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1 Introduction

An almost disjoint (a.d.) family A is a collection of infinite subsets of ω, such
that |a ∩ b| < ω for all a, b ∈ A. A maximal almost disjoint (mad) family
is an infinite a.d. family which is maximal with regard to this property, i.e.,
∀a ∃b ∈ A (|a ∩ b| = ω). Mad families have been studied from a variety of
perspectives: for example, the size of the least mad family that can possi-
bly exist is the cardinal characteristic a, and its value has been shown to be
independent of ZFC. Another perspective is the descriptive set-theoretic one,
where one looks at the possible complexity of mad families (as subsets of [ω]ω).
This investigation has been carried out in a number of results, and we briefly
summarize its history.

Theorem 1.1 (Mathias [15]). There are no analytic mad families.
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In the constructible universe L, it is easy to construct Σ1
2 -definable mad

families. Arnold Miller proved a seemingly stronger result.

Theorem 1.2 (Miller [16]). In L, there is a Π1
1 mad family.

The above result has recently been superseded by Asger Törnquist:

Theorem 1.3 (Törnquist [18]). The following are equivalent:

1. There is a Σ1
2 mad family.

2. There is a Π1
1 mad family.

Combining this theorem with well-known facts about constructing Σ1
2 -

definable mad families in L which are preserved by iterations of some standard
forcing notions (among which Cohen, random, Sacks and Miller forcing), one
can easily see that the existence of a Π1

1 mad family is consistent with ¬CH.
On the other hand, the following was proved in [9] (where b is the bounding
number, i.e., the least size of an unbounded family, and an ω-mad family is a
mad family satisfying a stronger maximality requirement—see e.g. [13] for a
definition).

Theorem 1.4 (Friedman & Zdomskyy). It is consistent that b = c = ℵ2 and
there exists a Π1

2 ω-mad family.

This was further extended in [7]:

Theorem 1.5 (Fischer, Friedman & Zdomskyy). It is consistent that b = c =
ℵ3, there exists a Π1

2 ω-mad family and a ∆1
3-definable well-order of the reals.

Methods for obtaining models with large continuum together with a ∆1
3-

definable wellorder have been developed by Jensen and Solovay [12], by Har-
rington [10] and by Friedman [8]; it is an ongoing project to determine to
what extent the ∆1

3 wellorder is compatible with certain other properties of
the model (such as a cardinal inequality or the existence of other projective
objects, cf. [5,7,6]).

Dropping the “ω”-requirement, Theorem 1.4 was improved in [4]:

Theorem 1.6 (Brendle & Khomskii). For any regular uncountable cardinal
κ, it is consistent that b = c = κ and there exists a Π1

1 mad family.

The present paper is concerned with the following question: to what extent
can Theorem 1.5 be merged with Theorem 1.6? Note that we have no chance
of obtaining a Π1

1 ω-mad family together with b > ℵ1 (the reason is that an
ω-family does not contain a perfect set by [17], so a Π1

1 ω-mad family must be
completely contained in L), so the “ω”-requirement must certainly be dropped.
Taking that into account, we do indeed succeed in proving an optimal result
extending both Theorem 1.5 and Theorem 1.6.

Theorem 1.7 (Main Theorem). It is consistent that b = c = ℵ3, there exists
a Π1

1 mad family, and a ∆1
3-definable well-order of the reals.

For the proof of this theorem, we use a combination of the techniques for
constructing ∆1

3 well-orders, as presented in [7], and the techniques from [4]
for constructing a Π1

1 mad family in models where b is large. Most of the work
involves overcoming two main obstacles:
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1. showing that a version of almost disjoint coding has a nice preservation
property, and

2. dealing with iterations longer than length ℵ1.

The first obstacle will be solved in Lemma 2.4 and the second one will be
solved by making use of the 3-principle, in Lemma 4.1.

Note that, while our main theorem is formulated as an optimal generaliza-
tion of Theorems 1.5 and 1.6, it would be easy to modify the proof so that
it yields the same result with b = c = ℵ2 instead of ℵ3. The only difference
would be a straightforward simplification of the coding mechanism. We also
conjecture that the same result holds for b = c = κ for any uncountable regular
κ, although that would require a substantial change to the coding mechanism,
and it is still not completely clear whether that can be done.

This paper is structured as follows: in Section 2, we give the preliminary
definitions, review the main methods of [4] and [7], and introduce a different
version of “almost disjoint coding”. In Section 3, we review the preparatory
forcing construction from [7] and prove that the 3-principle is preserved after
the preparation. Finally, in Section 4, we combine these efforts and obtain a
proof of the Main Theorem.

2 Preliminaries

We start by summarizing the main tools behind the result of [4]. One of the
central concepts there was considering mad families constructed from perfect
a.d. families, and preserving the maximality of the re-interpreted family by
forcing, as opposed to the more classical concept of preserving a mad family
directly.

