ZFC $+\neg \mathrm{CH}$

Ruiting Hu

1 A Model of ZFC+ $\neg \mathrm{CH}$

Theorem 1.1. There is $M[G]$ such that $M[G] \vDash 2^{\aleph_{0}}>\aleph_{1}$.
Let \mathbb{P} be the set of all finite functions p such that:

- $\operatorname{dom}(p)$ is a finite subset of $\omega_{2} \times \omega$
- $\operatorname{ran}(p) \subset\{0,1\}$
$p<q$ iff $q \subset p$ and for any generic $G, f=\bigcup G$.
Lemma 1.2. f is a function; $\operatorname{dom}(f)=\omega_{2} \times \omega$
Proof. Assume for RAA that f is not a function, then there are $p, q \in G$ such that for some $(\alpha, n), p(\alpha, n) \neq q(\alpha, n)$. WLOG, say $p(\alpha, n)=0, q(\alpha, n)=1$, then since G is a filter, $p<p^{\prime}=((\alpha, n), 0)$ and thus $p^{\prime} \in G$. Similarly, $q<q^{\prime}=((\alpha, n), 1)$ and thus $q^{\prime} \in G$. It follows that $p^{\prime} \cap q^{\prime}=\emptyset \in G, \perp$.

For the second part, let $D_{\alpha, n}=\{p \in \mathbb{P}:(\alpha, n) \in \operatorname{dom}(p)\} . D_{\alpha, n}$ is dense in \mathbb{P} because for any $p \in \mathbb{P}$, we could extend p by adding $p(\alpha, n)=0 / 1$. Thus, $(\alpha, n) \in \operatorname{dom}(f)$ for all $(\alpha, n) \in \omega_{2} \times \omega$.

Let $f_{\alpha}: \omega \rightarrow\{0,1\}$ be defined as $f_{\alpha}(n)=f(\alpha, n)$ for all $\alpha<\omega_{2}$. Let $h: \omega \rightarrow\{0,1\}^{\omega}$ be defined as $h(\alpha)=f_{\alpha}$

Lemma 1.3. h is 1-1
Proof. Assume $\alpha \neq \beta$, we show that $f_{\alpha} \neq f_{\beta}$.
Let $D=\{p \in \mathbb{P}: p(\alpha, n) \neq p(\beta, n)$ for some $n\}$.
D is dense in \mathbb{P} because for any $p \in \mathbb{P}$, we could extend p by adding $p(\alpha, n)=1, p(\beta, n)=0$. Since G is a filter, $G \cap D \neq \emptyset$

Each f_{α} is a characteristic function of $a_{\alpha} \subset \omega$. The $a_{\alpha} \mathrm{s}$ are called Cohen generic reals . We have added \aleph_{2}^{M} many Cohen generic reals to M.

2 Preservation of Cardinals

It remains to be shown that $\aleph_{2}^{M}=\aleph_{2}^{M[G]}$. This is not trivial since $\mathrm{M}[\mathrm{G}]$ might allow more bijections than M and lead to $\omega_{n}^{M}<\omega_{n}^{M[G]}$.

Definition 2.1 (Cardinality Preservation). For any forcing poset $\mathbb{P} \in M \mathbb{P}$ preserves cardinals iff for all generic $G,(\beta \text { is a cardinal })^{M}$ iff $(\beta \text { is a cardinal })^{M[G]}$ for all $\beta<o(M)$.
\mathbb{P} preserves cofinalities iff for all generic $G, \operatorname{cf}^{M}(\gamma)=\operatorname{cf}^{M[G]}(\gamma)$ for all limit $\gamma<o(M)$.
Definition 2.2 (Cofinality Preservation). For any forcing poset $\mathbb{P} \in M \mathbb{P}$ preserves cofinalities iff for all generic $G, \mathrm{cf}^{M}(\gamma)=\mathrm{cf}^{M[G]}(\gamma)$ for all limit $\gamma<o(M)$.

