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Abstract In [5] Todorčević shows that there is no Hausdorff gap (A,B) if A
is analytic. In this note we extend the result by showing that the assertion
“there is no Hausdorff gap (A,B) if A is coanalytic” is equivalent to “there is

no Hausdorff gap (A,B) if A is Σ1
2”, and equivalent to ∀r (ℵL[r]1 < ℵ1).

We also consider real-valued games corresponding to Hausdorff gaps, and
show that ADR for pointclasses Γ implies that there are no Hausdorff gaps
(A,B) if A ∈ Γ .

Keywords Hausdorff gaps · descriptive set theory · infinite games

Mathematics Subject Classification (2000) 03E15, 03E05, 03E60.

1 Introduction

In the parlance of gaps in P(ω)/fin, two sets a, b ∈ [ω]ω are called orthogonal
(a⊥ b) if |a∩b| < ω. If B ⊆ [ω]ω, then a is orthogonal to B (a⊥ B) if a⊥ b for
every b ∈ B. Two sets A,B ⊆ [ω]ω are orthogonal (A⊥ B) if a⊥ b for every
a ∈ A and b ∈ B.

A pair (A,B) of orthogonal subsets of [ω]ω is called a pre-gap. There is a
trivial way of constructing a pre-gap: take any infinite, co-infinite set c ∈ [ω]ω

and pick any A and B in such a way that ∀a ∈ A : a ⊆∗ c and ∀b ∈ B :
c ∩ b =∗ ∅ (here ⊆∗ and =∗ denote the subset and equality relations modulo
finite). A set c as above is said to separate, or interpolate, the pre-gap (A,B).
The objects worth of study are pre-gaps (A,B) that are not constructed in
this trivial fashion.

Definition 1.1. A pre-gap (A,B) is called a gap if there is no c which sepa-
rates A from B.
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An early result of Hadamard [1] already established that there cannot be a
gap (A,B) if both A and B are countable. Hausdorff, in his well-known paper
[2], constructed an “(ω1, ω1)-gap”, i.e., a gap (A,B) where both A and B are
well-ordered by ⊆∗ with length ω1. This construction proceeds by induction
on α < ω1, and the sets A and B are in general not definable.

Stevo Todorčević, on the other hand, showed in [5, p 56–57] that if one
drops the well-ordering requirement, gaps in P(ω)/fin can be quite explicitly
defined. For example, if A := {{x�n | x(n) = 0} | x ∈ 2ω} and B := {{x�n |
x(n) = 1} | x ∈ 2ω} then (identifying 2<ω with ω) it is easy to see that (A,B)
is a gap and that A and B are both perfect sets in the standard topology
on [ω]ω. However, as also shown in [5], such explicit counterexamples cease
to exist if one assumes that A and B are well-ordered. In fact, a sufficient
condition is that A and B are σ-directed.

Definition 1.2. A set A ⊆ [ω]ω is σ-directed if for every countable collection
{an ∈ A | n ∈ ω}, there exists a ∈ A such that an ⊆∗ a for all n.

If (A,B) is a gap and both A and B are σ-directed, we will call it a
Hausdorff gap1

Theorem 1.3 (Todorčević, [5, Corollary 1]). There cannot be a Hausdorff
gap (A,B) if A is analytic.

A variation of the proof shows that in the Solovay model (the L(R) of the
Lévy collapse of an inaccessible cardinal) there cannot be any Hausdorff gap.
A detailed argument of this fact was provided in [3, Theorem 4.4.1], but it
also follows from [6, Theorem 1].

The main purpose of this note is to extend Todorčević’s result to the next
level of the projective hierarchy. We use the following notation: if Γ is a pro-
jective pointclass, we say that (A,B) is a (Γ ,Γ )-Hausdorff gap if both A and
B are in Γ , and a (Γ , ·)-Hausdorff gap if A ∈ Γ and B is arbitrary.

Proposition 1.4. The following are equivalent:

1. there are no (Σ1
2, ·)-Hausdorff gaps,

2. there are no (Σ1
2,Σ

1
2)-Hausdorff gaps,

3. there are no (Π1
1, ·)-Hausdorff gaps,

4. there are no (Π1
1,Π

1
1)-Hausdorff gaps,

5. ∀r (ℵL[r]1 < ℵ1).

