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We investigate two closely related partial orders of trees on ωω: the full-splitting 
Miller trees and the infinitely often equal trees, as well as their corresponding 
σ-ideals. The former notion was considered by Newelski and Rosłanowski while 
the latter involves a correction of a result of Spinas. We consider some Marczewski-
style regularity properties based on these trees, which turn out to be closely related 
to the property of Baire, and look at the dichotomies of Newelski–Rosłanowski and 
Spinas for higher projective pointclasses. We also provide some insight concerning 
a question of Fremlin whether one can add an infinitely often equal real without 
adding a Cohen real, which was recently solved by Zapletal.
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1. Introduction

A common theme in descriptive set theory and forcing theory on the reals are perfect-set-style dichotomy 
theorems—statements asserting that all Borel (or analytic) sets are either in a σ-ideal I on ωω, or else 
contain the branches of a certain kind of tree. When P denotes the partial order of these trees ordered by 
inclusion, such a theorem guarantees that there is a dense embedding

P ↪→d B(ωω) \ I

from P to the partial order of Borel sets positive with respect to I (also ordered by inclusion), and hence that 
the two posets are forcing-equivalent. The most famous result of this kind is the original perfect set theorem, 
showing that the Sacks partial order (perfect trees ordered by inclusion) densely embeds into the partial 
order of uncountable Borel sets. Jindřich Zapletal [18,19] developed an extensive theory of idealized forcing, 
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i.e., forcing with B(ωω) \ I for various σ-ideals I on the reals. In Zapletal’s framework, properties of the 
forcing can be studied directly using properties of the σ-ideal. On the other hand, there is a long-established 
tradition of studying forcing properties using combinatorics on trees. A dichotomy theorem provides the 
best of both worlds, since it allows us to freely switch back and forth between the “idealized” and the “tree” 
framework, depending on which suits the situation better.

In this paper we consider two closely related dichotomies. The following two definitions are due to 
Newelski and Rosłanowski [14].

Definition 1.1. A tree T ⊆ ω<ω is called a full-splitting Miller tree iff every t ∈ T has an extension s ∈ T

such that s is full-splitting, i.e., s� 〈n〉 ∈ T for every n. Let FM denote the partial order of full-splitting 
Miller trees ordered by inclusion.

Definition 1.2. For f : ω<ω → ω, let

Df := {x ∈ ωω | ∀∞n (x(n) �= f(x�n))}.

Then Dω := {A ⊆ ωω | A ⊆ Df for some f}.

The original motivation of [14] was the connection to infinite games of the same kind as used by Morton 
Davis in [4] in the proof of the perfect set theorem from determinacy, but played on ωω instead of 2ω. Let 
G∗(A) be the game in which Player I chooses si ∈ ω<ω \ {∅} and Player II chooses ni ∈ ω, and I wins iff 
s0

� 〈n0〉�s1
� 〈n1〉� · · · ∈ A. It is easy to see (cf. [15]) that Player I wins G∗(A) if and only if there exists 

a tree T ∈ FM such that [T ] ⊆ A, and Player II wins G∗(A) if and only if A ∈ Dω. General properties 
of so-called Mycielski ideals (i.e., ideals of sets for which II wins a corresponding game) imply that Dω

is a σ-ideal on ωω. Using Solovay’s “unfolding” method (see e.g. [9, Exercise 27.14]) it follows from the 
determinacy of closed games that analytic sets are either Dω-small or contain [T ] for some T ∈ FM.

The next concept is due to Spinas [16].

Definition 1.3. For every x ∈ ωω let Kx := {y ∈ ωω | ∀∞n (x(n) �= y(n))}, and let Iioe be the σ-ideal 
generated by Kx, for x ∈ ωω.

In [16], Iioe-positive sets were called “countably infinitely often equal families”, since a set A is 
Iioe-positive if and only if for every countable sequence of reals {xi | i < ω} there exists a ∈ A which 
hits every xi infinitely often. The following result was claimed in [16, Theorem 3.3]: “every analytic set is 
either Iioe-small or contains [T ] for some T ∈ FM”. This dichotomy is clearly in error, as the simple example 
below shows:

Example 1.4. Let T be the tree on ω<ω defined as follows:

• If |s| is even then succT (s) = {0, 1}.

• If |s| is odd then succT (s) =
{

2N if s(|s| − 1) = 0
2N + 1 if s(|s| − 1) = 1

where succT (s) := {n | s� 〈n〉 ∈ T}. Clearly T is Iioe-positive but cannot contain a full-splitting subtree.

The correct dichotomy for the ideal Iioe involves a subtle modification of the concept of a full-splitting 
tree, suggested by Spinas in private communication.
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Definition 1.5 (Spinas). A tree T ⊆ ωω is called an infinitely often equal tree, or simply ioe-tree, if for each 
t ∈ T there exists N > |t|, such that for every k ∈ ω there exists s ∈ T extending t such that s(N) = k. Let 
IE denote the partial order of ioe-trees ordered by inclusion.

Clearly FM ⊆ IE while the converse is false by Example 1.4. It is not hard to see that the proof of [16, 
Theorem 3.3] does yield the following correct dichotomy theorem: “every analytic set is either Iioe-small 
or contains [T ] for some T ∈ IE.” This dichotomy, like the one of Newelski–Rosłanowski, also allows for an 
easy analysis in terms of infinite games, see Definition 4.5 and Theorem 4.6. Moreover, an argument as in 
Theorem 4.2 provides an alternative, arguably more elementary, proof of the dichotomy. The partial order 
IE has been considered in unpublished work of Goldstern and Shelah [7], but hasn’t been studied elsewhere 
to our knowledge.

Summarizing the situation, we have two closely related perfect-set-style dichotomy theorems leading to 
the following dense embeddings:

FM ↪→d B(ωω) \Dω

IE ↪→d B(ωω) \ Iioe

We will study these objects from various points of view. In Section 2 we look at some general properties 
of these two forcings/ideals, relating them to one another as well as to Cohen forcing and the meager ideal. 
In Section 3 we consider regularity properties generated by these forcings/ideals which are closely related 
to the property of Baire, and in Section 4 we focus on the dichotomies themselves, but for projective classes 
above analytic. Section 5 is devoted to an interesting problem concerning the forcing IE and Cohen reals.

We use standard set-theoretic notation; for a tree T ⊆ ω<ω and t ∈ T , we write succT (t) = {n | t� 〈n〉 ∈
T} and T↑t to denote {s ∈ T | s ⊆ t or t ⊆ s}. We will frequently use the notation Df and Kx to refer to the 
generators of the σ-ideals Dω and Iioe, as in Definitions 1.2 and 1.3. Also, we will say that two reals x, y ∈ ωω

are infinitely often equal (ioe) if ∃∞n (x(n) = y(n)) and eventually different (evd) if ∀∞n (x(n) �= y(n)).
We would like to thank Martin Goldstern, Otmar Spinas and Wolfgang Wohofsky for some useful dis-

cussion and advice.

2. Some general properties

The first easy observations involve the relationships between Dω, Iioe and the ideal M of meager subsets 
of ωω.

Lemma 2.1. Iioe � Dω � M.

