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Regularity

Regularity properties for sets of reals
(e.g. Lebesgue measurability, Baire property, Ramsey property)

True for Borel sets

True for analytic sets

False for all sets (AC)

∆
1

2/Σ
1

2? Independent of ZFC
False if V = L.
True if L[a] ∩ ωω is countable for all a ∈ ωω.
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Regularity

Regularity properties for sets of reals
(e.g. Lebesgue measurability, Baire property, Ramsey property)

True for Borel sets

True for analytic sets

False for all sets (AC)

∆
1

2/Σ
1

2? Independent of ZFC
False if V = L.
True if L[a] ∩ ωω is countable for all a ∈ ωω.

“More regularity on ∆
1

2/Σ
1

2-level ∝ L gets smaller”
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Examples

1. ∆
1

2(Lebesgue) ⇐⇒ ∀a ∃ random-generic/L[a]

2. ∆
1

2(Baire Property) ⇐⇒ ∀a ∃ Cohen-generic/L[a]
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Examples

1. ∆
1

2(Lebesgue) ⇐⇒ ∀a ∃ random-generic/L[a]

2. ∆
1

2(Baire Property) ⇐⇒ ∀a ∃ Cohen-generic/L[a]

3. ∆
1

2(Ramsey) ⇐⇒ ∀a ∃ Ramsey real/L[a]

4. ∆
1

2(Laver) ⇐⇒ ∀a ∃ dominating real/L[a]

5. ∆
1

2(Miller) ⇐⇒ ∀a ∃ unbounded real/L[a]

6. ∆
1

2(Sacks) ⇐⇒ ∀a ∃ real /∈ L[a]
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(Non-)implications

Given two regularity properties: Reg
1

and Reg
2
, we are

interested in:

∆
1

2(Reg
1
) =⇒ ∆

1

2(Reg
2
)?
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∆
1

2(Reg
1
) =⇒ ∆

1

2(Reg
2
)?

Positive answer: find a ZFC-proof

Negative answer: find a model M s.t. M |= ∆
1

2(Reg
1
)

but M |= ¬∆
1

2(Reg
2
)
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and Reg
2
, we are

interested in:

∆
1

2(Reg
1
) =⇒ ∆

1

2(Reg
2
)?

Positive answer: find a ZFC-proof

Negative answer: find a model M s.t. M |= ∆
1

2(Reg
1
)

but M |= ¬∆
1

2(Reg
2
)

Brendle, Löwe, Ikegami: Regularity based on forcing.

We consider Ramsey-theoretic partition properties (on the
reals).

Polarized Partition Propertiesfor ∆1

2
sets. – p. 4/22



Polarized Partitions

Definition.

For H : ω −→ [ω]<ω, define ‖H‖(n) := |H(n)|.
Abbreviation: [H] :=

∏
i∈ω

H(i).
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i∈ω

H(i).

For y ∈ ωω, a set/partition A ⊆ ωω satisfies ((ω̄) → (y))
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For H : ω −→ [ω]<ω, define ‖H‖(n) := |H(n)|.
Abbreviation: [H] :=

∏
i∈ω

H(i).

For y ∈ ωω, a set/partition A ⊆ ωω satisfies ((ω̄) → (y))
(unbounded polarized partition) if

∃H, ‖H‖ = y s.t. [H] ⊆ A ∨ [H] ∩ A = ∅

For x, y ∈ ωω, a set A ⊆ ωω satisfies ((x) → (y))
(bounded polarized partition) if

∃H, ‖H‖ = y and ∀i H(i) ⊆ x(i) s.t. [H] ⊆ A∨ [H]∩A = ∅

Here, x is explicitly definable from y (the x(n)’s are
recursive in the y(n)’s).
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Polarized Partitions

Polarized partition properties have been studied by Henle,
Llopis, DiPrisco, Todorčević and Zapletal.
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Facts. Both bounded and unbounded polarized partition
properties

1. are true for Borel sets

2. are true for analytic sets (DiPrisco & Todorčević, 2003)

3. are false for all sets (AC)

4. DiPrisco & Todorčević compute explicit bounds for
((x) → (y)) in terms of an Ackermann-like function.
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Polarized Partitions

Polarized partition properties have been studied by Henle,
Llopis, DiPrisco, Todorčević and Zapletal.

Facts. Both bounded and unbounded polarized partition
properties

1. are true for Borel sets

2. are true for analytic sets (DiPrisco & Todorčević, 2003)

3. are false for all sets (AC)

4. DiPrisco & Todorčević compute explicit bounds for
((x) → (y)) in terms of an Ackermann-like function.

Our question: What about ∆
1

2((ω̄) → (y)) and
∆

1

2((x) → (y))?
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Easy observations

Easy observations:

1. ∆
1

2((x) → (y)) =⇒ ∆
1

2((ω̄) → (y)).
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Easy observations

Easy observations:

1. ∆
1

2((x) → (y)) =⇒ ∆
1

2((ω̄) → (y)).