The significance of this proposition is related to the study of regularity
properties, where assertions like “all Σ1

2/Π1
1 sets are regular” (in a specific

sense of “regular”) are equivalent to certain “transcendence statements” over
L, i.e., statements in how far the actual universe V differs from L. The non-
existence of a Hausdorff gap can be seen as a kind of regularity property, and
in this context Proposition 1.4 shows that this non-existence property on the
Σ1

2/Π1
2 level is already of the strongest possible kind, as it implies that ℵ1 is

1 In the literature, the term “Hausdorff gap” is often used to mean “well-ordered gap”,
but for our purposes this more general definition is more appropriate.
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inaccessible in L. It is also equivalent to, for example, the assertion that all
Π1

1 sets satisfy the perfect set property.
The proposition is proved in Section 2. In Section 3 we consider an infinite

game related to Hausdorff gaps.

2 Proof of main proposition

As the implications (1) ⇒ (2) ⇒ (4) and (1) ⇒ (3) ⇒ (4) of Proposition 1.4
are trivial, we are left with (4)⇒ (5) and (5)⇒ (1).

To show the latter implication, we first recall in more detail Todorčević’s
proof of Theorem 1.3.

Definition 2.1. Let (A,B) be a pre-gap (not necessarily σ-directed).

1. Let C be a set. We say that A and B are C-separated if C ⊥ B and for
every a ∈ A there is c ∈ C such that a ⊆∗ c.

2. We say that A and B are σ-separated if they are C-separated by some
countable C.

3. Let S be a tree on ω<↑ω (the set of finite strictly increasing sequences).
We call S an (A,B)-tree if
(a) ∀σ ∈ S, {i ∈ ω | σ_〈i〉 ∈ S} has infinite intersection with some b ∈ B,

and
(b) ∀x ∈ [S], ran(x) ⊆∗ a for some a ∈ A.

If (A,B) is not a gap, then it is σ-separated, but the converse need not be
true in general. It is, however, true whenever A is σ-directed. On the other
hand, the existence of an (A,B)-tree contradicts B being σ-directed.

Lemma 2.2 (Todorčević, [5]). Let (A,B) be a pre-gap. If B is σ-directed,
then there is no (A,B)-tree.

Proof. Suppose, towards contradiction, that S is an (A,B)-tree. For each σ ∈
S, fix some bσ ∈ B such that {i | σ_〈i〉 ∈ S}∩bσ is infinite. By σ-directedness,
there is a b ∈ B which almost contains every bσ. In particular, for each σ, the
set {i | σ_〈i〉 ∈ S}∩b is infinite. Therefore we can inductively pick i0, i1, i2 ∈ b
in such a way that 〈i0, i1, i2, . . . 〉 is a branch through S. Then by definition of
an (A,B)-tree {i0, i1, i2 . . . } ⊆∗ a for some a ∈ A. But this means that a ∩ b
is infinite, contradicting the orthogonality of A and B.

Todorčević’s proof in fact yields the following dichotomy: if (A,B) is a
pre-gap and A is analytic, then either A and B are σ-separated or there exists
an (A,B)-tree. We prove a similar dichotomy for Σ1

2 sets, with separation by
a subset of L[r] replacing σ-separation.

Lemma 2.3. Let (A,B) be a pre-gap such that A is Σ1
2(r). Then:

1. either A and B are C-separated by some C ⊆ L[r], or
2. there exists an (A,B)-tree.
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Proof. Let A∗ ⊆ ω↑ω be such that x ∈ A∗ iff ran(x) ∈ A. Let T be a tree on
ω × ω1, increasing in the first coordinate, such that A∗ = p[T ] and T ∈ L[r].
Define an operation on such trees T as follows

– for (s, h) ∈ T , let

c(s,h) := {i > max(ran(s)) | ∃(s′, h′) ∈ T extending (s, h) s.t. i ∈ ran(s′)}

– let T ′ := {(s, h) ∈ T | c(s,h) has infinite intersection with some b ∈ B}.

Now let T0 := T , Tα+1 := T ′α and Tλ =
⋂
α<λ Tα for limit λ. Note that this

definition is absolute for L[r] so all the trees Tα are in L[r].

Let α be least such that Tα = Tα+1. We distinguish two cases:

– Case 1: Tα = ∅. Let x ∈ A∗ be given. Let f ∈ ωω1 be such that (x, f) ∈
[T0]. Let γ < α be such that (x, f) ∈ [Tγ ] \ [Tγ+1], and let (s, h) ⊆ (x, f)
be such that (s, h) ∈ Tγ \ Tγ+1. Now let cx := c(s,h) and note that this
set is in L[r] since it is constructible from Tγ and (s, h) both of which are
in L[r]. By assumption cx ⊥ B, and it is also clear that ran(x) ⊆∗ cx. It
follows that the collection C := {cx | x ∈ A∗}, with each cx defined as
above, forms a subset of L[r] which separates A from B.