Proof. For every x ∈ ωω let fx : ω<ω → ω be defined by fx(s) := x(|s|). Then it is easy to see that Kx ⊆ Dfx , 
and since Dω is a σ-ideal Iioe ⊆ Dω follows. On the other hand, if T is the tree from Example 1.4 then 
[T ] ∈ Dω (because [T ] does not contain an FM-subtree) but [T ] /∈ Iioe.

To see Dω � M notice that for f : ω<ω → ω the sets Df,N := {y | ∀n > N (y(n) �= f(y�n))} are nowhere 
dense, so Df =

⋃
N∈ω Df,N is meager. On the other hand {x | ∀n (x(2n) = 0)} is meager but contains a 

full-splitting Miller tree, hence it is not in Dω. �
Lemma 2.2 (Newelski–Rosłanowski). There exists a continuous function ϕ : ωω → ωω such that for all 
meager A, ϕ−1[A] ∈ Dω.

Proof. Given a fixed enumeration {si | i < ω} of ω<ω, let ϕ be defined by

ϕ(x) = sx(0)
�sx(1)

�sx(2)
� . . .
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Also let ϕ′ : ω<ω → ω<ω be a function on initial segments such that ϕ(x) =
⋃

n∈ω ϕ′(x�n). Then, given a 
nowhere dense set X ⊆ ωω, define f : ω<ω → ω as follows: given s ∈ ω<ω find t such that [ϕ′(s)�t] ∩X = ∅, 
and let i be such that t = si. Then set f(s) = i. One can easily verify that ϕ−1[X] ⊆ Df , which is sufficient 
since Dω is a σ-ideal.

An alternative way to view this is as follows: given an arbitrary FM-tree T , ϕ“[T ] is non-meager. �
The relationship between Iioe, Dω and M is also apparent by considering cardinal invariants. Recall the 

definitions of cov(I), add(I), cof(I) and non(I) for σ-ideals on ωω (see e.g. [1, Section 1.3]). The following 
result is an easy generalization of [14, Theorem 3.1 and Corollary 3.3].

Theorem 2.3.

1. cov(Iioe) = cov(Dω) = cov(M) and non(Iioe) = non(Dω) = non(M).
2. add(Iioe) = add(Dω) = ω1 and cof(Iioe) = cof(Dω) = 2ℵ0 .

Proof.

1. Since Iioe ⊆ Dω ⊆ M it immediately follows that cov(M) ≤ cov(Dω) ≤ cov(Iioe). For the other 
direction, we recall Bartoszyński’s characterization [1, Theorem 2.4.1] saying that cov(M) is the least 
size of an eventually different family, i.e., a family F ⊆ ωω such that for every x ∈ ωω there exists y ∈ F

which is eventually different from x. From this it easily follows that cov(Iioe) ≤ cov(M). The proof for 
non is dual.

2. This follows from the following claim, proved by Newelski and Rosłanowski in [14, Theorem 3.2].

Claim 2.4 (Newelski–Rosłanowski). Let {xα | α < 2ℵ0} be a collection of reals such that ∀α �=
β ∃∞n (xα(n) �= xβ(n)), and for each α put Xα := {x | ∀n (x(n) �= xα(n))}. Then for every un-
countable F ⊆ 2ℵ0 , 

⋃
α∈F Xα /∈ Dω.

Since each Aα ∈ Iioe ⊆ Dω while 
⋃

α∈F Xα /∈ Dω ⊇ Iioe, the above claim implies the result for both 
Dω and Iioe. �

Turning to forcing properties, let us recall some results of Zapletal.

Definition 2.5. A σ-ideal I on ωω is σ-generated by closed sets if every set in I is contained in an Fσ-set 
in I.

Theorem 2.6 (Zapletal). If I is a σ-ideal on ωω σ-generated by closed sets then the forcing B(ωω) \ I is 
proper and preserves Baire category (non-meager ground-model sets remain non-meager in the extension).

Proof. See [19, Theorem 4.1.2]. �
Corollary 2.7. FM and IE are proper and preserve Baire category. In particular, they do not add dominating 
or random reals.

Proof. The generators Df and Kx are clearly Fσ sets, so the results follows by Zapletal’s theorem. It 
is not too hard to provide direct Axiom A-style proofs for this, in fact for FM it was already done in
[14, Section 2]. �

The following concept is very practical when dealing with idealized forcing notions, and was first explicitly 
defined in [3,8].
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Definition 2.8. Let I be a σ-ideal on the reals, and assume that membership of Borel sets in the ideal is a 
Σ1

2 predicate (on Borel codes). Let M be a model of set theory containing all countable ordinals and the 
defining parameter of I. Then a real x is called I-quasigeneric over M if and only if for every Borel set 
B ∈ I with Borel code in M , x /∈ B.

The importance of Σ1
2-definability is that the statement B ∈ I should be absolute between M and V . In 

general, being an I-quasigeneric real is much weaker then being a (B(ωω) \ I)-generic real. For example, 
a real is Sacks-quasigeneric (i.e., Ictbl-quasigeneric, where Ictbl is the ideal of countable subsets of ωω) over M
if and only if x /∈ M ; and it is Miller-quasigeneric (i.e., Kσ-quasigeneric, where Kσ is the ideal of σ-compact
subsets of ωω) over M if and only if it is unbounded over ωω ∩M . However, a (B(ωω) \ I)-generic real is 
always I-quasigeneric. When I is a ccc ideal then the two notions are equivalent.

Definition 2.9. A real x is called infinitely often equal (ioe) over a model M , iff ∀y ∈ ωω ∩M ∃∞n (x(n) =
y(n)). A real x is called infinitely often following (iof ) over a model M , iff ∀f ∈ ω(ω<ω) ∩M ∃∞n (x(n) =
f(x�n)).

Lemma 2.10. Let M be a model of set theory with ω1 ⊆ M and x a real. Then:

1. x is Iioe-quasigeneric over M iff it is ioe over M , and
2. x is Dω-quasigeneric over M iff it is iof over M .

Proof. The proofs of both statements are analogous so let us only show the first. If x avoids Iioe-small Borel 
sets coded in M , then for any y ∈ ωω ∩ M , Ky is a Borel Iioe-small set coded in M , so x /∈ Ky, so x is 
ioe to y. Conversely, suppose x is ioe over M and B ∈ Iioe is a Borel set coded in M . Since “B ∈ Iioe” is 
a Σ1

2 statement on the code of B, by absoluteness M |= B ∈ Iioe. Therefore there are xi ∈ M such that 
B ⊆

⋃
i<ω Kxi

(this statement is Π1
1, hence absolute). But x is ioe to all xi, so by definition x /∈ Kxi

for all 
i, hence x /∈ B. �

Therefore, IE canonically adds an ioe real, whereas FM canonically adds an iof real. From Lemma 2.1 it 
immediately follows that a Cohen real is an iof real, and an iof real is an ioe real. Also, from Lemma 2.2 it 
follows that if x is an iof real then ϕ(x) is a Cohen real (so FM adds a Cohen real). Moreover, the following 
is well-known:

Fact 2.11 (Bartoszyński/Folklore). If V0 ⊆ V1 ⊆ V2 are models of set theory, in V1 there is an ioe real over 
V0 and in V2 there is an ioe real over V1, then in V2 there is a Cohen real over V0.

