ZFC+¬CH

Ruiting Hu

1 A Model of ZFC+ \neg CH

Theorem 1.1. There is M[G] such that $M[G] \vDash 2^{\aleph_0} > \aleph_1$.

Let \mathbb{P} be the set of all finite functions p such that:

- dom(p) is a finite subset of $\omega_2 \times \omega$
- $\operatorname{ran}(p) \subset \{0,1\}$
- p < q iff $q \subset p$ and for any generic $G, f = \bigcup G$.

Lemma 1.2. f is a function; $dom(f) = \omega_2 \times \omega$

Proof. Assume for RAA that f is not a function, then there are $p, q \in G$ such that for some $(\alpha, n), p(\alpha, n) \neq q(\alpha, n)$. WLOG, say $p(\alpha, n) = 0, q(\alpha, n) = 1$, then since G is a filter, $p < p' = ((\alpha, n), 0)$ and thus $p' \in G$. Similarly, $q < q' = ((\alpha, n), 1)$ and thus $q' \in G$. It follows that $p' \cap q' = \emptyset \in G, \bot$.

For the second part, let $D_{\alpha,n} = \{p \in \mathbb{P} : (\alpha, n) \in dom(p)\}$. $D_{\alpha,n}$ is dense in \mathbb{P} because for any $p \in \mathbb{P}$, we could extend p by adding $p(\alpha, n) = 0/1$. Thus, $(\alpha, n) \in dom(f)$ for all $(\alpha, n) \in \omega_2 \times \omega$.

Let $f_{\alpha} : \omega \to \{0, 1\}$ be defined as $f_{\alpha}(n) = f(\alpha, n)$ for all $\alpha < \omega_2$. Let $h : \omega \to \{0, 1\}^{\omega}$ be defined as $h(\alpha) = f_{\alpha}$

Lemma 1.3. h is 1-1

Proof. Assume $\alpha \neq \beta$, we show that $f_{\alpha} \neq f_{\beta}$.

Let $D = \{ p \in \mathbb{P} : p(\alpha, n) \neq p(\beta, n) \text{ for some } n \}.$

D is dense in \mathbb{P} because for any $p \in \mathbb{P}$, we could extend p by adding $p(\alpha, n) = 1$, $p(\beta, n) = 0$. Since G is a filter, $G \cap D \neq \emptyset$

Each f_{α} is a characteristic function of $a_{\alpha} \subset \omega$. The a_{α} s are called *Cohen generic reals*. We have added \aleph_2^M many *Cohen generic reals* to M.

2 Preservation of Cardinals

It remains to be shown that $\aleph_2^M = \aleph_2^{M[G]}$. This is not trivial since M[G] might allow more bijections than M and lead to $\omega_n^M < \omega_n^{M[G]}$.

Definition 2.1 (Cardinality Preservation). For any forcing poset $\mathbb{P} \in M \mathbb{P}$ preserves cardinals iff for all generic $G, (\beta \text{ is a cardinal})^M$ iff $(\beta \text{ is a cardinal})^{M[G]}$ for all $\beta < o(M)$.

 \mathbb{P} preserves cofinalities iff for all generic G, $cf^M(\gamma) = cf^{M[G]}(\gamma)$ for all limit $\gamma < o(M)$.

Definition 2.2 (Cofinality Preservation). For any forcing poset $\mathbb{P} \in M \mathbb{P}$ preserves cofinalities iff for all generic G, $\operatorname{cf}^{M}(\gamma) = \operatorname{cf}^{M[G]}(\gamma)$ for all limit $\gamma < o(M)$.

We prove two lemmas regarding the conditions under which \mathbb{P} preserves cofinality and cardinalty.

Lemma 2.1. \mathbb{P} preserves cofinality iff for all generic G: for all limit β such that $\omega < \beta < o(M), (\beta \text{ is regular})^M \to (\beta \text{ is regular})^{M[G]}$.

Proof. \rightarrow is trivial from Definition 1.2.

 \leftarrow : Assume for all generic G: for all limit β such that $\omega < \beta < o(M), (\beta \text{ is regular})^M \rightarrow (\beta \text{ is regular})^{M[G]}$, for any limit $\gamma < o(M)$, let $\beta = cf^M(\gamma)$, we show that $\beta = cf^{M[G]}(\gamma)$.

Let $X \in \mathcal{P}(\gamma) \cap M$ be such that $type(X) = \beta$ and $sup(X) = \gamma$. Since $\beta = cf^M(\gamma)$, $(\beta \text{ is regular})^M$ and by assumption $(\beta \text{ is regular})^{M[G]}$.

Since $X \subseteq \gamma$, $sup(X) = \gamma$, then $cf^{M[G]}(\gamma) = cf^{M[G]}(type(X)) = cf^{M[G]}(\beta) = \beta$ \Box

Lemma 2.2. If \mathbb{P} preserves cofinality, then \mathbb{P} preserves cardinality.

Proof. By Lemma 2.1, M and M[G] have the same regular cardinals. ZFC implies that every cardinal is either regular or $\leq \omega$ or a supremum of regular cardinals.

3 Countable Chain Condition and Preservation of Cardinality

We have proven that preservation of cofinality implies preservation of cardinality. To show that \mathbb{P} preserves cardinality it suffices to show that \mathbb{P} preserves cofinality. We prove this by proving that \mathbb{P} satisfies c.c.c. and that c.c.c. implies preservation of cofinality.

Definition 3.1. A forcing notion \mathbb{P} satisfies the *countable chain condition* (c.c.c.) if every antichain in \mathbb{P} is at most countable.

Theorem 3.1. If \mathbb{P} satisfies c.c.c., then \mathbb{P} preserves cofinality.

Proof. By lemma 2.1, it suffices to show that if \mathbb{P} satisfies c.c.c., then for any regular cardinal κ^M , $\kappa^{M[G]}$ is regular. It suffices to show that for any $\lambda < \kappa$, every function $f^{M[G]} : \lambda \to \kappa$ is bounded.

Let f be a name, $p \in \mathbb{P}$. Assume:

 $p \Vdash \hat{f}$ is a function from $\hat{\lambda}$ to $\check{\kappa}$.

For every $\alpha < \lambda$, let $A_{\alpha} = \{\beta < \kappa : \exists q < p, q \Vdash f(\alpha) = \beta\}$

If $W = \{q_{\beta} : \beta \in A_{\alpha}\}$ is a set of witness to $\beta \in A_{\alpha}$, then W is an antichain. Because if not, then there are $r \in \mathbb{P}, \beta \neq \theta$ such that $r \leq q_{\beta}$ and $r \leq q_{\theta}$. It follows that for any generic filter G containing $r, M[G] \Vdash \dot{f}(\alpha) = \beta, M[G] \Vdash \dot{f}(\alpha) = \theta$ and $M[G] \Vdash \beta \neq \theta, \perp$. By c.c.c., W is countable.

By c.c.c., W is countable. Since κ is regular, $\bigcup_{\alpha < \kappa} A_{\alpha}$ is bounded by $\gamma < \kappa$. Thus, for all $\alpha < \lambda, p$ forces $\dot{f}(\alpha) < \gamma$.

Theorem 3.2. \mathbb{P} chosen in section 1 has c.c.c.

Proof. By lemma 3.7, $\mathbb{P} = Fn(I, J)$ where $I = \omega_2 \times \omega$ and $J = \{0, 1\}$. Since J is countable, $\mathbb P$ has c.c.c.