Definition 2.1. A set A ⊆ [ω]ω is called an ℵ1-perfect mad family if A =⋃
α<ℵ1 Aα where each Aα is a perfect a.d. set and A is a mad family. For

a forcing P, such a family A is said to be P-indestructible if in the generic

extension V [G] by P, AV [G] :=
⋃
α<ℵ1 A

V [G]
α is a mad family.

The method of [4] involved the construction of an ℵ1-perfect mad family
in L, which had a Σ1

2 definition and moreover was indestructible (in the sense
of Definition 2.1) by the κ-iteration of Hechler forcing with finite support,
for κ being any uncountable regular cardinal. We now briefly review that
construction.

For α < ℵ1, let Pα := {Pασ | σ ∈ ω<ω} be an infinite partition of some
(unspecified) domain Dα ∈ [ω]ω into infinite sets, indexed by finite sequences
σ. For each σ ∈ ω<ω, let {pασ(0), pασ(1), pασ(2), . . . } be the increasing enumer-
ation of Pασ . For each f ∈ ωω, let Φα(f) := {pαf�n(f(n)) | n ∈ ω} and let
Aα := {Φα(f) | f ∈ ωω}. Then Aα is an almost disjoint subfamily of [Dα]ω

of size 2ℵ0 . Furthermore Aα is a perfect set in the natural topology of [Dα]ω

(since Φ is a homeomorphism between ωω and Aα).
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The idea is then to construct, by induction on α < ℵ1, a sequence of such
partitions Pα, each of them giving rise to a perfect a.d. set Aα, and to make
sure that the union A :=

⋃
α<ℵ1 Aα becomes a mad family. If the construction

takes place in L, it is easy to make it Σ1
2 -definable. To guarantee preservation

by Hechler forcing, the following essential property was used:

Definition 2.2. A forcing P strongly preserves splitting reals (abbreviated by
“s.p.s.”), if for every P-name ȧ for an element of [ω]ω, there is a sequence
{an : n ∈ ω} of elements of [ω]ω, such that if z ∈ [ω]ω splits all an’s, then
P“ž splits ȧ”.

The Hechler partial order satisfies the s.p.s.-property by [1]. Moreover, the
s.p.s.-property is preserved by iterations of ccc forcings with finite support
(see [2, Proposition 3.10]).

We now state the Main Lemma from [4], involved in the induction step
of the construction (in the original Lemma, an ideal on ω was also generated
for technical reasons, but we leave it out here since it would only make the
presentation more difficult). The notations P β , Aβ , Φβ etc. refer to the objects
described above.

Lemma 2.3 (Main Lemma, [4]). Let M be a countable model of set theory
such that P β ∈ M for all β < α. Assume that for all β 6= β′ < α and for all
f, g ∈ ωω, the set Φβ(f) ∩ Φβ′(g) is finite (i.e.,

⋃
β<αAβ is an a.d. family).

Then there exists a new partition Pα (of some domain Dα), lying outside
M , which satisfies the following properties:

1. For every f, h ∈ ωω and every β < α, Φβ(f)∩Φα(h) is finite (i.e.,
⋃
β≤αAβ

is still a.d.)
2. For every Y ∈ M , if Y is almost disjoint from Φβ(f) for all f ∈ ωω and

all β < α, then there exists an h ∈ ωω such that Φα(h) ⊆ Y .
3. Suppose V ′ ⊇ V is a model of set theory, M ′ ⊇ M is a countable model

with M ′ ∈ V ′, and every real in V which is splitting over M is still splitting
over M ′. Then for every Y ∈ M ′, if Y is almost disjoint from Φβ(f) for
every f ∈ ωω in V ′ and every β < α, then there exists an h ∈ ωω in V ′

such that V ′ � Φα(h) ⊆ Y (i.e., condition 2 holds relativized to V ′ and
M ′.)

Clearly, the above lemma can be applied with V ′ = V [G], and M ′ = M [G]
being generic extensions via some forcing that satisfies the s.p.s. property. This
Lemma will be the crucial tool in our inductive construction of the mad family
in Section 4.

Next, we shift our attention to the ∆1
3-definable well-order of the reals.

As a Σ1
2 -definable well-order implies that every real is constructible (see e.g.

[11, Theorem 25.39]), a ∆1
3 well-order is optimal in the presence of ¬CH. A

(boldface) ∆1
3 well-order together with ¬CH was first obtained by Harrington

[10], and Sy Friedman improved this result by establishing the consistency
of a (lightface) ∆1

3 well-order of the reals together with c = ℵ2. Different
methods of obtaining large continuum, ∆1

3 well-orders, and the existence of
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certain combinatorial objects on the reals have recently been developed in [5,
7,6] (dealing with cardinal inequalities, ω-mad families, and MA, respectively).