Corollary 2.12. IE ∗ IE adds a Cohen real.

So C, FM and IE all have a very similar effect on the structure of the real line. For example, an ω2-iteration 
of FM or IE with countable supports yields the same values for the cardinal invariants in Cichoń’s diagram as 
an ω2-iteration/product of Cohen forcing, namely ω1 = non(M) < cov(M) = ω2. Newelski and Rosłanowski
observed that “it seems that forcing FM is the best one for adding Cohen reals in countable support 
iterations.” In fact, we do not know the answer to the following basic question:

Question 2.13. What is a “natural” forcing property (e.g. adding or not adding certain types of reals) which 
distinguishes FM from Cohen forcing?

The situation with IE and adding Cohen reals is much more subtle, and is closely related to issues of 
homogeneity, which we will now describe.
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Definition 2.14 (Zapletal). A σ-ideal I on ωω is homogeneous if for every I-positive Borel set B, there exists 
a Borel function f : ωω → B such that f -preimages of I-small sets are I-small.

Remark 2.15. The meager ideal is well-known to be homogeneous, and for Dω, observe that for every 
full-splitting Miller tree T there exists a natural homeomorphism ψ between ωω and [T ] (generated by the 
identification of ω<ω with the split-nodes of T ), with the additional property that for every full-splitting 
tree S, ψ“[S] generates a full-splitting sub-tree of T . It follows that Dω is homogeneous.

On the other hand, Iioe fails to be homogeneous—this will indirectly follow both from Corollary 3.6 and 
from Lemma 5.2. The crucial point is the following idea from unpublished work of Goldstern and Shelah 
[7]:

Definition 2.16. A tree T ⊆ ω<ω is called an almost full-splitting Miller tree iff every t ∈ T has an extension 
s ∈ T such that ∀∞n (s� 〈n〉 ∈ T ).

Lemma 2.17 (Goldstern–Shelah). There exists a TGS ∈ IE such that every IE-subtree of TGS is an almost 
full-splitting Miller tree.

Proof. Construct TGS in such a way that:

1. Every splitting note t ∈ TGS is full-splitting.
2. If s �= t are splitting nodes of TGS then |s| �= |t|.
3. If t ∈ TGS is a non-splitting node of T then t(|t| − 1) = 0.

Such a tree can easily be constructed inductively after fixing some bijection f : ω<ω ∼= ω. It is not hard to 
see that if S is any sub-tree of TGS which is an ioe-tree, then it has to be an almost full-splitting, since the 
only way that a node of S can be extended to “hit” an arbitrary k > 0 on some fixed level, is to extend 
that node to a t ∈ S such that t� 〈k〉 ∈ S for all k > 0. �

An argument just as in the proof of Lemma 2.2 easily extends to show that if T is an almost full-splitting 
Miller tree then ϕ“[T ] is non-meager, implying that TGS �IE “ϕ(ẋG) is a Cohen real”. Nevertheless, since 
Iioe is not homogeneous, there is no a priori reason why there could not be some other IE-condition forcing 
that no Cohen reals are added. We shall return to this question in Section 5.

3. Marczewski-type regularity properties

A vast array of “Marczewski-type” regularity properties have been considered in the literature, where a 
set A ⊆ ωω is considered “measurable” if every set in a certain partial order can be shrunk to a smaller 
set in the same partial order, which is completely contained in, or disjoint from, the given set A, possibly 
modulo a suitable ideal. Polish mathematicians had a strong interest in such properties for a long time, 
e.g. [17]. More modern treatments include [2,3,5], while [8,12,11] provide more abstract treatments in the 
setting of forcing with trees or idealized forcing. See also [13] for a related treatment in terms of category 
bases. The Baire property, Lebesgue measurability, the Ramsey property and many other properties can be 
formulated as Marczewski-type properties. Following this setting we define:

Definition 3.1. A set A ⊆ ωω is called

• FM-measurable iff ∀T ∈ FM ∃S ∈ FM (S ≤ T and [S] ⊆ A or [S] ∩A = ∅).
• IE-measurable iff ∀T ∈ IE ∃S ∈ IE (S ≤ T and [S] ⊆ A or [S] ∩A = ∅).
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We also define weak (local) versions of the above.

Definition 3.2. A set A ⊆ ωω is

• weakly FM-measurable iff ∃S ∈ FM ([S] ⊆ A or [S] ∩A = ∅).
• weakly IE-measurable iff ∃S ∈ IE ([S] ⊆ A or [S] ∩A = ∅).

If Γ is some pointclass of sets (e.g. Borel, projective etc.) we follow standard practice and use the notation 
Γ(FM), Γ(IE), Γ(wFM) and Γ(wIE) to refer to the statements “all sets in Γ are FM-measurable”, “. . . are 
IE-measurable”, “. . . are weakly FM-measurable” and “. . . are weakly IE-measurable”, respectively. Γ(Baire)
refers to “all sets in Γ have the property of Baire”.

Usually, the homogeneity of the ideal/partial order of trees (in the sense of Definition 2.14) ensures that 
for sufficiently nice pointclasses Γ, the “weak” notion of measurability is equivalent to the strong one.

Observation 3.3. Let Γ be a pointclass closed under continuous pre-images. Since Dω is homogeneous (in 
fact witnessed by a continuous reduction) it is easy to see that Γ(FM) ⇔ Γ(wFM).

Theorem 3.4. Let Γ be a pointclass closed under continuous pre-images. Then the following are equivalent:

1. Γ(Baire)
2. Γ(FM)
3. Γ(IE)

Proof.

• 1 ⇒ 2. Let A ⊆ ωω be a set in Γ. By Γ(Baire) we can find a basic open set [s] such that [s] ⊆∗ A or 
[s] ∩A =∗ ∅, where ⊆∗ and =∗ stand for “modulo a meager set”. Without loss of generality, assume the 
former. Then there is a Gδ set B ⊆ A which is co-meager in [s]. Since Dω ⊆ M, B cannot be Dω-small, 
hence it contains an FM-tree. By Observation 3.3 this is sufficient.

• 2 ⇒ 3. We say that an ioe-tree T is in strict form if it can be written as follows:
– for every σ ∈ ω<ω, there exists Nσ ⊆ ωn, for some n ≥ 1, such that
∗ ∀k ∃!s ∈ Nσ (s(n − 1) = k), and
∗ for m < (n − 1), there is some k such that s(m) �= k for all s ∈ Nσ.
We use len(Nσ) = n to denote the length of Nσ, and we canonically enumerate Nσ as {sσk | k < ω}, 
in such a way that sσk(n − 1) = k.

