because Hechler forcing is a Suslin c.c.c. forcing notion, see [Bre10, p 54] for a
proof. In particular, any new real added in the iteration Dℵ2 is already added by
some DS.

Let A be an ℵ1-Borel mad family in V and suppose it is not Dℵ2-indestructible.
Then there is a Y ∈ V [Gℵ2 ] which is almost disjoint from AV [Gℵ2 ]. By the above,
there is a countable S ⊆ ℵ2 such that Y is in V [GS]. Thus in V [GS], Y is
almost disjoint from AV [GS ], and so V [GS] |= “A is not maximal”. Since there
is a canonical isomorphism between DS and Dγ where γ < ℵ1 is the order-type
of S, the forcing extensions V [GS] and V [Gγ] satisfy the same sentences, hence
V [Gγ] |= “A is not maximal”. This proves that A is not Dℵ1-indestructible.

� (Claim)

Because of this claim, it suffices to construct a Dℵ1-indestructible ℵ1-Borel mad
family in V .

Now we can proceed with the construction. First, note that in V there is a set
of “canonical Dℵ1-names for reals” of size ℵ1, such that if ż is any Dℵ1-name for
a real then there is a name ẋ in this set, such that 
Dℵ1 ż = ẋ. This follows
by standard arguments for finite support iterations of c.c.c. forcings, such as
in the proof of the consistency of Martin’s Axiom (see [Jec03, Theorem 16.13]).
Therefore we may assume, without loss of generality, that there are only ℵ1 many
Dℵ1-names for reals, and fix some enumeration {ẋα | α < ℵ1} of them in V .

Next, we fix some sufficiently large structure Hθ. By induction on α < ℵ1, we
construct an increasing sequence of countable elementary submodels Mα ≺ Hθ

covering all the Dℵ1-names for reals, while simultaneously constructing partitions
Pα. The corresponding perfect a.d. families will be denoted by Aα, and the ideal
generated by it by Iα.

At step α of the construction, the induction hypothesis will guarantee the follow-
ing four conditions:

(IH1) ẋβ ∈Mα for all β < α

(IH2) P β ∈Mα for all β < α,

(IH3)
⋃
β<αAβ is an a.d. family, and

(IH4) the ideal I<α generated by all Iβ(m) for β < α, is proper (does not cover
all of ω).

At successor steps, we will rely on the main lemma to do all the work.

• Basic step: let M0 be any countable elementary submodel of Hθ.
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• Induction step α: suppose Mα is a countable elementary submodel of Hθ,
and suppose all four inductive conditions hold. Since α is countable and
IH2–IH4 are satisfied, we are in the right position to apply the main lemma.
From it, we obtain a new partition, Pα, and conditions 1 and 2 of the main
lemma make sure that IH3 and IH4 will be satisfied at the next step of the
induction, i.e., step α+ 1. Now, define Mα+1 ≺ Hθ so that it contains Mα,
the new partition Pα, the name ẋα. For instance

Mα+1 := HullHθ(Mα ∪ {Pα} ∪ {ẋα}).

This makes sure that IH1 and IH2 are also satisfied at step α + 1.

• Limit step: at limit stages λ < ℵ1, let Mλ contain all the Mα for α < λ, e.g.

Mλ := HullHθ(
⋃
α<λ

Mα ∪ {ẋλ}).

It is clear that conditions IH1–IH4 are satisfied at stage λ.

Note that the construction of P 0 is a trivial application of the main lemma; since
the ideal I<0 is empty, P 0 is simply a partition of Cohen reals over M0, which
split all sets Y ∈M0.

Let A :=
⋃
α<ℵ1 Aα. This is our Hechler-indestructible ℵ1-Borel mad family.

First, let us see that A is mad in V . Take any Y ∈ [ω]ω, and note that since
the sequence of models Mα covers all names for reals (modulo equivalence), in
particular it covers ground model reals, so there is an Mα such that Y ∈Mα. By
point 3 of the main lemma, either there is an f ∈ ωω and a β < α such that Y
has infinite intersection with Φβ(f), or there is an h ∈ ωω such that Φα(h) ⊆ Y ,
so in either case Y has infinite intersection with A.

Now, let us check that A is preserved in V [Gℵ1 ], the ℵ1-iteration of D. Take any
Y ∈ [ω]ω ∩ V [Gℵ1 ], and let Ẏ be a name for Y . Without loss of generality we
may assume that Ẏ is a canonical Dℵ1-name, hence there is an Mα such that
Ẏ ∈ Mα, so Y ∈ Mα[Gℵ1 ]. By point 3∗ of the main lemma, either there is an
f ∈ ωω ∩V [Gℵ1 ] and a β < α such that Y has infinite intersection with Φβ(f), or
there is an h ∈ ωω ∩ V [Gℵ1 ] such that Φα(h) ⊆ Y . In either case Y has infinite
intersection with A.

