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Definitions

Notation:

[ω]ω : {a ⊆ ω | |a| = ω}
=∗: equality modulo finite

⊆∗: subset modulo finite

Definition

Let A,B ⊆ [ω]ω.

A and B are orthogonal (A⊥B) if ∀a ∈ A ∀b ∈ B (a ∩ b =∗ ∅)
(such a pair (A,B) is called a pre-gap)

A set c ∈ [ω]ω separates a pre-gap (A,B) if ∀a ∈ A (a ⊆∗ c) and
∀b ∈ B (b ∩ c =∗ ∅).

A pair (A,B) is a gap if it is a pre-gap which cannot be separated.
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Types of gaps

Theorem (Hausdorff 1936)

There exists an (ω1, ω1)-gap (A,B): A and B well-ordered by ⊆∗, with
order-type ω1.

Construction by induction on α < ω1, sets A and B are not definable.

Theorem (Todorčević 1996)

There exists a perfect gap (A,B): both A and B are perfect sets.

Proof.

A := {{x�n | x(n) = 0} | x ∈ 2ω} ⊆ [ω<ω]ω

B := {{x�n | x(n) = 1} | x ∈ 2ω} ⊆ [ω<ω]ω.

Yurii Khomskii (KGRC) Definable Hausdorff Gaps Trends in Set Theory 2012 3 / 16



Types of gaps

Theorem (Hausdorff 1936)

There exists an (ω1, ω1)-gap (A,B): A and B well-ordered by ⊆∗, with
order-type ω1.

Construction by induction on α < ω1, sets A and B are not definable.

Theorem (Todorčević 1996)
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There exists a perfect gap (A,B): both A and B are perfect sets.

Proof.

A := {{x�n | x(n) = 0} | x ∈ 2ω} ⊆ [ω<ω]ω

B := {{x�n | x(n) = 1} | x ∈ 2ω} ⊆ [ω<ω]ω.

Yurii Khomskii (KGRC) Definable Hausdorff Gaps Trends in Set Theory 2012 3 / 16



Types of gaps

Theorem (Hausdorff 1936)

There exists an (ω1, ω1)-gap (A,B): A and B well-ordered by ⊆∗, with
order-type ω1.

Construction by induction on α < ω1, sets A and B are not definable.

Theorem (Todorčević 1996)
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“Hausdorff gap”

Put conditions on (A,B) approaching Hausdorff.

Definition

We will say that a gap (A,B) is a Hausdorff gap if A and B are
σ-directed (every countable subset has an ⊆∗-upper bound).

Theorem (Todorčević 1996)

If either A or B is analytic then (A,B) cannot be a Hausdorff gap.
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Proof

About the proof:

A and B are σ-separated if ∃C countable s.t. C⊥B and
∀a ∈ A ∃c ∈ C (a ⊆∗ c)

A tree S on ω↑ω is an (A,B)-tree if
1 ∀σ ∈ S : {i | σ_ 〈i〉 ∈ S} has infinite intersection with some b ∈ B,
2 ∀x ∈ [S ] : ran(x) ⊆∗ a for some a ∈ A.

Point:

1 If A is σ-directed, then “σ-separated” → “separated”.

2 If B is σ-directed, then there is no (A,B)-tree.

Theorem (Todorčević 1996)

If A is analytic then either there exists an (A,B)-tree or A and B are
σ-separated.
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If A is analytic then either there exists an (A,B)-tree or A and B are
σ-separated.

Yurii Khomskii (KGRC) Definable Hausdorff Gaps Trends in Set Theory 2012 5 / 16



Extending this result

We can extend this in various directions.

1 Solovay’s model

2 Determinacy

3 Σ1
2 and Π1

1 level

Theorem

In the Solovay model (L(R) of V Col(ω,<κ) for κ inaccessible) there are no
Hausdorff gaps.

My proof: prove the dichotomy (either ∃(A,B)-tree or A and B are
σ-separated) for all A,B in the Solovay model.

Probably there are other proofs...
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Determinacy

Theorem (Kh)

ADR ⇒ there are no Hausdorff gaps.

Proof: For a pre-gap (A,B), define a game GH(A,B).

Definition

I : c0 (s1, c1) (s2, c2) . . .
II : i0 i1 i2 . . .

where sn ∈ ω<ω , cn ∈ [ω]ω and in ∈ ω. The conditions for player I:

1 min(sn) > max(sn−1) for all n ≥ 1,

2 min(cn) > max(sn),

3 all cn have infinite intersection with some b ∈ B, and

4 in ∈ ran(sn+1) for all n.

Conditions for player II:

1 in ∈ cn for all n.

If all five conditions are satisfied, let s∗ := s1
_s2

_ . . . . Player I wins iff ran(s∗) ∈ A.
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_ . . . . Player I wins iff ran(s∗) ∈ A.

Player I wins GH(A,B) ⇒ there exists an (A,B)-tree.

Player II wins GH(A,B) ⇒ A and B are σ-separated.

Unfortunately, I don’t know how to do it with AD!
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Back to low projective levels...

Notation:

(Γ,Γ)-Hausdorff gap: A,B are of complexity Γ,

(Γ, ·)-Hausdorff gap: A is of complexity Γ, B is arbitrary.