– T is the tree generated by sequences of the form

s∅n0
�s〈n0〉

n1
�s〈n0,n1〉

n2
� . . .�s〈n0,n1,n2,...,n�−1〉

n�

for some sequence 〈n0, n1, . . . , n�〉.
Ioe-trees in strict form are somewhat easier to visualize and deal with. If T is in strict form, t ∈ T , 
and we need to find the first N such that ∀k ∃s ⊇ t with s(N) = k, we only need to find the (unique) 
shortest sequence σ such that t ⊆ s∅σ(0)

�sσ�1σ(1)
� . . .�s

σ�|σ|−1
σ(|σ|−1), and then we have N =

∑|σ|
i=0 Nσ�i. Every 

ioe-tree T can be pruned to an ioe-subtree S ≤ T in strict form.
So, let A ∈ Γ and let T be an ioe-tree, assuming, without loss of generality, that T is in strict form. 
Define a function ψ′ : ω<ω → T inductively by ψ′(∅) = ∅ and ψ′(σ� 〈n〉) := ψ′(σ)�sσn. This gives rise 
to a natural homeomorphism ψ : ωω ∼= [T ]. Since ψ−1[A] is also in Γ we can find a full-splitting tree S
such that [S] ⊆ ψ−1[A] or [S] ∩ψ−1[A] = ∅. So we will be done if we can show that ψ“[S] generates an 
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ioe-subtree of T . But this follows from the definition of ψ′ and the fact that the last digit of every sσn
is n.

• 3 ⇒ 1. Recall the function ϕ from Lemma 2.2. Let A ∈ Γ and let A′ := ϕ−1[A], also in Γ. Now recall 
the Goldstern–Shelah tree TGS from Lemma 2.17. Since A′ is IE-measurable, there exists S ≤ TGS such 
that [S] ⊆ A or [S] ∩A = ∅, without loss of generality the former. But since S is an almost full-splitting 
tree, ϕ“[S] is not meager, but it is analytic, so it is comeager in some basic open [s]. Then [s] ⊆∗ A. 
This is sufficient because Γ(Baire) is equivalent to the assertion that for all A ∈ Γ there exists a basic 
open [s] such that [s] ⊆∗ A or [s] ∩A =∗ ∅. �

In the “3 ⇒ 1”-direction of the above proof, the Golstern–Shelah tree was used in a quintessential way; 
this suggests that the property called weak IE-measurability behaves substantially different. Indeed, the 
following theorem is the most surprising result of this section.

Theorem 3.5. Δ1
2(Baire) ⇒ Σ1

2(wIE).

Corollary 3.6. It is consistent that Σ1
2(wIE) is true while Σ1

2(IE) is false; in particular IE- and weak 
IE-measurability are not classwise equivalent.

Proof. We know that the ω1-Cohen model LCω1 |= Δ1
2(Baire) + ¬Σ1

2(Baire) ([1, Sections 9.3 and 9.3]). 
Therefore, by Theorems 3.4 and 3.5 we have LCω1 |= Σ1

2(wIE) + ¬Σ1
2(IE). �

This is the first instance we know of where such a situation occurs in the context of a very naturally 
defined ideal.

Proof of Theorem 3.5. Assume Δ1
2(Baire). Let A ⊆ ωω be a Σ1

2 set. We have to find an IE-tree T such that 
[T ] ⊆ A or [T ] ∩A = ∅.

We may assume that for some r, ωL[r]
1 = ω1, since otherwise Σ1

2(wIE) follows easily (for example from 
Σ1

2(Baire)). We may also assume, without loss of generality, that the parameters in the definition of A are in 
L[r]. Using the Borel decomposition of Σ1

2 sets we can write A =
⋃

α<ω1
Bα, where Bα are Borel sets coded 

in L[r]. If there exists at least one α such that Bα /∈ Iioe, then there is an IE-tree T with [T ] ⊆ Bα ⊆ A

and we are done. So suppose that all Bα are Iioe-small. For each α, since L[r] |= Bα ∈ Iioe, we can fix a 
sequence 〈xα

i | i < ω〉 of reals in L[r] such that Bα ⊆
⋃

i<ω Kxα
i
.

Let ρ : ωω → ωω be defined by ρ(x) := 〈x(0), x(2), x(4), . . . 〉. By Δ1
2(Baire), we know that in V there is 

a Cohen real c over L[r] ([1, Theorem 9.2.1]). Then c is infinitely often equal over L[r], and in particular, 
infinitely often equal to ρ(xα

i ) for all α < ω1, i < ω. Let Tc be the FM-tree such that

[Tc] = {y | ρ(y) = c}.

We claim that [Tc] ∩ A = ∅. Let a ∈ A, then there is some α < ω1 such that a ∈ Bα. By absoluteness 
of “Bα ⊆

⋃
i<ω Kxα

i
”, there is some i < ω such that a is eventually different from xα

i . Let N ∈ ω be 
such that ∀n > N (a(n) �= xα

i (n)). But since c is ioe to ρ(xα
i ), we can easily find n > N such that 

c(n) = xα
i (2n) �= a(2n). By definition this implies that a /∈ [Tc]. �

4. The dichotomy for higher projective sets

Definition 4.1. Let us say that a set A ⊆ ωω satisfies the FM-dichotomy if A is either Dω-small or contains 
[T ] for an FM-tree T , and that is satisfies the IE-dichotomy if A is either Iioe-small or contains [T ] for some 
IE-tree T . We use Γ(FM-dich) and Γ(IE-dich) to abbreviate “all sets in Γ have the FM-dichotomy” and 
“all sets in Γ have the IE-dichotomy”, respectively.
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So we know that Σ1
1(FM-dich) and Σ1

1(IE-dich) are true, but we can also ask to which higher projective 
levels the dichotomies can be extended. Note that these properties are stronger then their Marczewski-
counterparts, i.e., Γ(FM-dich) ⇒ Γ(FM) and Γ(IE-dich) ⇒ Γ(IE) for all projective pointclasses Γ. The 
main result of this section concerns the consistency strength of Σ1

2(FM-dich) and Σ1
2(IE-dich). In general, 

statements of this kind have a rather unpredictable behavior: for example, Kσ-regularity (see [10]) for Σ1
2

sets is equiconsistent with ZFC, while the perfect set property for Σ1
2 (even Π1

1) sets has the strength of 
an inaccessible. In yet other cases, it is actually inconsistent (Zapletal, see [11, Proposition 2.4.4]). The 
properties considered here will fall into the second category.

First we prove a “Mansfield–Solovay-style” theorem for FM and IE. Its proof uses a completely classical 
Cantor-Bendixson analysis and it is worth noting that an analogous argument replacing trees on ω× ω1 by 
trees on ω×ω provides alternative (arguably more elementary) proofs of the Newelski–Rosłanowski and the 
Spinas dichotomy theorems, i.e., Σ1

1(FM-dich) and Σ1
1(IE-dich).

Lemma 4.2.

1. For any Σ1
2(r) set A, either there exists an FM-tree U ∈ L[r], such that [U ] ⊆ A, or A can be covered 

by Dω-small Borel sets coded in L[r].
2. For any Σ1

2(r) set A, either there exists an IE-tree U ∈ L[r], such that [U ] ⊆ A, or A can be covered by 
Iioe-small Borel sets coded in L[r].

Proof. 1. Let T ∈ L[r] be a tree on ω × ω1 such that A = p[T ] (where p denote the projection to the first 
coordinate). For any tree S on ω × ω1 define

S′ := {(s, h) ∈ S | ∃s′ ⊇ s ∀n ∃h′ ⊇ h ((s′� 〈n〉 , h′) ∈ S)}.