Thus, the ℵ1-Borel mad family A is preserved by the ℵ1-iteration V [Gℵ1 ], and
therefore also by the ℵ2-iteration V [Gℵ2 ]. This witnesses the fact that aB = ℵ1 in
V [Gℵ2 ]. On the other hand, b = ℵ2 in V [Gℵ2 ], and this completes the proof.

So we have proved the consistency of aB < b, and it remains only to verify
that the proof of the main theorem can be modified to yield the consistency of
b > ℵ1+“there is a Σ1

2 mad family”. For this, we start with L instead of an
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arbitrary model of CH, and modify the proof of the main theorem as follows: fix
some uniform coding of partitions Pα by reals. In the induction step α of the
proof, instead of picking some Pα given to us by the lemma as we did before, pick
the Pα with the <L-least code.

Let P denote the set of all (codes of) {Pα | α < ℵ1} produced in this new
proof. As always, the absoluteness of <L and everything else involved in this
construction implies that the definition of the set P is absolute between L and a
sufficiently large Lδ. Therefore, we may write P ∈ P iff ∃Lδ (P ∈ Lδ ∧ Lδ |=
P ∈ P), or equivalently: there is E ⊆ ω × ω such that

1. E is well-founded,

2. (ω,E) |= Θ,

3. ∃n (P = πE(n) and (ω,E) |= n ∈ π−1
E [P ]).

This statement is Σ1
2.

For P ∈ P , let AP denote the Borel a.d. family based on P (i.e., Aα for
P = Pα). By the main theorem, the ℵ1-Borel mad family, given by A =

⋃
{AP |

P ∈ P}, is preserved in the ℵ2-iterated Hechler extension L[Gℵ2 ]. But in the
extension, AL[Gℵ2 ] is given by the following definition:

a ∈ AL[Gℵ2 ] ⇐⇒ ∃P (P ∈ P ∧ a ∈ AP ),

which is a Σ1
2 statement. Thus, we have obtained a model of b > ℵ1+“there is a

Σ1
2 mad family”, and also of Σ1

2(L)+“there is a Σ1
2 mad family”.

5.4 Open questions

We have succeeded in proving the consistency of b > ℵ1 with the existence of a
Σ1

2 mad family. But recall that in Fact 5.1.4 we proved the consistency of ¬CH
with the existence of a Π1

1 mad family. We conjecture the following:

Conjecture 5.4.1. Con(b > ℵ1 + “there is a Π1
1 mad family”).

The method of Miller (used in Theorem 5.1.2 and in Theorem 4.3.9) can in
principle be applied to our construction. Provided that a “coding lemma” can be
proved allowing an arbitrary relation E to be encoded into the partition Pα at
stage α, Miller’s method will give a Π1

1 definition of the set P . However, this is
not sufficient to prove the conjecture, since in the definition of AL[Gℵ2 ] there is an
additional existential quantifier, i.e., we would again only obtain a Σ1

2 definition
of the mad family in L[Gℵ2 ]. Despite this potential difficulty, we are confident
that the conjecture is true. The method of proof would involve the following
trick: modify the partitions Pα in such a way that every real from Aα recursively
encodes the whole partition Pα. In this way, the additional existential quantifier
can be eliminated.

A more fundamental question would be the following:
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Question 5.4.2. Are the statements “there is a Σ1
2 mad family” and “there is a

Π1
1 mad family” equivalent?

Many other questions about projective mad families remain open. The most
interesting result would be a characterization theorem.

Question 5.4.3. Is there some notion of transcendence over L which is equivalent
to the statements “there is no Σ1

2 mad family” or “there is no Π1
1 mad family”?

If characterization is infeasible, one might at least look for upper and lower
bounds, i.e., regularity hypotheses that imply, or are implied by, the hypotheses
“there is no Σ1

2 mad family” or “there is no Π1
1 mad family”. Since the original

proof of Mathias (Theorem 5.1.1) involves a Ramsey-style property, the following
would be an interesting test-case:

Question 5.4.4. Does Σ1
2(Ramsey) imply that there is no Σ1

2 mad family?

On the other hand, our own proof relies heavily on splitting reals and the
preservation of splitting families by Hechler forcing, so one may ask whether the
following holds:

Question 5.4.5. Does “there is no Σ1
2 mad family” imply that for all r, L[r]∩[ω]ω

is not a splitting family?

Other questions concern the cardinal invariant aB. Although we have estab-
lished the consistency of aB < b, many questions remain open. For example, it
is not clear whether the converse holds.