In this paper we will mostly be using the methods from [7]. The final
model will be obtained as a two-step forcing extension of L. In the first stage
(the “preliminary stage”) the universe is prepared in a special way, by adding
certain subsets of ℵ1 and ℵ2 but no new reals. We will denote this intermediate
extension by L∗, and the forcing leading up to it by P∗. Note that since no new
reals have been added, L∗ still satisfies many properties of L, such as having
a Σ1

2 -good well-ordering of the reals.
In the next stage (the “coding stage”), new reals are added to L∗, by a

finite support iteration of length ℵ3, consisting of σ-centered forcing posets.
This iteration simultaneously makes sure that b = ℵ3 and that a ∆1

3 well-
ordering of the reals exists. In [7], the Π1

2 -definable mad family was explicitly
added by this forcing as well. In our situation, we would like to preserve an
ℵ1-perfect mad family defined in L∗ instead. We would like to simulate the
proof in [4], but for that we need two ingredients: the s.p.s.-property of the
forcing, and a way to deal with iterations of length longer than ℵ1. The next
theorem deals with the first ingredient.

Recall that one of the central methods in the “coding stage” is almost
disjoint coding, a technique which allows subsets of ω1 to be coded by reals in
a generic extension. We show that this can be done by a forcing having the
s.p.s.-property.

Let ~C := {cα : α < ℵ1} be a fixed, definable (e.g. closed) family of a.d.
sets, and let A ⊆ ω1 be an arbitrary set. Let IA be the ideal on ω generated
by the a.d. family {cα : α ∈ A}, let I+

A denote IA-positive sets and FA the
corresponding filter. While the standard almost disjoint coding can be seen
as a Mathias partial order with the filter FA, we will use a Laver-like partial
order instead. Precisely, we prove the following:

Lemma 2.4. For any given ~C and A ⊆ ω1, there exists a σ-centered forcing,
which we shall denote by LA(~C), such that

1. LA(~C) adds a dominating real,

2. LA(~C) satisfies the s.p.s.-property, and

3. LA(~C) adds a generic real ẋG with the following property:
(a) if α ∈ A then  |ran(ẋG) ∩ cα| < ω, and
(b) if α /∈ A then  |ran(ẋG) ∩ cα| = ω.
Consequently,  “ẋG encodes A”.

Proof. Let LA(~C) be the Laver partial order with filter FA, i.e., the partial
order consisting of all trees T such that for any t ∈ T longer than stem(T ), we
have SuccT (t) := {n | t_〈n〉 ∈ T} ∈ FA; the ordering is inclusion.

It is clear that this forcing is σ-centered, and to see that it adds a dominating
real, simply note that for any t ∈ T , if SuccT (t) ∈ FA then also SuccT (t)\m ∈
FA for any finite m. To verify that it has the s.p.s.-property, we use a result
of Brendle and Hrušák [3]. We need some definitions:
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– An ideal I on ω is countably tall if for any sequence {an | n < ω} of infinite
subsets of ω, there is b ∈ I such that |an ∩ b| = ω for every n.

– For two ideals I,J , write J ≤K I (J is Katetov-reducible to I) iff there
is an f : ω → ω s.t. ∀a (a ∈ J → f−1[a] ∈ I).

A recent result from [3, Proposition 1] then states the following: Let I be an
arbitrary ideal and F the corresponding filter. Then the following are equiva-
lent:

1. For all X ∈ I+ and every J ≤K I�X, J is not countably tall.
2. Laver forcing with the filter F has the s.p.s.-property.

The argument for the proof of this result is quite similar to the one for Hechler
forcing—indeed Hechler forcing can be seen as Laver with the cofinite filter.
To prove that LA(~C) satisfies the s.p.s., it suffices to show that IA satisfies
clause 1 from above. The main point is that IA itself is not countably tall.

Let X ∈ I+
A , let J ≤K IA�X and let f : X → ω be the function witnessing

this Katetov reduction. We have two cases:

Case 1: The set {α ∈ A | |f“(cα ∩ X)| = ω} is finite. Let {α1, . . . , αn}
enumerate it. Since X /∈ IA, the remaining set Y := X \ (cα1

∪ · · · ∪ cαn) is
also not in IA. Let Y ′ := f“Y . Then Y ′ /∈ J , so, in particular, Y ′ is infinite.
We claim that no infinite subset Z ⊆ Y ′ can be in J , which will witness the
fact that J is not countably tall (in fact it will not even be tall).

Towards a contradiction, let Z ⊆ Y ′ be an infinite set in J . Then f−1[Z] ∈
IA, and f−1[Z] ∩ Y is an infinite set, also in IA. So f−1[Z] ∩ Y must be
almost covered by some finitely many cβ1

, . . . , cβk , none of which can be among
the cαi ’s. Therefore, Z is almost covered by finitely many sets of the form
f“(cβj ∩ Y ), where cβj 6= cαi for any i. But by assumption, all such sets were
finite, contradicting that Z is infinite.

