
Polarized partition properties on the
second level of the projective hierarchy

Yurii Khomskii

University of Amsterdam

Joint work with Jörg Brendle (Kobe University, Japan)

ISLA 2010, Hyderabad, India

Yurii Khomskii (University of Amsterdam) Polarized Partitions ISLA 2010, Hyderabad, India 1 / 34



Introduction

Introduction: Regularity properties
and the projective hierarchy.
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Introduction

Regularity Properties

Regularity properties for sets of reals
(e.g. Lebesgue measurability, Baire property, Ramsey property, Bernstein property)

True for Borel sets

True for analytic sets

False for all sets (AC)

∆1
2/Σ1

2?

Independent of ZFC

False if V = L
True if L[a] ∩ ωω is countable for all a ∈ ωω.

More regularity on ∆1
2/Σ1

2-level ∼ L gets smaller
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Introduction

Examples

∆1
2(Lebesgue) ⇐⇒ ∀a ∃ random-generic/L[a]

∆1
2(Baire Property) ⇐⇒ ∀a ∃ Cohen-generic/L[a]

∆1
2(Ramsey) ⇐⇒ ∀a ∃ Ramsey real /L[a]

∆1
2(Laver) ⇐⇒ ∀a ∃ dominating real /L[a]

∆1
2(Miller) ⇐⇒ ∀a ∃ unbounded real /L[a]

∆1
2(Sacks) ⇐⇒ ∀a ∃ real /∈ L[a]
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Introduction

More Examples

Σ1
2(Lebesgue) ⇐⇒ ∀a ∃ measure-one set of random-generics/L[a]

Σ1
2(Baire Property) ⇐⇒ ∀a ∃ comeager set of Cohen-generics/L[a]

Σ1
2(Ramsey) ⇐⇒ ∆1

2(Ramsey)

Σ1
2(Laver) ⇐⇒ ∆1

2(Laver)

Σ1
2(Miller) ⇐⇒ ∆1

2(Miller)

Σ1
2(Sacks) ⇐⇒ ∆1

2(Sacks)
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Introduction

Implications and non-implications

Given two regularity properties Reg1 and Reg2 we are interested in:

Γ(Reg1) =⇒ Γ′(Reg2)?

for Γ,Γ′ ∈ {∆1
2,Σ

1
2}

Positive answer: find a ZFC-proof

Negative answer: find a model M s.t. M |= Γ(Reg1) but
M |= ¬Γ′(Reg2)

What has been established so far?
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Introduction

Diagram of implications

Diagram: Brendle & Löwe, Eventually different functions and inaccessible cardinals
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Polarized partition properties

Polarized partitions

We work in ωω. Letters H, J, . . . stand for infinite sequences of finite
subsets of ω, i.e. H : ω −→ [ω]<ω. Use abbreviation: [H] =

∏
i∈ω H(i).

Definition (unbounded polarized partition)

A set A ⊆ ωω satisfies the property
 ω

ω
. . .

 →

 m0
m1
. . .

 if

∃H s.t. ∀i (|H(i)| = mi ) and [H] ⊆ A or [H] ∩ A = ∅

Definition (bounded polarized partition)

A set A ⊆ ωω satisfies the property
 n0

n1
. . .

 →

 m0
m1
. . .

 if

∃H s.t. ∀i (|H(i)| = mi and H(i) ⊆ ni ) and [H] ⊆ A or [H] ∩ A = ∅

and n1, n2, . . . are recursive in m1,m2, . . . .
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Polarized partition properties

Some facts

Polarized partition properties have been studied by Henle, Llopis, DiPrisco,
Todorčević and Zapletal.

Easy observations:

1 In order for (~n→ ~m) to hold even for very simple sets, ~n� ~m.

2 Γ(~n→ ~m) =⇒ Γ(~ω → ~m).

3 Γ(~ω → ~m) ⇐⇒ Γ(~ω → ~m′), for all ~m, ~m′ ≥ 2.

If Γ(~n→ ~m), then for every other ~m′ there is ~n′ such that Γ(~n′ → ~m′)

From now on, use generic notations (~ω → ~m) and (~n→ ~m).
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Polarized partition properties

Which sets satisfy this property?