– Case 2: Tα 6= ∅. In this case we will use the tree Tα to construct an (A,B)-
tree S. By induction, we will construct S and to each σ ∈ S associate
(sσ, hσ) ∈ Tα, satisfying the following conditions:
– σ ⊆ τ =⇒ (sσ, hσ) ⊆ (sτ , hτ ), and
– ran(σ) ⊆ ran(sσ).

First ∅ ∈ S, and we associate to it (s∅, h∅) := (∅,∅). Next, suppose σ ∈ S
has already been defined and (sσ, hσ) ∈ Tα associated to it. By assumption,
(sσ, hσ) ∈ T ′α, so c(sσ,hσ) has infinite intersection with some b ∈ B. For
each i ∈ c(sσ,hσ) we add σ_〈i〉 to S. Moreover, by assumption, for each
i ∈ c(sσ,hσ) there exists (s′, h′) ∈ Tα extending (s, h) such that i ∈ ran(s′).
Now associate precisely these (s′, h′) to σ_〈i〉, i.e., let sσ_〈i〉 := s′ and
hσ_〈i〉 := h′. By induction, it follows that the condition ran(σ_〈i〉) ⊆
ran(sσ_〈i〉) is satisfied.

Now we have a tree S on ω↑ω. By definition, for every σ ∈ S the set of
its successors c(sσ,hσ) has infinite intersection with some b ∈ B. Now let
x ∈ [S]. By construction,

⋃
{(sσ, hσ) | σ ⊆ x} forms an infinite branch

through Tα, whose projection a :=
⋃
{sσ | σ ⊆ x} is a member of p[Tα] ⊆

p[T0] = A∗. Since by assumption ran(σ) ⊆ ran(sσ) holds for all σ ⊆ x, it
follows that ran(x) ⊆ ran(a). This proves that S is an (A,B)-tree.

Corollary 2.4. If ∀r (ℵL[r]1 < ℵ1) then there are no (Σ1
2, ·)-Hausdorff gaps.

Proof. Let (A,B) be a pre-gap such that A and B are σ-directed and A is
Σ1

2(r). By Lemma 2.2, the second alternative of Lemma 2.3 is impossible,
hence there is a C ⊆ L[r] which separates A from B. Since the reals of L[r]
are countable, C is countable, so A and B are σ-separated. Since A is also
σ-directed, (A,B) cannot be a gap.
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This completes the proof of the implication (5) ⇒ (1) of our main propo-
sition.

To show the implication (4) ⇒ (5), assume, towards contradiction, that

ℵL[r]1 = ℵ1 for some r. We need to construct a Hausdorff gap (A,B) in L[r],
such that both A and B have Π1

1 definitions, and moreover, such that (A,B)
remains a gap in V . It turns out that we can use Hausdorff’s original construc-
tion of the (ω1, ω1)-gap. It is easy to see that this remains a gap in any larger
model as long as ℵ1 is preserved (the gap is said to be indestructible), so what
remains to be checked is that in L[r], Hausdorff’s construction can be carried
out in such a way that both A and B are Π1

1 sets. We refer the reader to [3,
Section 4.3], where such a construction is worked out in detail. With this the
proof of Proposition 1.4 is complete.

Remark 2.5. A remark is due concerning the proof of (4)⇒ (5). First of all,
note that, if we only wanted A and B to have Σ1

2-definitions, this would be
easy, since we could just use the Σ1

2-good wellorder of the reals of L[r]. To
obtain the stronger result that A and B have Π1

1-definitions, the proof in [3,
Section 4.3] used a method due to Arnold Miller [4]. We chose not to include
the proof here because

1. it is rather long, and involves ideas not directly related to the contents of
this note, and

2. Stevo Todorčević (private communication) informed us that it can be
proved in a simpler way.

3 Haudorff gaps and determinacy

We consider the effect of infinite games on Hausdorff gaps. The best result we
could hope for in this setting is for AD (the axiom of determinacy) to imply
that there are no Hausdorff gaps. Unfortunately, we are only able to prove this
from the stronger assumption of ADR (the axiom of real determinacy).

Definition 3.1. Given a pre-gap (A,B), we define the Hausdorff game, de-
noted by GH(A,B). It is played as follows:

I : c0 (s1, c1) (s2, c2) . . .
II : i0 i1 i2 . . .

where sn ∈ ω<ω, cn ∈ [ω]ω and in ∈ ω. The conditions for player I are that

1. min(sn) > max(sn−1) for all n ≥ 1,
2. min(cn) > max(sn),
3. cn 6⊥B for all n, and
4. in ∈ ran(sn+1) for all n.