We prove two lemmas regarding the conditions under which \mathbb{P} preserves cofinality and cardinaltiy.

Lemma 2.1. \mathbb{P} preserves cofinality iff for all generic G : for all limit β such that $\omega<\beta<$ $o(M),(\beta \text { is regular })^{M} \rightarrow(\beta \text { is regular })^{M[G]}$.

Proof. \rightarrow is trivial from Definition 1.2.
\leftarrow : Assume for all generic G : for all limit β such that $\omega<\beta<o(M),(\beta \text { is regular })^{M} \rightarrow$ $(\beta \text { is regular })^{M[G]}$, for any limit $\gamma<o(M)$, let $\beta=c f^{M}(\gamma)$, we show that $\beta=c f^{M[G]}(\gamma)$.

Let $X \in \mathcal{P}(\gamma) \cap M$ be such that type $(X)=\beta$ and $\sup (X)=\gamma$. Since $\beta=c f^{M}(\gamma)$, $(\beta \text { is regular })^{M}$ and by assumption (β is regular $)^{M[G]}$.

Since $X \subseteq \gamma, \sup (X)=\gamma$, then $c f^{M[G]}(\gamma)=c f^{M[G]}(\operatorname{type}(X))=c f^{M[G]}(\beta)=\beta$
Lemma 2.2. If \mathbb{P} preserves cofinality, then \mathbb{P} preserves cardinality.
Proof. By Lemma 2.1, M and $M[G]$ have the same regular cardinals. ZFC implies that every cardinal is either regular or $\leq \omega$ or a supremum of regular cardinals.

3 Countable Chain Condition and Preservation of Cardinality

We have proven that preservation of cofinality implies preservation of cardinality. To show that \mathbb{P} preserves cardinality it suffices to show that \mathbb{P} preserves cofinality. We prove this by proving that \mathbb{P} satisfies c.c.c. and that c.c.c. implies preservation of cofinality.

Definition 3.1. A forcing notion \mathbb{P} satisfies the countable chain condition (c.c.c.) if every antichain in \mathbb{P} is at most countable.

Theorem 3.1. If \mathbb{P} satisfies c.c.c., then \mathbb{P} preserves cofinality.
Proof. By lemma 2.1, it suffices to show that if \mathbb{P} satisfies c.c.c., then for any regular cardinal $\kappa^{M}, \kappa^{M[G]}$ is regular. It suffices to show that for any $\lambda<\kappa$, every function $f^{M[G]}: \lambda \rightarrow \kappa$ is bounded.

Let \dot{f} be a name, $p \in \mathbb{P}$. Assume:
$p \Vdash \dot{f}$ is a function from $\check{\lambda}$ to $\check{\kappa}$.
For every $\alpha<\lambda$, let $A_{\alpha}=\{\beta<\kappa: \exists q<p, q \Vdash \dot{f}(\alpha)=\beta\}$
If $W=\left\{q_{\beta}: \beta \in A_{\alpha}\right\}$ is a set of witness to $\beta \in A_{\alpha}$, then W is an antichain. Because if not, then there are $r \in \mathbb{P}, \beta \neq \theta$ such that $r \leq q_{\beta}$ and $r \leq q_{\theta}$. It follows that for any generic filter G containing $r, M[G] \Vdash \dot{f}(\alpha)=\beta, M[G] \Vdash \dot{f}(\alpha)=\theta$ and $M[G] \Vdash \beta \neq \theta, \perp$.

By c.c.c., W is countable.
Since κ is regular, $\bigcup_{\alpha<\kappa} A_{\alpha}$ is bounded by $\gamma<\kappa$. Thus, for all $\alpha<\lambda, p$ forces $\dot{f}(\alpha)<\gamma$.

Theorem 3.2. \mathbb{P} chosen in section 1 has c.c.c.
Proof. By lemma 3.7, $\mathbb{P}=F n(I, J)$ where $I=\omega_{2} \times \omega$ and $J=\{0,1\}$. Since J is countable, \mathbb{P} has c.c.c.