Next define inductively T (0) := T , T (α+1) := (T (α))′ and T (λ) =
⋂

α<λ T
(α). As the above construction is 

absolute, it follows that all T (α) are in L[r].
Let α be least such that T (α) = T (α+1), and consider two cases:

• T (α) �= ∅. Then every (s, h) ∈ T (α) has the property that there exists s′ such that for every n there is 
h′ extending h with (s′� 〈n〉 , h′) ∈ T (α). Using this it is easy to inductively construct a tree U ⊆ ω<ω, 
such that every s ∈ U has a full-splitting extension s′ ∈ U , i.e., U is an FM-tree, and moreover, such 
that given any branch x ∈ [U ], there is a corresponding branch g ∈ ω1

ω such that (x, g) ∈ [T (α)] ⊆ [T ]. 
Therefore x ∈ p[T ] = A.

• T (α) = ∅. In this case, for every γ < α and every h ∈ (ω1)<ω we define a function fγ,h : ω<ω → ω by:

fγ,h(s) = n :⇐⇒ ∃h′ ⊇ h ((s, h′) ∈ T (γ)) and

n is least such that ∀h′′ ⊇ h ((s� 〈n〉 , h′′) /∈ T (γ))

if such an n exists, and fγ,h(s) = 0 otherwise.
Since each fγ,h is explicitly constructed from T (γ) and h, clearly it is in L[r]. Also let Dfγ,h

:= {x |
∀∞n (x(n) �= fγ,h(x�n))} be the Borel Dω-small sets corresponding to fγ,h, clearly also coded in L[r]. 
We will finish the proof by concluding that A ⊆

⋃
{Dfγ,h

| γ < α, h ∈ (ω1)<ω}.
Take any x ∈ A, and let g ∈ ω1

ω be such that (x, g) ∈ [T ]. Let γ < α be least such that (x, g) ∈ [T (γ)] \
[T (γ+1)], and let s ⊆ x and h ⊆ g be such that (s, h) ∈ T (γ) \ T (γ+1). By definition of T (γ+1) := (T (γ))′
we know that for any s′ extending s there exists n such that (s′� 〈n〉 , h′) /∈ T (γ) for any h′ extending h. 
Take any k > |s|. Then (x�k, g�k) ∈ T (γ), and let n be least such that (x�k� 〈n〉 , h′) /∈ T (γ) for 
any h′ extending h. But then, the definition of fγ,h implies that fγ,h(x�k) = n. On the other hand, 
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(x�(k + 1), g�(k + 1)) is also in T (γ), and so x(k) cannot have value n. In particular x(k) �= fγ,h(x�k). 
Since this argument applies for all k > |s|, this proves x ∈ Dfγ,h

.

2. The argument is completely analogous, so we only mention the changes that need to be made. Here, the 
pruning operation for a tree S on ω × ω1 is defined as follows:

S′ := {(s, h) ∈ S | ∃N > |s| ∀k ∃s′ ⊇ s ∃h′ ⊇ h

((s′, h′) ∈ S, |s′| = N + 1 and s′(N) = k)}.

Then, in the case that T (α) = ∅ proceed as follows: for every γ < α, s ∈ ω<ω and h ∈ (ω1)<ω define a real 
xγ,s,h ∈ ωω by:

xγ,s,h(N) = k :⇐⇒ (s, h) ∈ T (γ) and N > |s| and

k is least s.t. ∀s′ ⊇ s ∀h′ ⊇ h ((s′, h′) ∈ T (γ) ∧ |s′| = N + 1 → s′(N) �= k)

if such a k exists, and 0 otherwise. The proof is completed by showing that A ⊆
⋃
{K(xγ,s,h) | γ < α, s ∈

ω<ω, h ∈ (ω1)<ω}; details are left to the reader. �
We are now ready to prove the main theorem of this section. Recall that by Lemma 2.10 iof reals are 

Dω-quasigeneric and ioe reals are Iioe-quasigeneric, which will be frequently used in the proof.

Theorem 4.3. The following are equivalent:

1. Σ1
2(FM-dich)

2. Σ1
2(IE-dich)

3. ∀r ∈ ωω {x | x is not iof over L[r]} ∈ Dω

4. ∀r ∈ ωω {x | x is not ioe over L[r]} ∈ Iioe
5. ∀r ∈ ωω (ωL[r]

1 < ω1)

Proof. First we prove 1 ⇔ 3 ⇔ 5.

• 1 ⇒ 3. Fix an arbitrary r and let X := {x | x is not iof over L[r]}. It is not hard to see that X is a 
Σ1

2(r) set, so by assumption either X ∈ Dω or there is some T ∈ FM such that [T ] ⊆ X. We will show 
that the second option is impossible.
From Σ1

2(FM-dich) we have Σ1
2(FM), and by Theorem 3.4 also Σ1

2(Baire). In particular, there is a 
Cohen real c, which is an iof real, over L[r, T ]. Let T ∈ FM and recall that there is a homeomorphism 
ψ : ωω ∼= [T ] such that ψ-preimages of Dω-small sets are Dω-small (Remark 2.15). Since being an iof 
real is the same as being Dω-quasigeneric, it easily follows that ψ(c) is an iof real in [T ]. This contradicts 
[T ] ⊆ X.

• 3 ⇒ 1. Notice that Lemma 4.2(1) actually says: every Σ1
2 set A either contains [T ] for T ∈ FM or 

A ⊆ {x | x is not Dω-quasigeneric over L[r]} = {x | x is not iof over L[r]}, from which the result follows.
• 5 ⇒ 3. If ωL[r]

1 < ω1 then {x | x is not iof over L[r]} =
⋃
{B | B is a Borel Dω-small set coded in L[r]}

is a countable union of Dω-small sets.
• 3 ⇒ 5. Recall Claim 2.4 used in the proof of add(Dω) = ω1, which, in particular, implies that for any 

family F = {xα | α < ω1} of reals satisfying ∀α �= β ∃∞n (xα(n) �= xβ(n)), and letting Xα := {x |
∀n (x(n) �= xα(n))}, we have
– Xα ∈ Iioe ⊆ Dω for all α < ω1, and
–
⋃

Xα /∈ Dω.
α<ω1
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If ωL[r]
1 = ω1 for some r, then we have an F as above satisfying F ⊆ ωω ∩ L[r]. But then {x | x is not 

iof over L[r]} =
⋃
{B | B is a Borel Dω-small coded in L[r]} ⊇

⋃
{Xα | α < ω1} cannot be Dω-small.

The proofs of 2 ⇐ 4 ⇔ 5 are analogous. For 2 ⇒ 4 we must be more careful since the ideal Iioe is not 
homogeneous, so we cannot conclude that there is an ioe real inside [T ] for every T ∈ IE, just from the 
existence of ioe reals. However, using the same trick as in the “2 ⇒ 3”-direction of the proof of Theorem 3.4
we can argue as follows: given a T ∈ IE in strict form, find a homeomorphism ψ between ωω and [T ] such 
that ψ-preimages of Iioe-small sets are Dω-small. Then, if c is an iof real, ψ(c) is an ioe real. �

The consistency of the FM- and IE-dichotomies beyond Σ1
2 sets can be established in the Solovay model 

and from determinacy hypotheses. Here we should note that, while the remaining results of this section 
are not particularly surprising, they are nevertheless not “trivial” results, since, as we already mentioned, 
there are dichotomies which are true for analytic sets but are inconsistent for Σ1

2 sets, so there is no a priori 
reason to believe that our dichotomies for higher projective sets are consistent.