Case 2: The set {α ∈ A | |f“(cα ∩ X)| = ω} is infinite. Pick a countable
sequence {αn | n < ω} from it, and let an := f“(cαn ∩ X). We claim that
{an | n < ω} is a witness to the fact that J is not countably tall. Let b ∈ J
be arbitrary. By assumption, b′ := f−1[b] ∈ IA. This means that there are
β1, . . . βk ∈ A such that b′ ⊆∗ cβ1

∪ · · · ∪ cβk . But then b′ cannot have infinite
intersection with infinitely many of the cαn ’s, since otherwise some cβi and
some cαn , with βi 6= αn, would have infinite intersection, contradicting their
mutual almost disjointness. Therefore, for some n, b′ has only finite intesection
with cαn . But then b = f“(b′) has finite intersection with an, proving that J
is not countably tall.

It remains to show that LA(~C) can be used for a.d. coding purposes, i.e.,
condition (3) from the theorem.

(a) Let α ∈ A and T ∈ LA(~C). Inductively let S ≤ T be obtained by
pruning the tree and removing cα from every splitting node, i.e., making
sure that SuccS(t) := SuccT (t) \ cα for every t ∈ S. Since ω \ SuccT (t)
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is in IA and α ∈ A, ω \ SuccS(t) is also in IA, so the tree S is a valid

LA(~C)-condition. Moreover, for all n above the stem, S  n /∈ cα. Hence
S  |ran(ẋG) ∩ cα| < ω.

(b) Let α /∈ A, T ∈ LA(~C) and n ∈ ω be given. Let t := stem(T ) and
consider SuccT (t) ∈ FA. Since α /∈ A and the collection {cβ | β < ℵ1}
was a.d., clearly cα /∈ IA. But then SuccT (t) ∩ cα is infinite and so
we may pick m ≥ n from this set. Then letting S ≤ T be such that
stem(S) = t_〈m〉 we have S  m ∈ ran(ẋG).

As a result, ẋG codes A as we wanted.

3 The preliminary stage, 3 and 3′

In this section we review the preliminary forcing construction leading from L
to L∗, and verify that the 3-principle is valid in L∗. Most of the exposition
here follows closely that of [7], although many details are left out. We start by
defining the preliminary forcing P∗ = P0 ∗ Ṗ1 ∗ Ṗ2.

A transitive ZF− modelM is suitable if ωM3 exists and ωM3 = ωL
M

3 . IfM
is suitable then also ωM1 = ωL

M

1 and ωM2 = ωL
M

2 .
Fix a 3ω2

(cof (ω1)) sequence 〈Gξ | ξ ∈ ω2 ∩ cof (ω1)〉 which is Σ1-definable
over Lω2

. For α < ω3, let Wα be the <L-least subset of ω2 coding α, and
for 1 < α < ω3 let Sα = {ξ ∈ ω2 ∩ cof (ω1) | Gξ := Wα ∩ ξ 6= ∅}. Then
~S = 〈Sα | 1 < α < ω3〉 is a sequence of stationary subsets of ω2 ∩ cof (ω1),
which are mutually almost disjoint. Let S−1 := {ξ ∈ ω2 ∩ cof(ω1) | Gξ = ∅}.
Note that S−1 is a stationary subset of ω2 ∩ cof(ω1) which is disjoint from all
Sα’s.

Step 0. For every α such that ω2 ≤ α < ω3 “shoot a club” Cα disjoint from Sα
via the poset P0

α, consisting of all closed subsets of ω2 which are disjoint from
Sα ordered by end-extension, and let P0 =

∏
α<ω3

P0
α be the direct product

of the P0
α’s with supports of size ω1, where for α ∈ ω2, P0

α is the trivial
poset. Then P0 is countably closed, ω2-distributive (the proof of which uses
the stationarity of S−1) and ω3-c.c.

Step 1. We begin by fixing some notation. Whenever k ∈ ω, X is a set of
ordinals and j ∈ k, let Ikj (X) = {γ | k · γ + j ∈ X}. In particular, let

Even(X) = I2
0 (X) = {γ | 2 · γ ∈ X}. For every α < ω3 let Dα be a subset

of ω2 which codes the triple 〈Cα,Wα,Wγ〉 where γ is the largest limit ordinal
≤ α, precisely: I3

0 (Dα) = Cα, I3
1 (Dα) = Wα and I3

2 (Dα) = Wγ . Let

Eα = {M∩ ω2 | M ≺ Lα+ω2+1[Dα], ω1 ∪ {Dα} ⊆ M}.