2. For all y, y′(≥ 2): ∆
1

2((ω̄) → (y)) ⇐⇒ ∆
1

2((ω̄) → (y′)),

3. For all y, y′(≥ 2): if ∆
1

2((x) → (y)) for some x, then
∆

1

2((x
′) → (y′)) for some x′.

Use coding function ϕ(x) := 〈〈x(0), . . . , x(i1)〉 , 〈x(i1 + 1), . . . , x(i1 + i2)〉 , . . . 〉.
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Easy observations:

1. ∆
1

2((x) → (y)) =⇒ ∆
1

2((ω̄) → (y)).

2. For all y, y′(≥ 2): ∆
1

2((ω̄) → (y)) ⇐⇒ ∆
1

2((ω̄) → (y′)),

3. For all y, y′(≥ 2): if ∆
1

2((x) → (y)) for some x, then
∆

1

2((x
′) → (y′)) for some x′.

Use coding function ϕ(x) := 〈〈x(0), . . . , x(i1)〉 , 〈x(i1 + 1), . . . , x(i1 + i2)〉 , . . . 〉.

4. ∆
1

2(Ramsey) =⇒ ∆
1

2((ω̄) → (y)).
Given A, let X ∈ ω↑ω be homogeneous for A ∩ ω↑ω . Then divide ran(X) into

X0, X1, . . . such that |Xn| = y(n). Now H := 〈X0, X1, . . . 〉 witnesses that A is

((ω̄) → (y))-measurable.
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Eventually different reals

Theorem. If ∆
1

2((ω̄) → (y)) then ∀a there is an eventually
different real over L[a].
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Eventually different reals

Theorem. If ∆
1

2((ω̄) → (y)) then ∀a there is an eventually
different real over L[a].

Proof.
Suppose not, fix a such that ∀x ∃y ∈ L[a] s.t. ∃∞n (x(n) = y(n)).
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different real over L[a].

Proof.
Suppose not, fix a such that ∀x ∃y ∈ L[a] s.t. ∃∞n (x(n) = y(n)).

W.l.o.g., assume that ∀x ∃y ∈ L[a] s.t. ∃∞n [x(n) = y(n) & x(n + 1) = y(n + 1)]. Let
yx denote the <L[a]-least such real.
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Eventually different reals

Theorem. If ∆
1

2((ω̄) → (y)) then ∀a there is an eventually
different real over L[a].

Proof.
Suppose not, fix a such that ∀x ∃y ∈ L[a] s.t. ∃∞n (x(n) = y(n)).

W.l.o.g., assume that ∀x ∃y ∈ L[a] s.t. ∃∞n [x(n) = y(n) & x(n + 1) = y(n + 1)]. Let
yx denote the <L[a]-least such real.

Let A := {x | first n at which x(n) = yx(n) is even}. This is ∆1
2(a) using the fact that

<L[a] is ∆1
2(a).
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Eventually different reals

Theorem. If ∆
1

2((ω̄) → (y)) then ∀a there is an eventually
different real over L[a].

Proof.
Suppose not, fix a such that ∀x ∃y ∈ L[a] s.t. ∃∞n (x(n) = y(n)).

W.l.o.g., assume that ∀x ∃y ∈ L[a] s.t. ∃∞n [x(n) = y(n) & x(n + 1) = y(n + 1)]. Let
yx denote the <L[a]-least such real.

Let A := {x | first n at which x(n) = yx(n) is even}. This is ∆1
2(a) using the fact that

<L[a] is ∆1
2(a).

Let H be homogeneous for A, w.l.o.g. [H] ⊆ A. But if x ∈ [H] then let us change
finitely many digits of x to produce a new real x′, such that the first n at which
x′(n) = yx(n) is odd but still x′ ∈ [H]. It is easy to see that yx = yx′ , hence x′ /∈ A:
contradiction.
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Question: which implications cannot be reversed?
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Mathias model

Theorem. Let LRω1 be the Mathias model, i.e., the
ω1-iteration with countable support of Mathias forcing
starting from L. Then LRω1 |= ∆

1

2(Ramsey) but
¬∆

1

2((x) → (y)).
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Mathias model

Theorem. Let LRω1 be the Mathias model, i.e., the
ω1-iteration with countable support of Mathias forcing
starting from L. Then LRω1 |= ∆

1

2(Ramsey) but
¬∆

1

2((x) → (y)).

Proof
Clearly ∆

1
2(Ramsey) holds in LRω1 .

Let C := {S : ω −→ [ω]<ω | ∀n|S(n)| ≤ 2n}. Mathias forcing satisfies the Laver
property : For every y ∈ M ∩ ωω and ẋ s.t. 
 ∀n ẋ(n) ≤ y(n), there is an S ∈ C ∩ M

s.t. 
 ∀n ẋ(n) ∈ S(n).
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property : For every y ∈ M ∩ ωω and ẋ s.t. 
 ∀n ẋ(n) ≤ y(n), there is an S ∈ C ∩ M

s.t. 
 ∀n ẋ(n) ∈ S(n).