In the next theorem we will assume familiarity with the Solovay model (see e.g. [9, Section 11] for details). 
Col(ω,<κ) will denote the standard Lévy partial order for collapsing an inaccessible κ to ω1.

Theorem 4.4. Let κ be inaccessible and let G be Col(ω,<κ)-generic over V . Then in V [G] all sets definable 
from countable sequences of ordinals satisfy the FM- and the IE-dichotomy, and in L(R)V [G] all sets of reals 
satisfy the FM- and IE-dichotomy.

Proof. The proofs of both dichotomies are similar; we prove the FM-case in detail and leave the IE-case to 
the reader.

Let A ⊆ ωω be a set in V [G], defined by φ and a countable sequence of ordinals a. By well-known 
properties of the Lévy collapse, there is a formula φ̃ such that for all x:

V [G] |= φ(a, x) ⇐⇒ V [a][x] |= φ̃(a, x).

Assume that A /∈ Dω. In particular, A cannot be covered by Borel Dω-small sets coded in V [a], since 
V [a] only contains countably many reals. So there is an x ∈ A which is Dω-quasigeneric over V [a], i.e., 
iof over V [a]. By another standard property of the Lévy collapse, there is a Col(ω,<κ)-generic H such 
that V [G] = V [a][H], and moreover, a complete suborder Q of Col(ω,<κ) in V [a], such that |Q| < κ and 
x ∈ V [a][H ∩Q]. Then in V [a], there is a Q-name ẋ for x and a condition p ∈ Q ∩H satisfying:

p �Q φ̃(a, ẋ) ∧ “ẋ is iof over V [a]”.

Since ωV [G]
1 is inaccessible in V [a], in V [G] there are only countably many Q-dense sets in V [a]. Let {Di |

i < ω} enumerate all of them.
In V [G], by induction we will construct U ⊆ ω<ω, and for every t ∈ U a corresponding Q-condition pt, 

such that

1. s ⊆ t ⇐⇒ pt ≤ ps,
2. for every t, pt � t ⊆ ẋ,
3. for every t, pt ∈ Di, where i = |{s ∈ U | s ⊆ t}|, and
4. the downward-closure of U is an FM-tree.

Let p∅ ≤ p be any condition in D0. Suppose s ∈ U has been constructed, ps ∈ Q satisfies ps � s ⊆ ẋ, and 
i := |{s′ ∈ U | s′ ⊆ s}|. Extend ps to p′s ∈ Di.
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Claim. There exists t ⊇ s such that for all n, there is q ≤ p′s such that q � t� 〈n〉 ⊆ ẋ.

Proof. Suppose not: so for any t ⊇ s there is n such that no q ≤ p′s forces t� 〈n〉 ⊆ ẋ, so that p′s � t� 〈n〉 �⊆ ẋ. 
Define a function f : ω<ω → ω in V [a] by letting f(t) be such n as above, for all t ⊇ s, and f(t) = 0 for 
other t. Then we have

p′s � ∀t ⊇ s (t� 〈f(t)〉 �⊆ ẋ).

Since also p′s � s ⊆ ẋ, in particular we have

p′s � ∀n > |s| (ẋ�n� 〈f(ẋ�n)〉 �⊆ ẋ)

and so

p′s � ∀n > |s| (ẋ(n) �= f(ẋ�n)),

contradicting the fact that p′s � “ẋ is iof over V [a]”. � (Claim).

By the claim, we can fix such a t, and for every n, a condition pt�〈n〉 ≤ p′s forcing t� 〈n〉 ⊆ ẋ. Finally 
we add all these t� 〈n〉 to the set U , and this completes the inductive construction.

Let T (U) be the tree generated by U . It is clear that T (U) ∈ FM, so it only remains to show that 
[T (U)] ⊆ A. In V [G], let y be any real in [T (U)]. We have to show that V [G] |= φ(a, y). By construction, 
y can be viewed as the limit of some {tn | n < ω}, where all tn ∈ U . Let Gy := {q ∈ Q | ∃n (ptn ≤ q)}. Since 
Gy meets every Di, it is Q-generic over V [a], and since ptn �Q tn ⊆ ẋ for every n, we know that ẋ[Gy] = y. 
Also, since p �Q V [a][ẋ] |= φ̃(a, ẋ), it follows that V [a][y] |= φ̃(a, y), and therefore V [G] |= φ(a, y). This 
completes the proof of the FM-dichotomy.

The proof of the IE-dichotomy is analogous, replacing Dω by Iioe, FM by IE and “iof reals” by “ioe 
reals”. The corresponding claim must read as follows: “There is N > |s| such that for all k ∈ ω there are t
and q ≤ p′s such that t ⊇ s, |t| = N + 1, t(N) = k and q � t ⊆ ẋ.” The claim is proved by assuming the 
contrary and producing a real z ∈ V [a] such that p′s � ∀N > |s| (ẋ(N) �= z(N)), contradicting p′s � “ẋ is 
ioe over V [a]”. �

Another way to extend the dichotomy beyond Σ1
2 sets is by the use of infinite games; the FM-dichotomy 

was originally motivated by a Morton Davis-like game. The following game corresponds to the IE-dichotomy.

Definition 4.5. Let GIE(A) be the game in which players I and II play as follows:

I: N0 s0 N1 s1 N2 . . . . . .

II: k0 k1 k2 . . .

where si ∈ ω<ω \ {∅}, Ni ≥ 1, ki ∈ ω, and the following rules must be obeyed for all i:

• |si| = Ni,
• si(Ni − 1) = ki.

Then player I wins iff z := s0
�s1

�s2
� · · · ∈ A. For technical reasons, we formalize the game as if Player I 

makes two consecutive moves rather than a pair (si, Ni+1).
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Theorem 4.6.

1. Player I has a winning strategy in GIE(A) iff there is an IE-tree T such that [T ] ⊆ A.
2. Player II has a winning strategy in GIE(A) iff A ∈ Iioe.

Proof. We will only show the left-to-right direction of 2. Let τ be a winning strategy for player II. Suppose 
p = 〈N0, k0, s0, N1, . . . , k�−1, s�−1〉 is a position of the game of length 3� (and p = ∅ if � = 0). Then we 
define p∗ := s0

� . . .�s�−1 (and p∗ = ∅ if p = ∅), and for an x ∈ ωω we say

• p is compatible with x iff p∗ ⊆ x, and
• p rejects x iff p is compatible with x but for any N�, k� := τ(p� 〈N�〉) is such that p� 〈N�, k�, s�〉 is 

incompatible with x for any s� satisfying s�(N�) = k�—in other words, for any N�, x(
∑�

i=0 Ni−1) �= k�.

Let Hp := {x | p rejects x}. For any x ∈ A there must be a p which rejects it, otherwise x would be a play 
according to τ . So A ⊆

⋃
p Hp, and we shall be done if we can show that Hp ∈ Iioe for any p.