Then Eα is a club on ω2. Choose Zα ⊆ ω2 such that Even(Zα) = Dα and if
β < ω2 is ωM2 for some suitable modelM such that Zα∩β ∈M, then β ∈ Eα.
Then we have:
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(∗)α: If β < ω2, M is a suitable model such that ω1 ⊂ M, ωM2 = β,
and Zα ∩ β ∈ M, then M � ψ(ω2, Zα ∩ β), where ψ(ω2, X) is the

formula “Even(X) codes a triple (C̄, W̄ , ¯̄W ), where W̄ and ¯̄W are the
<L-least codes of ordinals ᾱ, ¯̄α < ω3 such that ¯̄α is the largest limit
ordinal not exceeding ᾱ and C̄ is a club in ω2 disjoint from Sᾱ”.

Similarly to ~S, define a sequence ~A = 〈Aξ | ξ < ω2〉 of stationary subsets of
ω1 which are mutually almost disjoint, using the “standard” 3-sequence. Code
Zα by a subset Xα of ω1 with the poset P1

α consisting of all pairs 〈s0, s1〉 ∈
[ω1]<ω1 × [Zα]<ω1 where 〈t0, t1〉 ≤ 〈s0, s1〉 iff s0 is an initial segment of t0,
s1 ⊆ t1 and t0\s0 ∩ Aξ = ∅ for all ξ ∈ s1 (note that this is closely related to
the a.d. coding discussed in Section 2, but deals with coding subsets of ω2 by
subsets of ω1). Then Xα satisfies the following condition:

(∗∗)α: If M is a suitable model such that {Xα} ∪ ω1 ⊂ M, then M �
φ(ω1, ω2, Xα), where φ(ω1, ω2, X) is the formula: “Using the sequence
~A, X almost disjointly codes a subset Z̄ of ω2, such that Even(Z̄)

codes a triple (C̄, W̄ , ¯̄W ), where W̄ and ¯̄W are the <L-least codes
of ordinals ᾱ, ¯̄α < ω3 such that ¯̄α is the largest limit ordinal not
exceeding ᾱ and C̄ is a club in ω2 disjoint from Sᾱ”.

Let P1 =
∏
α<ω3

P1
α, where P1

α is the trivial poset for all α ∈ ω2, with

countable support. Then P1 is countably closed and has the ω2-c.c.

Step 2. Finally we force a “localization” of the Xα’s. Fix φ as in (∗∗)α and
define the poset Lk(X,X ′) as in [7, Definition 1]. That is, let X,X ′ ⊂ ω1 be
such that φ(ω1, ω2, X) and φ(ω1, ω2, X

′) hold in any suitable model M with
ωM1 = ωL1 containing X and X ′, respectively. Then let L(X,X ′) be the poset
of all functions r : |r| → 2, where the domain |r| of r is a countable limit
ordinal such that:

1. if γ < |r| then γ ∈ X iff r(3γ) = 1
2. if γ < |r| then γ ∈ X ′ iff r(3γ + 1) = 1
3. if γ ≤ |r|, M is a countable suitable model containing r�γ as an element

and γ = ωM1 , then M � φ(ω1, ω2, X ∩ γ) ∧ φ(ω1, ω2, X
′ ∩ γ).

The ordering is end-extension.
For every α ∈ Lim(ω3) and m ∈ ω, let P2

α+m = L(Xα+m, Xα). Let

P2 =
∏

α∈Lim(ω3)

∏
m∈ω

P2
α+m

with countable supports. In LP0∗P1

, the poset P2 has the ω2-c.c. Also note that
P2
α+m produces a generic function in the space 2ω1 (of LP0∗P1

), which is the
characteristic function of a subset Yα+m of ω1 with the following property:
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(∗ ∗ ∗)α: For every β < ω1 and any suitable M such that ωM1 = β and
Yα+m ∩ β belongs to M, we have M � φ(ω1, ω2, Xα+m ∩ β) ∧
φ(ω1, ω2, Xα ∩ β).

Now we let P∗ := P0 ∗P1 ∗P2 be the result of combining these three generic
extensions, and use L∗ to denote the intermediary extension LP∗ .

Next, we want to show that 3 holds in L∗. Since we have added new subsets
of ω1, this is not a priori obvious. To prove that this is the case, we use the
related 3′-principle, a version of 3 due to Kunen, in which we allow countably
many possibilities at stage α to capture sets.

Definition 3.1. A sequence {Sα | α < ω1} is a 3′-sequence if Sα = {Snα | n <
ω} such that Snα ⊆ α for all n, and if for all S ⊆ ω1, the set {α | ∃n (S ∩ α =
Snα)} is stationary.

Lemma 3.2. In L∗, there exists a 3′-sequence which is Σ1-definable over
Lω1

.

Proof. We define the sequence in L, and show that it is preserved by P∗.
For α < ω1(= ωL1 ), let β(α) be the least ordinal β such that Lβ � ZF− +
(α is countable). Let D′α := {A ⊆ α | A ∈ Lβ(α)}. We claim that {D′α | α <
ω1} is a 3′-sequence even after forcing with P∗.