Question 5.4.6. Is aB ≤ b provable in ZFC, or is b < aB consistent?

Concerning lower bounds for aB, the following is a conjecture of Dilip Ragha-
van (for the definition of h, see Definition 1.2.28):

Conjecture 5.4.7. h ≤ aB.

Since the canonical method of increasing h is to iterate Mathias forcing, this
conjecture seems closely related to Question 5.4.4.

Concerning upper bounds, a question related to Question 5.4.5 would be
whether the splitting number s (see Definition 1.2.26) is an upper bound for aB.
Since we have also used the countability of the α’s in the construction, it may be
more realistic to expect only the weaker result that if s = ℵ1 then aB = ℵ1.

Question 5.4.8. Is aB ≤ s provable in ZFC? Or, at least, is s = ℵ1 → aB = ℵ1

provable in ZFC?
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In a very recent result, Raghavan and Shelah [RS11] showed the weaker state-
ment that if d = ℵ1 then aB = ℵ1.

Finally, recall that the a.d. families Aα we constructed were, in fact, closed.
We can define the cardinal invariant aclosed as the least number of closed a.d.
sets whose union is a mad family. It is obvious that aB ≤ aclosed, and that our
proof actually shows the stronger result Con(aclosed < b). However, it is not clear
whether the two cardinal invariants are different.

Question 5.4.9. Is aB = aclosed provable in ZFC, or is aB < aclosed consistent?

At the moment we do not have an intuition as to which of the above should
be true, nor as to how a proof of either would proceed.
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[BL11] Jörg Brendle and Benedikt Löwe. Eventually different functions and
inaccessible cardinals. J. Math. Soc. Japan, 63(1):137–151, 2011.

[Bla10] Andreas Blass. Combinatorial cardinal characteristics of the contin-
uum. In Matthew Foreman and Akihiro Kanamori, editors, Handbook
of Set Theory, pages 395–489. Springer, Dordrecht, 2010.

[Bre09] Jörg Brendle. Forcing and the structure of the real line: the bogotá
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Samenvatting

In dit proefschrift worden vragen bestudeerd die van belang zijn voor de grond-
slagen van de wiskunde, met name het continuüm der reële getallen. We bekijken
aan de ene kant zogenaamde regulariteitseigenschappen van verzamelingen van
reële getallen, en aan de andere kant definieerbaarheid van zulke verzamelin-
gen. Met “regulariteitseigenschappen” doelen we op bepaalde wenselijke eigen-
schappen van verzamelingen, welke garanderen dat deze verzamelingen een goed
gedraag vertonen, overeenkomstig zijn met onze intüıtie, of zich eenvoudig laten
bestuderen. Klassieke voorbeelden hiervan zijn Lebesgue-meetbaarheid, de eigen-
schap van Baire en de perfecte verzamleingeigenschap. Met “definieerbaarheid”
doelen we op de mogelijkheid een expliciete beschrijving van een verzameling te
geven. Klassieke voorbeelden van definieerbare verzamelingen zijn de Borel-, de
analytische en de projectieve verzamelingen, en dit leidt tot een maat van com-
plexiteit waarbij een verzameling net zo complex wordt beschouwd als de logische
uitdrukking die deze verzameling definieert.

Het verband tussen regulariteit en definieerbaarheid was al vanaf het begin
van de 20e eeuw bekend. Zo voldoen bijvoorbeeld alle Borel- en analytische verza-
melingen aan de meeste regulariteitseigenschappen. Door gebruik te maken van
het Keuzeaxioma kunnen verzamelingen zonder zulke regulariteitseigenschappen
worden geconstrueerd, maar deze zijn in het algemeen niet definieerbaar. In het
construeerbare universum L van Gödel worden deze tegenvoorbeelden echter ook
op het niveau Σ1

2 gevonden (het eerstvolgende complexiteitsniveau na het niveau
Σ1

1 van de analytische verzamelingen).
Doorgaans is de bewering dat alle Σ1

2- of ∆1
2-verzamelingen aan een bepaalde

regulariteitseigenschap voldoen, onafhankelijk van ZFC, de gebruikelijke axioma-
tisering van de verzamelingenleer. Bovendien kunnen zulke beweringen als mo-
gelijke aanvullende hypothesen worden beschouwd, welke onder andere als gevolg
hebben dat het huidige wiskundige universum in een bepaalde zin groter is dan
L.

Het zwaartepunt van dit proefschrift is de wisselwerking tussen regulariteits-
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eigenschappen en definieerbaarheid, met name het verband tussen hypothesen
over regulariteit en meta-mathematische beweringen over het wiskundige univer-
sum.