Fix p of length 3� as before, let M :=
∑�−1

i=0 Ni, and define a real z as follows: for N < M let z(N) = 0, 
and for N ≥ M , let N� := N −M + 1 and let z(N) := τ(p� 〈N�〉). Suppose p rejects x, which by definition 
means that for any N�, x(

∑�
i=0 Ni − 1) �= τ(p� 〈N�〉). In particular, for any N ≥ M we have

x(N) = x(M + N� − 1) = x(
�∑

i=0
Ni − 1) �= τ(p� 〈N�〉) = z(N).

Hence Hp ⊆ Kz = {x | ∀∞n (x(n) �= z(n)} which completes the proof. �
5. Half a Cohen real

Recall Fact 2.11, which says that if we iteratively add two ioe reals to a model of set theory then we add 
a Cohen real; for that reason, an ioe real has sometimes received the name “half a Cohen real”. A natural 
questions which appeared in Fremlin’s list of open problems [6] is:

Question 5.1 (Fremlin). Is it possible to add an ioe real without adding a Cohen real?

This question was recently answered in the positive by Zapletal [20] using rather unorthodox methods.

Theorem 5.2 (Zapletal 2013). Let X be a compact metrizable space which is infinite-dimensional, and all of 
its compact subsets are either infinite-dimensional or zero-dimensional. Let I be the σ-ideal σ-generated by 
the compact zero-dimensional subsets of X. Then B(X) \ I adds an ioe real but not a Cohen real.

In spite of the beauty of this result, Zapletal himself mentions: “as the usual approach towards forcing 
problems includes a direct combinatorial construction of a suitable poset, the following question is natu-
ral: . . . is there a combinatorial description of a forcing satisfying [Theorem 5.2] which does not mention 
topological dimension?”

As IE seems, in a sense, to be a “minimal” forcing for adding ioe reals, we may wonder whether IE does 
not add Cohen reals below some condition, thus providing an alternative solution to Fremlin’s problem. The 
main purpose of this section is to prove the following property for IE:

Theorem 5.3. For every continuous function f : ωω → ωω there exists a T ∈ IE such that f“[T ] is meager.

The relation between this result and Fremlin’s problem is given by the following:
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Fact 5.4 (Zapletal). If I is a σ-ideal generated by closed sets then B(ωω) \ I has the continuous reading of 
names: for every ẋ and B such that B � ẋ ∈ ωω, there exists C ≤ B and a continuous f : C → ωω (in the 
ground model) such that C � ẋ = f(ẋgen).

Since Iioe is σ-generated by closed sets, the above fact can be applied to IE. So if we can find an 
IE-condition T0 and strengthen Theorem 5.3 to “for every S ≤ T0 and every continuous f : [S] → ωω, there 
exists T ≤ S such that f“[T ] is meager”, it will follow that IE does not add Cohen reals below T0: for any 
ẋ, find f and S ≤ T0 such that S � ẋ = f(ẋgen), then find T ≤ S such that f“[T ] is meager, implying that 
T � “ẋ is not Cohen” since T � ẋ ∈ f“[T ].

Proof of Theorem 5.3. The proof is quite unusual in the following sense: first we prove that it holds under the 
assumption that add(M) < cov(M), and then argue that the assumption can be dropped by absoluteness.

Lemma 5.5. Assume add(M) < cov(M). Then for every continuous function f : ωω → ωω there exists a 
T ∈ IE such that f“[T ] is meager.

Proof. Towards contradiction, assume that the theorem is false and fix an f : ωω → ωω such that f“[T ] is 
non-meager for every T ∈ IE. This is equivalent to saying that f -preimages of meager sets are Iioe-small. 
Let {Xα | α < add(M)} be a collection of meager sets such that 

⋃
α Xα is non-meager. We will derive 

a contradiction by showing that for every basic open [s] there is a basic open [t] ⊆ [s] such that [t] ∩⋃
α Xα =∗ ∅.
Fix [s] and a homeomorphism ψ : ωω ∼= [s]. Every X ′

α := ψ−1[Xα] is still meager, so every Yα := f−1[X ′
α]

is Iioe-small. For each α let 〈xα
i | i < ω〉 be such that Yα ⊆

⋃
i Kxα

i
. Now, letting ρ be the function defined 

by ρ(x) := 〈x(0), x(2), . . . 〉, using add(M) < cov(M) and Bartoszyński’s characterization of cov(M), we 
find that {ρ(xα

i ) | i < ω, α < add(M)} is not an eventually different family, hence there exists c which is 
infinitely often equal to all ρ(xα

i ).
Construct Tc such that [Tc] = {y | ρ(y) = c}, and by exactly the same argument as in the proof of 

Theorem 3.5 we know that [Tc] ∩ Yα = ∅ for every α. But then, by assumption, f“[Tc] is non-meager, and 
then also ψ“f“[Tc] is non-meager; but it is analytic, hence comeager in a basic open [t]. This completes the 
proof since [t] avoids 

⋃
α Xα modulo meager. � (Lemma)

To conclude the theorem from the lemma we use a simple absoluteness argument, i.e., we check the 
complexity of the statement “for all continuous f : ωω → ωω there is T ∈ IE such that f“[T ] is meager”. 
Note the following:

1. “f : ωω → ωω is a continuous function” can be expressed as “f ′ : ω<ω → ω<ω is monotone and 
unbounded along each real”, which is Π1

1 on (the code of) f ′.
2. “T ∈ IE” is arithmetic on the code of T .
3. f“[T ] is an analytic set whose code is recursive in f ′ and T .
4. For an analytic set to be meager is Π1

1.

Then the statement in question can be expressed as:

∀f ′ (f ′ is continuous → ∃T (T ∈ IE ∧ f“[T ] ∈ M))

which is a Π1
3 sentence, hence downward absolute between forcing extensions of V and V itself. So the 

proof is completed by going to any forcing extension V P satisfying add(M) < cov(M) (e.g., add ω2 Cohen 
reals), applying the lemma and then applying absoluteness to conclude that the statement was already true 
in V . �
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Unfortunately, we do not know whether the proposed strengthening of Theorem 5.3 is valid below some 
condition T0, i.e., whether there is T0 such that for any S ≤ T0 and any continuous f : [S] → ωω there is 
T ≤ S such that f“[T ] is meager. Certainly, a sufficient condition for this would be a T0 such that for every 
S ≤ T0, IE�S is homogeneous (in the sense of Definition 2.14).

On the other hand, by Lemma 2.17 we know that such a T0 certainly cannot be the trivial condition, 
since the tree TGS forces that Cohen reals are added. It is not so hard to find other IE-conditions, aside of 
TGS, which also add Cohen reals, but it is not clear whether such conditions are dense.

Notice that the question of IE adding Cohen reals can also be formulated in the setting of the following 
(closed) game:

Definition 5.6. Let GIE

¬C
be the game defined as follows:

I: S ≤ T0, f : [S] → ωω continuous . . .

II: T0 ∈ IE T ≤ S

(s0, x(0)) (s1, x(1)) . . .

. . . t0 t1 . . .

where si, ti ∈ ω<ω \ {∅} and x(i) ∈ ω are such that x ∈ [T ]. Assuming all the rules are followed, Player I 
wins iff f(x) = s0

�t0
�s1

�t1
� . . . .