So, let p0 ∈ P∗, let Ẋ be a P∗-name for a subset of ω1 and Ċ a P∗-name for
a closed unbounded subset of ω1. Let N be the least countable elementary
submodel of some large LΘ such that p0, Ẋ, Ċ are elements of N . Let N̄ be
the transitive collapse of N .

As in the proof of [7, Lemma 1], get an extension p1 of p0 which meets all
dense sets in N by considering a generic filter g over N . Now let ḡ be the
image of g under the transitive collapse that maps N to N̄ .

Then ḡ is definable from an ω-enumeration of N̄ and (as N is the least count-
able elementary submodel of some LΘ containing a certain finite set of pa-
rameters) there is such an ω-enumeration in Lβ(α), where α = N ∩ ω1. So

p1  Ẋ ∩ α ∈ Lβ(α) and p1  α ∈ Ċ. But then p1 forces that the intersection

{α | Ẋ ∩ α ∈ D′α} ∩ Ċ is non-empty, which completes the proof.

To conclude, note that by [14, Theorem II 7.14], every 3′-sequence gives
rise to a 3-sequence in a natural way. Consequently, there is a 3-sequence in
L∗ which is Σ1 definable over Lω1

.

4 Constructing an s.p.s.-indestructible mad family in L∗.

We are now ready to prove the main theorem, using an inductive construction
and Lemma 2.3. In [4], the method was to define a sequence {Mα | α <
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ℵ1} of countable models covering all Dℵ1-names for reals (where Dℵ1 stands
for the ℵ1-iteration of Hechler forcing), while simultaneously constructing the
perfect a.d. families Aα using Lemma 2.3. Condition 3 of the Lemma then
guaranteed that the familyA :=

⋃
α<ℵ1 Aα thus constructed was not destroyed

by Dℵ1 , and an additional argument (involving the fact that Hechler forcing
is Suslin ccc) then showed that the same must hold for Dκ, where κ is any
regular uncountable cardinal. Since we will need to deal with more complicated
iterations, which are ccc but not Suslin, we need a different method for dealing
with longer iterations, and we use the 3-sequence for this purpose.

Lemma 4.1. Let P be any ccc forcing notion satisfying the s.p.s.-property.
Then there exists a P-indestructible, ℵ1-perfect, Σ1

2 -definable mad family in
L∗. Moreover, in (L∗)P this family still has a Σ1

2 definition.

Proof. First of all, note that we may assume, without loss of generality, that
in L∗ there exists a definable 5-dimensional version of 3, namely, a sequence

{(Xα, Eα, <α) | α < ℵ1}

such that Xα ⊆ ω1, Eα, <α ⊆ (ω1 × ω1), and for every triple (X,E,<), the
set

{α | X ∩ α = Xα, E ∩ (α× α) = Eα and (< ∩(α× α)) = <α}

is stationary. Fix such a sequence for the rest of the proof.

Definition 4.2. We say that a triple (X,E,<) “codes a ZF− model” iff

1. E and < are binary relations on X,
2. (X,E) is well-founded and extensional,
3. < well-orders X, and
4. (X,E) |= ZF−.

We proceed by defining the ℵ1-mad family, by induction on α < ℵ1, using the
ideas described in Section 2. At each step, Lemma 2.3 is applied to produce the
next partition Pα (of some domain Dα), giving rise to a perfect a.d. set Aα.
Simultaneously, a sequence of countable transitive ZF− models {Mα | α < ℵ1}
will be defined (note that the transitivity of the models is crucial in the current
argument). Inductively, the following conditions will be guaranteed for all α:

1. 〈Mβ | β < α〉 ∈Mα,
2. 〈P β | β < α〉 ∈Mα,
3.
⋃
β<αAβ is a.d.

We proceed with the inductive construction. At stage α, assume Mβ and
P β have been defined, and the three inductive conditions are satisfied. To
define Mα, consider two cases:

– Case 1. If (Xα, Eα, <α) codes a countable ZF− model (in the sense of Def-
inition 4.2), let M ′α be its transitive collapse. If, additionally, it so happens
that 〈Mβ | β < α〉 ∈M ′α and

〈
P β | β < α

〉
∈M ′α, let Mα := M ′α.
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– Case 2. If the above fails, then simply let Mα be the countable, transi-
tive ZF− model with <L-least code, such that 〈Mβ | β < α〉 ∈ Mα and〈
P β | β < α

〉
∈Mα.

After that, we are in the right situation to apply Lemma 2.3 to the model Mα

and the collection of partitions
〈
P β | β < α

〉
, so we use it to construct a new

partition Pα, picking the <L-least one satisfying all the conditions.

This completes the inductive definition. We claim that A :=
⋃
α<ℵ1 Aα thus

constructed is a P-indestructible mad family. By the third inductive condition,
it follows immediately that A is a.d., so let’s focus on its maximality. Let G
be P-generic, and let Y be a new real in L∗[G]. Since P may have added
many reals, by basic cardinality arguments we clearly cannot assume that Y
is contained in some Mα[G]. However, here we will use 3 to get around this
difficulty.

