Homework 9, due Monday 2 May

- Draw all 3-element intuitionistic frames, and all 4-element rooted intuitionistic frames. Draw all 5-element Heyting-algebras, and indicate their join-prime elements. Everything up to isomorphism; no proofs needed.
 [5 pts]
- 2. (a) Show that, if \mathfrak{F} is rooted, then $\Psi(\mathfrak{F})$ has a second-largest element. [2 pts]
 - (b) Show that, if \mathfrak{A} has a second-largest element, then $\Phi(\mathfrak{A})$ is rooted. [2 pts]
- 3. A relation \equiv is called a *congruence* on a Heyting-algebra \mathfrak{A} if it is an equivalence relation and for all $a, a', b, b' \in \mathfrak{A}$, if $a \equiv a'$ and $b \equiv b'$, then $(a \star b) \equiv (a' \star b')$ for all three operations \star on \mathfrak{A} .
 - (a) Show that, if F is a filter on \mathfrak{A} , then \equiv_F , defined by $a \equiv_F a'$ iff $(a \leftrightarrow a') \in F$, is a congruence on \mathfrak{A} . (You can use that $\vdash_{\mathbf{IPC}} \varphi$ iff " $\varphi = \top$ " is valid in all Heyting-algebras, and you can just assume that $\vdash_{\mathbf{IPC}} \varphi$ holds for φ if that is the case.) [3 pts]

Denote by $||a||_F$ the equivalence class of a under \equiv_F . On the set $||A||_F$ of all these equivalence classes define $||a||_F \star ||a'||_F := ||a \star a'||_F$ for all operations \star , and $\perp := ||\perp||_F$. The resulting algebra \mathfrak{A}/F is called the quotient algebra of \mathfrak{A} with respect to F.

- (b) Suppose that h is a homomorphism of A onto B. Show that the map g, defined by g(h(a)) := ||a||_{h⁻¹(⊤)}, is an isomorphism of B onto A/h⁻¹(⊤). [3 pts]
- (c) Suppose that F is a filter on a Heyting-algebra \mathfrak{A} . Show that the map h, defined by $h(a) := ||a||_F$, is an homomorphism of \mathfrak{A} onto \mathfrak{A}/F , and $F = h^{-1}(\top)$. [3 pts]