Conditions for player II are that

5. in ∈ cn for all n.
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If all five conditions are satisfied, let s∗ := s1
_s2

_ . . . be an infinite increasing
sequence formed by the play of the game. Player I wins iff ran(s∗) ⊆∗ a for
some a ∈ A.

Remark 3.2. In the original version of this paper, the winning condition for
Player I was simply “ran(s∗) ∈ A” (which felt somewhat more intuitive) and
only the “⇒” directions of Theorem 3.3 was proved. The referee suggested
that the implication of that theorem be upgraded to an equivalence. This,
however, required the small (but very natural) change in the definition of the
game.

Theorem 3.3. Suppose (A,B) is a pre-gap and GH(A,B) is the correspond-
ing Hausdorff game. Then:

1. Player I has a winning strategy in GH(A,B) if and only if there exists an
(A,B)-tree.

2. Player II has a winning strategy in GH(A,B) if and only if A and B are
σ-separated.

Proof.

1. First, suppose S is an (A,B)-tree, and let us informally describe the strategy
for I. The first move c0 is defined as {n | 〈n〉 ∈ S}. After Player II picks i0 ∈ c0,
I responds by playing s1 := 〈i0〉 and c1 := {n | 〈i0, n〉 ∈ S}. Player II then
picks i1 ∈ c1, whereupon I responds by playing s2 := 〈i1〉 and c2 := {n |
〈i0, i1, n〉 ∈ S}. So it goes on, i.e., at each stage k, Player II picks ik ∈ ck and I
responds by sk+1 := 〈ik〉 and ck+1 := {n | s0_ . . ._sk+1

_〈n〉 ∈ S} (note that
by induction s0

_ . . ._sk ∈ S). Clearly, this describes a legitimate strategy for
I which results in a play where s∗ is a branch through S, so ran(s∗) ⊆∗ a for
some a ∈ A and I wins the game.

For the converse direction, let σ be a winning strategy for player I, and let Tσ
be the tree of partial positions according to σ. If p ∈ Tσ is a position of the form
p = 〈c0, i0, (s1, c1), i1, . . . , (sn, cn)〉, we use the notation p∗ := s1

_ . . ._sn.

Now we use Tσ to inductively construct the tree S. To each s ∈ S we associate
a ps ∈ Tσ (of odd length), such that

1. s ⊆ t iff ps ⊆ pt, and
2. ran(s) ⊆ ran(p∗s).

First ∅ ∈ S and p∅ = ∅. Suppose s ∈ S and ps are already defined and
ran(s) ⊆ ran(p∗s) holds. Assume ps = 〈. . . , (sn, cn)〉. For every in ∈ cn, let
(sn+1, cn+1) be the response of the strategy σ to ps

_〈in〉. Let s_〈in〉 be in S
and associate to it ps_〈in〉 := ps

_〈in〉_〈(sn+1, cn+1)〉. Since for each in ∈ cn
we know that in ∈ ran(sn+1), it follows that ran(s_〈in〉) ⊆ ran(p∗s_〈in〉),
completing the induction step.

Now it is clear that the tree S has exactly the sets “cn” from the definition of
the Hausdorff game, as the branching-points, and each such set cn has infinite
intersection with some b ∈ B, by assumption. Moreover, if x is a branch
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through S, then by construction z :=
⋃
{ps | s ⊆ x} forms a branch through

Tσ satisfying ran(x) ⊆ ran(z∗). Since z is an infinite play of the game according
to the winning strategy σ, it follows that ran(z∗) ⊆∗ a for some a ∈ A, hence
also ran(x) ⊆∗ a, and so S is an (A,B)-tree.

2. First, assume that A and B are σ-separated by some set {an | n < ω}. All
Player II has to do is make sure that, for every k, ik /∈

⋃
n≤k an. But since

an ∩ b is finite for all n and all b ∈ B, whereas the sets ck played by Player
I have infinite intersection with some b ∈ B, it is clear that, at each stage k,

Player II is indeed able to pick ik ∈
(
ck \

⋃
n≤k an

)
. Now consider any result

of such a play s∗. Clearly {ik | k < ω} ⊆ ran(s∗) holds. Moreover, for every n,
there are at most n elements in {ik | k < ω} ∩ an, implying that {ik | k < ω}
is orthogonal to all an, and hence to A. But then ran(s∗) is also orthogonal to
A, so, in particular, Player I cannot win this game.

