Homework 5, due Monday 7 March

- 1. (a) Show that the following is valid: If $\vdash_{\mathbf{IPC}} (\varphi \to \psi) \to (\chi \lor \theta)$, then $\vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \chi \text{ or } \vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \theta \text{ or } \vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \varphi$. [3 pts]
 - (b)* Give an example such that the first two alernatives of (a) do not apply, but the last one does. [2 pts]
- 2. (a) Let φ be a propositional formula containing only \wedge, \rightarrow and \perp . Let \mathfrak{M} be a model and w a node in \mathfrak{M} such that w has proper successors (i.e., there is at least one v in \mathfrak{M} with wRv and $w \neq v$). Suppose
 - φ holds in all proper successors of w (i.e., for all v with $wRv, w \neq v$, we have $\mathfrak{M}, v \models \varphi$), and
 - for all propositional variables p, we have that p is true in w iff p is true in all proper successors of w (i.e., $w \in V(p)$ iff $\forall v \ (wRv, w \neq v \Rightarrow v \in V(p))$.

(In other words, the valuation in w is maximal for propositional variables considering persistency).

Show that φ is true in w. [4 pts]

- (b) Show on the basis of the above that, if φ is a propositional formula not containing \lor and $\vdash_{\mathbf{IPC}} \varphi \to \psi \lor \chi$, then $\vdash_{\mathbf{IPC}} \varphi \to \psi$ or $\vdash_{\mathbf{IPC}} \varphi \to \chi$. [2 pts]
- 3. Prove that $\vdash_{\mathbf{IPC}} \varphi$ implies $\vdash_{\mathbf{S4}} \varphi^{\Box}$ in the following manner:

Assume \mathfrak{M} on \mathfrak{F} is an **S4**-countermodel to φ^{\Box} . Take the frame \mathfrak{G} that is obtained from \mathfrak{F} by replacing each cluster (collection of nodes that are pairwise accessible from each other) by a single node (try to define this exactly.) There is an obvious function from \mathfrak{F} onto \mathfrak{G} . Show that it is a **frame**-p-morphism. Define a valuation on \mathfrak{G} in such a way that the resulting model \mathfrak{N} is an **IPC**-model. Show, by induction on the length of $\psi(p_1, \ldots, p_n)$ that, for each $w \in W$, $\mathfrak{M}, w \models \psi^{\Box}$ (as an **S4**-model) iff $\mathfrak{N}, f(w) \models \psi$ (as an **IPC**-model). Finally conclude that \mathfrak{N} (as an **IPC**model) falsifies φ . [7 pts]