Claim 4.3. For some α < ω1, Y belongs to a generic extension of Mα via
some forcing which has the s.p.s.-property.

Proof. Let Ẏ be a P-name for Y . Let N be a countably closed, elementary
submodel of some sufficiently large Hθ, with |N | = ℵ1, containing P, Ẏ , the
entire sequences 〈Mα | α < ω1〉 and 〈Pα | α < ω1〉, and all the countable ordi-
nals. Let E and < be binary relations on ω1 so that (N,∈, <Hθ ) ∼= (ω1, E,<)
(here <Hθ refers to some natural well-order of N inherited from Hθ). Also, let
〈Nα | α < ω1〉 be a continuous sequence of countable elementary submodels of
Hθ, converging to N . Note that if G is P-generic, then, since P is ccc, N [G] is
a generic extension of N via P∩N and Nα[G] is a generic extension of Nα via
P ∩Nα.

Moreover, by continuity of the sequence 〈Nα | α < ω1〉, there are club-many α
so that

(Nα,∈, <Hθ ) ∼= (α, E ∩ (α× α), < ∩ (α× α)).

Using 3, we can then pick an α such that in fact

(Nα,∈, <Hθ ) ∼= (Xα, Eα, <α).

Then clearly (Xα, Eα, <α) codes a model, and by elementarity 〈Mβ | β < ω1〉
and

〈
P β | β < ω1

〉
belong to Nα. Moreover, we may assume that Ẏ ∈ Nα.

Let N̄α be the transitive collapse of Nα, via collapsing function πα. As all
members of the transitive closure of Mβ and P β for β < α have rank < α
(again, without loss of generality), they are mapped onto themselves by πα.
Also, since Nα contains all the ordinals < α, it follows that the initial segments
〈Mβ | β < α〉 and

〈
P β | β < α

〉
are contained in the transitive collapse N̄α.

But then, we find ourselves in the situation of Case 1 (from the construction
of the models), and it follows that Mα = N̄α.

As Ẏ ∈ Nα, Y ∈ Nα[G]. Then Y = πα(Y ) is in the transitive collapse of Nα[G]
by πα, which is equal to Mα[πα“G], the generic extension of Mα by the forcing
πα(P ∩Nα).
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Nα
P∩Nα //

πα

��

Nα[G] 3 Y

πα

��
Mα

πα(P∩Nα) // Mα[πα“G] 3 πα(Y ) = Y

Since P∩Nα has the s.p.s.-property, so does πα(P∩Nα). Therefore, Y is indeed
in a generic extension of an Mα via a forcing with the s.p.s.-property.

Now we may apply condition (3) of Lemma 2.3 with M = Mα and M ′ =
Mα[πα“G], and see that Y has infinite intersection with some member of⋃
β≤αAβ . Therefore, indeed, A =

⋃
α<ℵ1 Aα is P-indestructible.

It remains only to argue that A(L∗)P has a Σ1
2 definition. For this, first note

that ωω ∩ L∗ = ωω ∩ L, and that, by Lemma 3.2, we may assume that the
3-sequence we chose in the beginning of the proof is Σ1 definable over Lω1

.
Since the Mα’s are chosen so that they are either defined from 3 or chosen to
be <L-least, and the Pα’s are also <L-least, we can use a standard argument
to show that the set B of (codes for) {Pα | α < ℵ1} is a Σ1

2 set. Then, in
(L∗)P, the mad family is given by the formula

x ∈ A ⇐⇒ ∃b ∈ B (x ∈ Aα for α s.t. b codes Pα).

Since “x ∈ Aα for α s.t. b codes Pα” is a recurisve computation, the above
gives a Σ1

2 definition of A in (L∗)P. This completes the proof of Lemma 4.1.

With this we are almost done with the proof of the Main Theorem. All that
remains to be done is forcing a ∆1

3-definable well-order of the reals, together
with b = c = ℵ3, over L∗ (i.e., the “coding stage”). For that, we will define a
forcing iteration Pω3 following [7, Step 3], with only two essential differences:

1. for a.d. coding purposes, we will use the Laver-like almost disjoint coding
from Lemma 2.4 as opposed to the standard a.d. coding, and

2. at stages where no coding is performed, we use a trivial version of the
Laver-like coding (or use Hechler forcing).

This way, dominating reals are added cofinally often and the s.p.s.-property is
preserved.

