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The setting

The setting

The continuum (R, R2, P(ω), ωω, 2ω, . . . ).

Subsets of the continuum ≈ “objects in space”.
Regularity properties vs. definability of these objects.

1 Regularity.

Lebesgue measure,
Baire property,
Ramsey property, . . .

2 Definability.

Classifying sets according to
logical complexity.

3 Relationship between these.

Independence from ZFC
(forcing extensions over L).
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Regularity

1. Regularity
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Regularity

Regularity

What do we mean by “regularity properties” of sets of reals?

Example 1. Lebesgue measure.

For q < q′ ∈ Q, µ([q, q′]) := q′ − q.

Naturally extend to Borel subsets of R.

A ⊆ R is Lebesgue-null if ∃B Borel with A ⊆ B and µ(B) = 0.

A is Lebesgue-measurable if ∃B Borel such that (A \ B) ∪ (B \ A) is
Lebesgue-null.

Captures the intuition of “size” or “volume” of a set of reals (“object in
space”).

Can naturally be extended to Rn.
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Regularity

Measure

However, there are non-Lebesgue-measurable sets (Vitali, 1905).

Proof.

If A is Lebesgue-measurable then there exists a perfect set P with
µ(P) > 0 s.t. P ⊆ A or P ∩ A = ∅. Use Axiom of Choice to diagonalize
against perfect sets.

Another proof.

Let U be an ultrafiler on ω. Identify P(ω)
with 2ω, then U is non-Lebesgue-
measurable.

Problematic consequences for spatial rea-
soning, e.g., Banach-Tarski paradox.
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Regularity

Other examples

A ⊆ R has the Baire property if ∃B Borel such that (A \ B) ∪ (B \ A)
is meager.

A ⊆ R is Marczewski-measurable if for every perfect set P there is a
perfect subset Q ⊆ P such that Q ⊆ A or Q ∩ A = ∅.

Ramsey property, doughnut property, perfect set property,
Kσ-regularity, . . . .

In each case, we can find counterexamples. But. . . typical construction
involves induction along a well-ordering of the continuum (Axiom of
Choice).

Question

Can we find an explicit example of a non-regular set? (and what does that
even mean?)
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2. Definability
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Definability

Descriptive set theory

Descriptive set theory: not just about sets, but about their descriptions or
definitions.

Focus on second-order number theory (N2):

Variables range over natural numbers or real numbers.

Natural number quantifiers: ∃0 ∀0,

Real number quantifiers: ∃1 ∀1.

Complexity of N2-formulas: Σ0
n,Π

0
n, . . . ,Σ

1
n,Π

1
n, . . . .
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Definability

Complexity of sets

Complexity of a set of reals measured by complexity of defining
N2-formula.

A = {x ∈ R | N2 |= φ(x , a)}

Note that we allow a fixed real parameter a ∈ R in the definition.

Definition

We say “A has complexity Σi
n (Πi

n)” iff φ has complexity Σi
n (Πi

n).

Relation with topology:

Σ0
1 = open,

Π0
1 = closed,

∆1
1 = Borel,

Σ1
1 = analytic (continuous image of Borel).
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Definability

Hierarchy

(open) (analytic)

Σ0
1 Σ0

2 Σ1
1 Σ1

2⊆ ⊆ ⊆ (Borel) ⊆ ⊆ ⊆ ⊆
∆0

2 . . . ∆1
1 ∆1

2 . . .

⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆
Π0

1 Π0
2 Π1

1 Π1
2

(closed) (co-analytic)

All Σ1
1 sets are regular.

For many properties, also all Π1
1 sets are regular.

Irregular sets (produced by AC) may lie far outside this hierarchy.

So “paradoxes” cannot occur if we restrict attention to
analytic/co-analytic sets.
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Definability

Second level

So on which level do things go wrong?

Question: Does the assertion “all Σ1
2 sets are regular” hold?

Answer: It is independent of ZFC!
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Independence results

3. Independence results
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Independence results

Constuctible universe and extensions

L = Gödel’s constructible universe.

There is a Σ1
2-definable well-ordering of the continuum.

Therefore irregularity exists on the Σ1
2 (even ∆1

2) level.

Forcing over L.

By forcing we can add new reals, destroy Σ1
2 well-ordering. Does

irregularity disappear?

If we add “many” reals, yes.
If we add “not so many” reals, perhaps not.

In fact, we can say exactly which reals must be added to obtain
regularity on Σ1

2/∆1
2 level.
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Independence results

Solovay-Judah-Shelah characterizations

Theorem (Judah-Shelah 1989)

The following are equivalent:

1 All ∆1
2 sets are Lebesgue-measurable,

2 For all a ∈ R there is a random-generic real over L[a].

Theorem (Solovay 1969)

The following are equivalent:

1 All Σ1
2 sets are Lebesgue-measurable,

2 For all a ∈ R, “almost all” reals are random-generic over L[a].
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Independence results

Iterated forcing extensions

Statements “all Σ1
2 (∆1

2) sets are regular” correspond to “transcendence
over L”.

Since transcendence over L can (to some extend) be controlled by forcing,
so can regularity.

Example 1. Random forcing adds random-generic reals but not
Cohen-generic reals. Therefore, if we iterate random forcing for ℵ1 steps,
we get a model where all ∆1

2 sets are Lebesgue measurable, but not all ∆1
2

sets have the Baire property.

Example 2. Cohen forcing adds Cohen-generic reals but not
random-generic reals. Therefore, if we iterate Cohen forcing (for ℵ1 steps),
we get a model where all ∆1

2 sets have the Baire property but not all ∆1
2

sets are Lebesgue measurable.
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Independence results

Strength of measurability

On the other hand, some properties are stronger than others:

Theorem (Bartoszyński-Raisonnier-Stern 1984/1985)

If all Σ1
2 sets are Lebesgue measurable then all Σ1

2 sets have the Baire
property.

Measurability statements have various “strength”, corresponding to
strength of transcendence statements.
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Theorem (Bartoszyński-Raisonnier-Stern 1984/1985)

If all Σ1
2 sets are Lebesgue measurable then all Σ1

2 sets have the Baire
property.

Measurability statements have various “strength”, corresponding to
strength of transcendence statements.

Σ1
2(Lebesgue)

w� ww
ww

ww
ww

ww
ww

ww
ww

!)JJJJJJJJJ

JJJJJJJJJ

Σ1
2(Baire)

�'GG
GG

GG
GG

GG
GG

GG
GG

∆1
2(Lebesgue)

∆1
2(Baire)

Yurii Khomskii (University of Amsterdam) Regularity and definability PhDs in Logic III 17 / 21



Independence results

Strength of measurability

On the other hand, some properties are stronger than others:
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Independence results

Brendle & Löwe, Eventually different functions and inaccessible cardinals.
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Independence results
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on the second level of the projective hierarchy.
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Independence results

Questions

Typical questions in this field:

1 Given a regularity property, characterize it by transcendence property.

2 Given a transcendence property, characterize it by regularity.

3 Find general Solovay-Judah-Shelah-style theorems (some work done
by Daisuke Ikegami; still many open questions).

4 Prove implications from Σ1
2/∆1

2(Reg1) to Σ1
2/∆1

2(Reg2), or produce
a model which separates Reg1 from Reg2.

5 For some properties, whether it holds on the Σ1
1 or even Borel level is

still open (e.g., does there exist a Borel maximal family of eventually
different functions?)
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Independence results

Thank you!
Yurii Khomskii

yurii@deds.nl
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