Lemma 5.7. If Player I wins GIE

¬C
then every IE-condition forces that Cohen reals are added. If Player II 

wins GIE

¬C
then, letting T0 be II’s first move, T0 � “there are no Cohen reals”.

Proof. After the first three moves have been played and f : [S] → ωω and T ≤ S have been chosen, the 
rest of the game is essentially Solovay’s unfolded version of the Banach–Mazur game, and by a standard 
argument (see, e.g., [9, Exercise 27.14]) it follows that if Player I wins that game, then f“[T ] is comeager 
in a basic open set, whereas if Player II wins that game, then f“[T ] is meager. The rest is clear. �
6. Questions

The most interesting question seems to be the following:

Question 6.1. Is there an IE-condition forcing that no Cohen reals are added, or does IE always add Cohen 
reals? This can be formulated as “who wins the game GIE

¬C
?”.

In Section 3 we completely solved the question of projective regularity for FM- and IE-measurability, but 
not yet for the (arguably more interesting) weak IE-measurability. We have the following implications:

Δ1
2(IE) ⇔ Δ1

2(Baire) ⇒ Σ1
2(wIE) ⇒ Δ1

2(wIE),

where the first equivalence is due to Theorem 3.4, the second implication due to Theorem 3.5 and the third 
one trivial. But we do not know anything about the reverse implications. In particular

Question 6.2. Are Δ1
2(Baire) and Δ1

2(wIE) equivalent? If not, then are Δ1
2(Baire) and Σ1

2(wIE) equivalent, 
or are Σ1

2(wIE) and Δ1
2(wIE) equivalent?
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A related question is:

Question 6.3. Can Δ1
2(wIE) and Σ1

2(wIE) be characterized in terms of the existence of quasi-generic reals 
over L[r]?

Finally, in Theorem 4.3 we characterized Σ1
2(FM-dich) and Σ1

2(IE-dich), but did not talk about the Δ1
2-

and Π1
1-levels.

Question 6.4. Can Π1
1(FM-dich) and Π1

1(IE-dich) be added to the list of equivalent statements in Theo-
rem 4.3?

References

[1] T. Bartoszyński, H. Judah, Set Theory, on the Structure of the Real Line, A K Peters, 1995.
[2] J. Brendle, B. Löwe, Solovay-type characterizations for forcing-algebras, J. Symbolic Logic 64 (3) (1999) 1307–1323, 

http://dx.doi.org/10.2307/2586632.
[3] J. Brendle, L. Halbeisen, B. Löwe, Silver measurability and its relation to other regularity properties, Math. Proc. Cam-

bridge Philos. Soc. 138 (1) (2005) 135–149, http://dx.doi.org/10.1017/S0305004104008187.
[4] M. Davis, Infinite games of perfect information, in: Advances in Game Theory, Princeton Univ. Press, Princeton, N.J., 

1964, pp. 85–101.
[5] V. Fischer, S.D. Friedman, Y. Khomskii, Cichoń’s diagram, regularity properties and Δ1

3 sets of reals, Arch. Math. Logic 
53 (5–6) (2014) 695–729, http://dx.doi.org/10.1007/s00153-014-0385-8.

[6] D. Fremlin, Problem list, circulated Notes, 1996.
[7] M. Goldstern, S. Shelah, Two remarks on cohen reals, unpublished note, 1994.
[8] D. Ikegami, Forcing absoluteness and regularity properties, Ann. Pure Appl. Logic 161 (7) (2010) 879–894, http://dx.doi.

org/10.1016/j.apal.2009.10.005.
[9] A. Kanamori, The Higher Infinite. Large Cardinals in Set Theory from Their Beginnings, 2nd edition, Springer Monographs 

in Mathematics, Springer-Verlag, Berlin, 2003.
[10] A.S. Kechris, On a notion of smallness for subsets of the Baire space, Trans. Amer. Math. Soc. 229 (1977) 191–207.
[11] Y. Khomskii, Regularity Properties and Definability in the Real Number Continuum, Ph.D. thesis, University of Amster-

dam, 2012, iLLC Dissertations DS-2012-04.
[12] G. Laguzzi, On the separation of regularity properties of the reals, Arch. Math. Logic 53 (7–8) (2014) 731–747, 

http://dx.doi.org/10.1007/s00153-014-0386-7.
[13] J.C. Morgan II, Point Set Theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 131, Marcel Dekker, 

Inc., New York, 1990.
[14] L. Newelski, A. Rosłanowski, The ideal determined by the unsymmetric game, Proc. Amer. Math. Soc. 117 (3) (1993) 

823–831, http://dx.doi.org/10.2307/2159150.
[15] A. Rosłanowski, On game ideals, Colloq. Math. 59 (2) (1990) 159–168.
[16] O. Spinas, Perfect set theorems, Fund. Math. 201 (2) (2008) 179–195, http://dx.doi.org/10.4064/fm201-2-6.
[17] E. Szpilrajn, Sur une classe de fonctions de M. Sierpiski et la classe correspondante d’ensembles, Fund. Math. 24 (1935) 

17–34.
[18] J. Zapletal, Descriptive Set Theory and Definable Forcing, Memoirs of the American Mathematical Society, vol. 167, 

American Mathematical Society, 2004.
[19] J. Zapletal, Forcing Idealized, Cambridge Tracts in Mathematics, vol. 174, Cambridge University Press, Cambridge, 2008.
[20] J. Zapletal, Dimension theory and forcing, Topology Appl. 167 (2014) 31–35, http://dx.doi.org/10.1016/j.topol.2014.

03.004.

http://refhub.elsevier.com/S0168-0072(17)30018-0/bib42614A753935s1
http://dx.doi.org/10.2307/2586632
http://dx.doi.org/10.1017/S0305004104008187
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib4D6F72746F6E4461766973s1
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib4D6F72746F6E4461766973s1
http://dx.doi.org/10.1007/s00153-014-0385-8
http://dx.doi.org/10.1016/j.apal.2009.10.005
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib4B616E616D6F7269s1
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib4B616E616D6F7269s1
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib4B656368726973446963686F746F6D79s1
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib4B686F6D736B6969546865736973s1
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib4B686F6D736B6969546865736973s1
http://dx.doi.org/10.1007/s00153-014-0386-7
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib4D6F7267616Es1
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib4D6F7267616Es1
http://dx.doi.org/10.2307/2159150
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib526F736C616E6F77736B6947616D65496465616C73s1
http://dx.doi.org/10.4064/fm201-2-6
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib4D6172637A6577736B693132s1
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib4D6172637A6577736B693132s1
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib5A613034s1
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib5A613034s1
http://refhub.elsevier.com/S0168-0072(17)30018-0/bib5A613038s1
http://dx.doi.org/10.1016/j.topol.2014.03.004
http://dx.doi.org/10.1016/j.apal.2009.10.005
http://dx.doi.org/10.1016/j.topol.2014.03.004

	Full-splitting Miller trees and inﬁnitely often equal reals
	1 Introduction
	2 Some general properties
	3 Marczewski-type regularity properties
	4 The dichotomy for higher projective sets
	5 Half a Cohen real
	6 Questions
	References