So, in L∗, fix a definable (e.g. closed) sequence ~C = 〈cζ : ζ < ω1〉 of almost
disjoint subsets of ω. This will be used for coding purposes. We will define a
finite support iteration 〈Pα, Q̇γ | α ≤ ω3, γ < ω3〉 such that Q̇α is a Pα-name
for a σ-centered poset which has the s.p.s.-property. Every Qα is going to add
a generic real whose Pα-name will be denoted by u̇α, and just as in [7] we will
have that L∗[Gα]∩ωω = L∗[〈u̇Gαξ | ξ < α〉]∩ωω for every Pα-generic filter Gα.
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This gives a canonical well-order of the reals in L∗[Gα], which depends only on
the sequence 〈u̇Gαξ : ξ < α〉. The Pα-name for this well-order will be denoted

by <̇α. Additionally, we can make sure that for all α < β we have that Pβ
forces <̇α to be an initial segment of <̇β . Then if G is a Pω3-generic filter over

L∗, <G:=
⋃
{<̇Gα : α < ω3} will be the desired well-order of the reals.

We proceed with the recursive construction of Pω3
. Along the construction

we shall also define a sequence 〈Ȧα | α ∈ Lim(ω3)〉, where Ȧα is a Pα-name for
a subset of [α, α+ω). For every ν with ω2 ≤ ν < ω3, fix a bijection iν : {〈ζ, ξ〉 |
ζ < ξ < ν} ∼−→ Lim(ω2). If Gα is Pα-generic over L∗, <α= <̇

Gα
α and x, y are

reals in L∗[Gα] such that x <α y, let x ∗ y := {2n | n ∈ x} ∪ {2n+ 1 | n ∈ y}
and ∆(x ∗ y) := {2n+ 2 | n ∈ x ∗ y} ∪ {2n+ 1 | n /∈ x ∗ y}.

Suppose Pα has been defined and fix a Pα-generic filter Gα.

Suppose α is a limit ordinal. Write it in the form ω2 ·α′+ ξ, where ξ < ω2.
If α′ > 0, let i = io.t.(<̇Gα

ω2·α′
) and 〈ξ0, ξ1〉 = i−1(ξ). Let Aα := ȦGαα be the set

α + (ω\∆(xξ0 ∗ xξ1)), where xζ is the ζ-th real in L[Gω2·α′ ] ∩ [ω]ω according

to the well-order <̇
Gα
ω2·α′ (here Gω2·α′ = Gα ∩ Pω2·α′).

Then, we define Qα as follows: Qα is the finite support iteration 〈Pnα, Q̇mα |
n ≤ ω,m < ω〉, where

– Case 1: if m ∈ ∆(xξ0 ∗ xξ1) then m“Q̇mα is the Laver-like a.d. coding

partial order LYα+m(~C) from Lemma 2.4”, where ~C is the a.d. sequence
fixed at the beginning, and Yα+m is the subset of ω1 whose characteristic
function was added by P2

α+m (see Section 2).

– Case 2: if m /∈ ∆(xξ0 ∗ xξ1) then m Q̇mα is the trivial poset.

Let umα be the generic real added by Qmα in the first case, and the constant
0 function in the second case. Let uα be a real encoding the umα ’s for all m ∈ ω.

If α < ω2 or α is a successor, let Qα be again the Laver-like forcing Lω1
(~C),

or Hechler forcing (or any other σ-centered forcing that satisfies the s.p.s. prop-
erty). Notice that what happens at these stages is irrelevant for the purpose
of “decoding” the ∆1

3-well-order.

With this the inductive definition of our finite support iteration Pω3
is

complete—for more details, we refer the reader to [7]. To complete the proof,
first notice that since the sets ∆(x, y) are always non-empty, Case 1 occurrs
cofinally often in the iteration, and therefore dominating reals are added co-
finally often. It follows that in (L∗)Pω3 we have b = c = ℵ3. To show that
in (L∗)Pω3 there is a ∆1

3-definable well-order of the reals, we follow the argu-
ments of [7]. Notice that a version of [7, Lemma 3] certainly goes through in
our context (in fact it is even easier to prove). Consequently, Lemmas 4 and 5
from [7] hold, and the Σ1

3 formula defining the well-order can be read off from
the statements of these Lemmas.

Finally, note that all the forcing posets in the construction of Pω3
(including

the trivial ones) satisfy the s.p.s.-property, so by [2, Proposition 3.10], the
entire finite support iteration does, as well. Thus we can apply Lemma 4.1
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and obtain a Σ1
2 -definable mad family in (L∗)Pω3 , and, by Theorem 1.3, also

a Π1
1 mad family.

5 Open Questions

In the introduction, we mentioned that there is no problem to modify our
proof so that it works for b = c = ℵ2, and a natural open question is whether
the same holds for b = c = κ for all regular uncountable κ. We conjecture
that the answer is positive, but some work needs to be done on the coding
mechanism to make sure it works for larger values of the continuum.

Another question one may ask is whether the existence of a Π1
1 mad family

and a ∆1
3 well-order is consistent with other values of the cardinal character-

istics b, a and s. For example, is it consistent with b < c or even b < a?
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