In Hoofdstuk 2 geven we een abstracte behandeling van het bovengenoemde
fenomeen in het kader van Idealized Forcing, een begrip dat door Jindřich Zapletal
werd ingevoerd. We generaliseren een aantal welbekende stellingen in dit gebied,
en ook een recent resultaat van Daisuke Ikegami. Daarbij komen veel interessante
vragen tevoorschijn. In dit hoofdstuk dient de zogenaamde forcing-methode als
voornaamste bewijsmiddel.

In Hoofdstuk 3 beschouwen we de gepolariseerde partitie-eigenschap, een regu-
lariteitseigenschap dat gemotiveerd is door combinatorische problemen, en aan-
verwant is aan de klassieke eigenschap van Ramsey. Deze werd onlangs in het
werk van, onder andere, Carlos A. Di Prisco and Stevo Todorčević bestudeerd.
We bewijzen een aantal resultaten die deze eigenschap met andere bekende eigen-
schappen op het Σ1

2- en het ∆1
2-niveau vergelijken.

In Hoofdstuk 4 richten we onze aandacht op Hausdorff-gaten, klassiek ob-
jecten die al sinds het vroege 20e eeuw bekend zijn en talrijke toepassingen in
verschillende gebieden van de wiskunde kennen, waaronder de topologie en de
analyse. Hier bewijzen we een uitbreiding van een stelling van Stevo Todorčević
die zegt dat een analytisch Hausdorff-gat niet bestaat.

In Hoofdstuk 5 bekijken we maximaal bijna disjuncte (m.b.d.) families vanuit
het definieerbare standpunt. We voeren een nieuw begrip van onvernietigbaarheid
van m.b.d. families onder forcing in, en gebruiken dit om een behoudsresultaat te
bewijzen dat de consistentie van b > ℵ1 met het bestaan van een Σ1

2-definieerbare
m.b.d familie vaststelt. Dit beantwoordt een vraag van Sy Friedman en Lyubomyr
Zdomskyy.



Abstract

In this dissertation we study questions relevant to the foundations of mathematics,
particularly the real number continuum. We look at regularity properties of sets
of real numbers on one hand, and definability of such sets on the other. By
“regularity properties” we are referring to certain desirable properties of sets of
reals, something that makes such sets well-behaved, conforming to our intuition
or easy to study. Classical examples include Lebesgue measurability, the property
of Baire and the perfect set property. By “definability” we are referring to the
possibility of giving an explicit description of a set. Classical examples of definable
sets are the Borel, analytic and projective sets, and this leads to a measure of
complexity of a set, whereby a set is considered as complex as the logical formula
defining it.

The relationship between regularity and definability has been known since the
beginning of the 20th century. For example, all Borel and analytic sets satisfy
most regularity properties. Using the Axiom of Choice, sets without such regular-
ity properties can easily be constructed, but these are, in general, not definable.
On the other hand, working in Gödel’s constructible universe L, counterexamples
can be found on the Σ1

2 level (the next level beyond the analytic).

Typically, the assertion that all Σ1
2 or all ∆1

2 sets of reals satisfy a certain
regularity property is independent of ZFC, the standard axiomatization of set
theory. Moreover, such an assertion can itself be seen as a possible additional
hypothesis, implying among other things that the set-theoretic universe is larger
than L in a certain way.

The focus of this dissertation is the interplay between regularity properties
and definability, particularly the connection between regularity hypotheses and
meta-mathematical statements about the set theoretic universe.

In Chapter 2 we provide an abstract treatment of the above phenomenon,
formulated in the framework of Idealized Forcing introduced by Jindřich Zapletal.
We generalize some well-known theorems in this field and also a recent result of
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Daisuke Ikegami, and isolate several interesting questions. All proofs in this
chapter rely heavily on the method of forcing.

In Chapter 3 we consider the polarized partition property, a regularity prop-
erty motivated by combinatorial questions and a relative of the classical Ramsey
property. It has been studied in recent work of Carlos A. Di Prisco and Stevo
Todorčević, among others. We prove several results relating this to other well-
known regularity properties on the Σ1

2 and ∆1
2 level.

In Chapter 4 we turn our attention to Hausdroff gaps, classical objects known
since the early 20th century which have numerous applications in various fields
of mathematics such as topology and analysis. We extend a theorem of Stevo
Todorčević stating that there are no analytic Hausdorff gaps in several directions.

In Chapter 5 we look at maximal almost disjoint (mad) families from the
definable point of view. We introduce a new notion of indestructibility of a
mad family by forcing extensions, and using this notion prove a preservation
result establishing the consistency of b > ℵ1 together with the existence of a
Σ1

2 definable mad family. This answers a question posed by Sy Friedman and
Lyubomyr Zdomskyy.
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