It remains to prove the converse direction. Let τ be a winning strategy for
player II, and let Tτ be the tree of partial plays according to τ . Our method
will be similar to the proof of the standard Banach-Mazur theorem, but the
problem is that the tree Tτ has uncountable branching. Therefore we first
thin it out to another tree T̃τ , as follows: for every node of even length p =
〈. . . , (sn, cn), in〉 ∈ Tτ , fix s and i and consider the collection SuccTτ (p, s, i) :=
{(s, c) | p_〈(s, c)〉_〈i〉 ∈ Tτ}. In other words, this is the collection of all valid
moves by player I following position p, such that the first component of the
move is s, and such that II’s next move according to τ is i. If this collection
is non-empty, throw away all members of SuccTτ (p, s, i), and their generated
subtrees, except for one, so that SuccTτ (p, s, i) becomes a singleton. Do this for
every s ∈ ω<ω and every i ∈ ω, and inductively form the new tree T̃τ—this is
also going to be a tree of positions according to τ , but it will be only countably
branching. Now we can use a Banach-Mazur-style argument on the tree T̃τ .

For every p ∈ T̃τ and x ∈ ω↑ω, where p = 〈. . . (sn, cn), in〉, we say that p is
compatible with x if p∗ ⊆ x and in ∈ ran(x). We say that p rejects x if it is
compatible with x and maximally so with respect to T̃τ , i.e., if for every (s, c)
such that p_〈(s, c)〉 ∈ T̃τ and p∗_s ⊆ x, i := τ(p_〈(s, c)〉) /∈ ran(x).

Let Ā := {x | x ⊆∗ a for some a ∈ A}. It is clear that for every x ∈ Ā there
is a p ∈ T̃τ which rejects x—otherwise we could inductively find an infinite
branch z through T̃τ such that z∗ = x, which would imply that x /∈ Ā since
τ is winning for Player II. For each p ∈ T̃τ let Kp := {x | p rejects x}. Then

A ⊆ Ā ⊆
⋃
p∈T̃τ Kp and T̃τ is countable, so the result will follow if we can

prove that each Kp is σ-separated from B.

For this, fix some p = 〈. . . (sn, cn), in〉, and for every s ∈ ω<ω such that
in ∈ ran(s) and min(s) > max(p∗), consider the set

as :=
⋃
{ran(x) | x ∈ Kp and p∗_s ⊆ x}.
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We claim that the collection {as | in ∈ ran(s) and min(s) > max(p∗)} σ-
separates Kp from B. First, clearly if x ∈ Kp then there exists some s, sat-
isfying the conditions, such that p∗_s ⊆ x, so that ran(x) ⊆ as. Secondly,
suppose Kp 6⊥B. Then there is some s such that as has infinite intersection
with some b ∈ B. Let a′s := as \max(s). According to the rules of the game,
player I is then allowed to play the move “(s, a′s)” after position p. The only
problem is that p_〈(s, a′s)〉 might not be in T̃τ . However, by construction there
is some c such that i := τ(p_〈(s, c)〉) = τ(p_〈(s, a′s)〉) and p_〈(s, c)〉 ∈ T̃τ .
But then we must have i ∈ a′s, so by definition there is some x ∈ Kp such that
p∗_s ⊆ x and i ∈ ran(x). But then p_〈(s, c)〉_〈i〉 is still compatible with x
and hence p does not reject x, contradicting x ∈ Kp.

So we must have as ⊥B for all s, and this completes the proof.

Corollary 3.4. ADR implies that every pre-gap (A,B) is either σ-separated
or there exists an (A,B)-tree. Hence, there is no Hausdorff gap.

Note that from the way we have defined the game GH(A,B), it looks as
though both A and B were parameters in the definition. However, a closer
look reveals that B is only relevant for the condition that requires Player I to
play cn such that cn 6⊥B at every move. As this is a “closed” condition on the
play of the game, the complexity of B is irrelevant for the game’s determinacy.
Hence, we obtain the following stronger corollary:

Corollary 3.5. Let Γ be a projective pointclass and assume that ADR holds
for Γ . Then there are no (Γ , ·)-Hausdorff gaps.

In our definition of the game, it was essential for Player I to be able to
make real number moves. Therefore, the following is still open:

Question 3.6. Can ADR be replaced by AD in the above results?
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Brendle for useful advice, Stevo Todorčević for his insight concerning several
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1995; Barcelona, 1996), pages 213–226. Kluwer Acad. Publ., Dordrecht, 1998.