Theorem (Kh)

The following are equivalent:

1 there is no (Σ1
2, ·)-Hausdorff gap

2 there is no (Σ1
2,Σ

1
2)-Hausdorff gap

3 there is no (Π1
1, ·)-Hausdorff gap

4 there is no (Π1
1,Π

1
1)-Hausdorff gap

5 ∀r (ℵL[r ]
1 < ℵ1)

Non-trivial directions: (4)⇒ (5) and (5)⇒ (1).
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Proof

(5) ⇒ (1) : ∀r (ℵL[r ]
1 < ℵ1) ⇒ @(Σ1

2, ·)-Hausdorff gap.

A and B are C-separated if C⊥B and ∀a ∈ A ∃c ∈ C (a ⊆∗ c).

Lemma (Kh)

If A is Σ1
2(r) then either there exists an (A,B)-tree or A and B are

C -separated by some C ⊆ L[r ].

Hence: if ωω ∩ L[r ] is countable then C is countable, so “C -separated” ⇒
“σ-separated”.
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Proof (continued)

(4) ⇒ (5) : ∃r (ℵL[r ]
1 = ℵ1) ⇒ ∃(Π1

1,Π
1
1)-Hausdorff gap.

For this, we use the original argument of Hausdorff.

A = {aγ | γ < ω1}, B = {bγ | γ < ω1}, well-ordered by ⊆∗

“Hausdorff’s condition” (HC)

∀α < ω1 ∀k ∈ ω ({γ < α | aα ∩ bγ ⊆ k} is finite)

Point: A gap satisfying HC is indestructible, i.e., remains a gap in any
larger model W ⊇ V as long as ℵW1 = ℵV1 .

Yurii Khomskii (KGRC) Definable Hausdorff Gaps Trends in Set Theory 2012 11 / 16



Proof (continued)

(4) ⇒ (5) : ∃r (ℵL[r ]
1 = ℵ1) ⇒ ∃(Π1

1,Π
1
1)-Hausdorff gap.

For this, we use the original argument of Hausdorff.

A = {aγ | γ < ω1}, B = {bγ | γ < ω1}, well-ordered by ⊆∗

“Hausdorff’s condition” (HC)

∀α < ω1 ∀k ∈ ω ({γ < α | aα ∩ bγ ⊆ k} is finite)

Point: A gap satisfying HC is indestructible, i.e., remains a gap in any
larger model W ⊇ V as long as ℵW1 = ℵV1 .

Yurii Khomskii (KGRC) Definable Hausdorff Gaps Trends in Set Theory 2012 11 / 16



Proof (continued)

(4) ⇒ (5) : ∃r (ℵL[r ]
1 = ℵ1) ⇒ ∃(Π1

1,Π
1
1)-Hausdorff gap.

For this, we use the original argument of Hausdorff.

A = {aγ | γ < ω1}, B = {bγ | γ < ω1}, well-ordered by ⊆∗

“Hausdorff’s condition” (HC)

∀α < ω1 ∀k ∈ ω ({γ < α | aα ∩ bγ ⊆ k} is finite)

Point: A gap satisfying HC is indestructible, i.e., remains a gap in any
larger model W ⊇ V as long as ℵW1 = ℵV1 .

Yurii Khomskii (KGRC) Definable Hausdorff Gaps Trends in Set Theory 2012 11 / 16



Proof (continued)

(4) ⇒ (5) : ∃r (ℵL[r ]
1 = ℵ1) ⇒ ∃(Π1

1,Π
1
1)-Hausdorff gap.

For this, we use the original argument of Hausdorff.

A = {aγ | γ < ω1}, B = {bγ | γ < ω1}, well-ordered by ⊆∗

“Hausdorff’s condition” (HC)

∀α < ω1 ∀k ∈ ω ({γ < α | aα ∩ bγ ⊆ k} is finite)

Point: A gap satisfying HC is indestructible, i.e., remains a gap in any
larger model W ⊇ V as long as ℵW1 = ℵV1 .
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Proof (continued)

Lemma (Hausdorff): if initial segment ({aγ | γ < α}, {bγ | γ < α})
satisfies HC, then we can find aα, bα so that ({aγ | γ ≤ α}, {bγ | γ ≤ α})
still satisfies HC.

Do this in any L[r ], get Σ1
2 definitions for A and B (choose <L[r ]-least

aα, bα).

Assuming ℵL[r ]
1 = ℵ1, we get a (Σ1

2(r),Σ1
2(r))-Hausdorff gap (in V ).
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Miller’s method

Method due to Arnold Miller for Π1
1 inductive constructions in L:

Idea:

instead of: φ(x) ↔ ∃M (M |= φ(x))
write: φ(x) ↔ Mx |= φ(x)

where x 7→ Mx is a recursive function coding a countable model.

“The general principle is that if a transfinite construction can be done so
that at each stage an arbitrary real can be encoded into the real constructed
at that stage then the set being constructed will be Π1

1. The reason is
basically that then each element of the set can encode the entire
construction up to that point at which it itself is constructed.” Miller, 1981

For more about this, please wait ±10 min!
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Coding Lemma

Coding Lemma (Kh)

If an initial segment ({aγ | γ < α}, {bγ | γ < α}) satisfies HC, then we
can find aα, bα so that ({aγ | γ ≤ α}, {bγ | γ ≤ α}) still satisfies HC, and
additionally both aα and bα recursively code an arbitrary countable model
M.

Do this in L[r ] with ℵL[r ]
1 = ℵ1, and obtain a (Π1

1(r),Π1
1(r))-Hausdorff gap

(in V ).
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Questions

Questions:

1 Can we replace ADR by AD?

2 Can we get rid of Miller’s method (purely methodological interest).

3 Higher projective levels (e.g. Σ1
n+1 vs. Π1

n)?
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