Use the ∆
1
2 well-ordering of L ∩ ωω to define a ∆

1
2 well-ordering of L ∩ C.
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Mathias model

Theorem. Let LRω1 be the Mathias model, i.e., the
ω1-iteration with countable support of Mathias forcing
starting from L. Then LRω1 |= ∆

1

2(Ramsey) but
¬∆

1

2((x) → (y)).

Proof
Clearly ∆

1
2(Ramsey) holds in LRω1 .

Let C := {S : ω −→ [ω]<ω | ∀n|S(n)| ≤ 2n}. Mathias forcing satisfies the Laver
property : For every y ∈ M ∩ ωω and ẋ s.t. 
 ∀n ẋ(n) ≤ y(n), there is an S ∈ C ∩ M

s.t. 
 ∀n ẋ(n) ∈ S(n).

Use the ∆
1
2 well-ordering of L ∩ ωω to define a ∆

1
2 well-ordering of L ∩ C.

Use that to define a ∆
1
2 set A which explicitly violates ((x) → (y)), where y grows

faster then 2n. This set is well-defined because of the Laver property.
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A model for ∆
1
2((x) → (y))

Goal. Force a model in which ∆
1

2((ω̄) → (y)) is true but
∆

1

2(Ramsey) is false.
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Goal. Force a model in which ∆
1

2((ω̄) → (y)) is true but
∆

1

2(Ramsey) is false.

Stronger. Force a model in which ∆
1

2((x) → (y)) is true but
∆

1

2(Miller) is false.

Definition. A forcing notion is ωω-bounding if for all ẋ there
is a y in the ground model and a p s.t. p 
 ∀n ẋ(n) ≤ y(n).
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A model for ∆
1
2((x) → (y))

Goal. Force a model in which ∆
1

2((ω̄) → (y)) is true but
∆

1

2(Ramsey) is false.

Stronger. Force a model in which ∆
1

2((x) → (y)) is true but
∆

1

2(Miller) is false.

Definition. A forcing notion is ωω-bounding if for all ẋ there
is a y in the ground model and a p s.t. p 
 ∀n ẋ(n) ≤ y(n).

An ωω-bounding forcing doesn’t add unbounded reals,
hence an ω1-iteration produces a model of ¬∆

1

2(Miller).

So we must find an ωω-bounding forcing s.t. an ω1-iteration
produces ∆

1

2((x) → (y)).
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The forcing notion

“Almost” theorem. There is such a forcing notion.

Idea. Let PFUT (for “fat uniform tree forcing”) consist of
finitely branching, uniform trees, equiv. conditions of the
form (s,H) where s ∈ ω<ω and H : ω → [ω]<ω.

Some lower bounds are required to make sure that the
trees are sufficiently branching beyond the stem (i.e., ‖H‖
is sufficiently increasing).
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Properties of PFUT

Properties of PFUT.

1. PFUT is proper and ωω-bounding.
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Properties of PFUT

Properties of PFUT.

1. PFUT is proper and ωω-bounding.

2. PFUT satisfies pure decision, i.e., for all φ and p ∈ PFUT

there is q ≤ p with the same stem, s.t. q 
 φ or q 
 ¬φ.
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Properties of PFUT

Properties of PFUT.

1. PFUT is proper and ωω-bounding.

2. PFUT satisfies pure decision, i.e., for all φ and p ∈ PFUT

there is q ≤ p with the same stem, s.t. q 
 φ or q 
 ¬φ.

3. An ω1-iteration with countable support of PFUT, starting
from L, yields a model in which ∆

1

2((x) → (y)) holds.
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Diagram of implications
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Future work

Still open:

1. Is the implication ∆
1

2((ω̄) → (y)) ⇒ ∀a ∃ev. diff./L[a]
strict? Conjecture: yes.
[Random model? Laver model? “Eventually different forcing” model?]
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1

2((ω̄) → (y)) ⇒ ∀a ∃ev. diff./L[a]
strict? Conjecture: yes.
[Random model? Laver model? “Eventually different forcing” model?]

2. Relationship with Lebesgue measurability.

∆
1

2(Lebesgue) 6⇒ ∆
1

2((ω̄) → (y)) in the random
model?

∆
1

2((ω̄) → (y)) 6⇒ ∆
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2(Lebesgue) in the PFUT model?
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Future work

Still open:

1. Is the implication ∆
1

2((ω̄) → (y)) ⇒ ∀a ∃ev. diff./L[a]
strict? Conjecture: yes.
[Random model? Laver model? “Eventually different forcing” model?]

2. Relationship with Lebesgue measurability.

∆
1

2(Lebesgue) 6⇒ ∆
1

2((ω̄) → (y)) in the random
model?

∆
1

2((ω̄) → (y)) 6⇒ ∆
1

2(Lebesgue) in the PFUT model?

3. What happens at the Σ
1

2-level?

Basic question: are Σ
1

2((ω̄) → (y)) and ∆
1

2((ω̄) → (y))
equivalent?
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