In [DiPrisco & Todorčević, 2003]:

(~ω → ~m) and (~n→ ~m) hold for analytic sets.

Explicit bounds ~n computed from ~m (using Ackermann-like function).

On the other hand, easy to find counterexample using AC.

So, what about ∆1
2/Σ1

2(~ω → ~m) and ∆1
2/Σ1

2(~n→ ~m)?
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∆1
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∆1
2-level: easy results

Upper and lower bounds

Theorem

∆1
2(Ramsey) =⇒ ∆1

2(~ω → ~m).

Theorem (Brendle)

If ∆1
2(~ω → ~m) then ∀a there is an eventually different real over L[a].

Proof.

Assume otherwise and use the canonical ∆1
2(a)-well-ordering of L[a] to

construct a counterexample.
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∆1
2-level: easy results

Diagram of implications

Question: which implications cannot be reversed?
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∆1
2-level: easy results

Mathias model

Theorem (Brendle-Kh)

Let V be obtained by an ω1-iteration of Mathias forcing beginning from L.
Then ∆1

2(Ramsey) holds whereas ∆1
2(~n→ ~m) fails.
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Theorem (Brendle-Kh)

Let V be obtained by an ω1-iteration of Mathias forcing beginning from L.
Then ∆1

2(Ramsey) holds whereas ∆1
2(~n→ ~m) fails.

Proof.

Use the fact that Mathias forcing satisfies the Laver property.
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∆1
2-level: creature forcing

∆1
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∆1
2-level: creature forcing

The non-implication

Theorem (Brendle-Kh)

There is a model in which ∆1
2(~n→ ~m) holds but ∆1

2(Miller) fails.
(i.e. there are no unbounded reals).
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∆1
2-level: creature forcing

The non-implication

Theorem (Brendle-Kh)

There is a model in which ∆1
2(~n→ ~m) holds but ∆1

2(Miller) fails.
(i.e. there are no unbounded reals).

Look for a forcing notion which is:

1 Proper and ωω-bounding—for all ẋ there is a y in the ground model
and a p s.t. p 
 ∀n (ẋ(n) ≤ y̌(n)).

2 An ω1-iteration beginning from L yields a model where ∆1
2(~n→ ~m)

holds.
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∆1
2-level: creature forcing

Creature forcing

Such a forcing notion exists!

A certain kind of creature forcing, due to [Kellner-Shelah, 2009] and
[Shelah-Zapletal, unpublished]. We shall refer to it as PKSZ.

Definition

At each n, a small εn is given, and we build a “mini-forcing” Pn:

Let X (n) ∈ ω be a ‘large’ upper bound. Pn consists of ‘conditions’ of
the form (c , k) with c ⊆ X (n) and k ∈ ω such that log3(|c |) ≥ k + 1
(c ′, k ′) ≤n (c , k) iff c ′ ⊆ c and k ′ ≥ k.

Let an := 21/εn . Define normn(c , k) := logan
(log3(|c|)− k) for each

(c , k) ∈ Pn.

If X (n) is sufficiently large, then ∃(c , k) ∈ Pn s.t. normn(c, k) ≥ n.

[To be precise: X (n) must be larger then 2((2
1/εn )n)]

Yurii Khomskii (University of Amsterdam) Polarized Partitions ISLA 2010, Hyderabad, India 24 / 34



∆1
2-level: creature forcing

Creature forcing

Such a forcing notion exists!

A certain kind of creature forcing, due to [Kellner-Shelah, 2009] and
[Shelah-Zapletal, unpublished]. We shall refer to it as PKSZ.

Definition

At each n, a small εn is given, and we build a “mini-forcing” Pn:

Let X (n) ∈ ω be a ‘large’ upper bound. Pn consists of ‘conditions’ of
the form (c , k) with c ⊆ X (n) and k ∈ ω such that log3(|c |) ≥ k + 1
(c ′, k ′) ≤n (c , k) iff c ′ ⊆ c and k ′ ≥ k.

Let an := 21/εn . Define normn(c , k) := logan
(log3(|c|)− k) for each

(c , k) ∈ Pn.

If X (n) is sufficiently large, then ∃(c , k) ∈ Pn s.t. normn(c, k) ≥ n.

[To be precise: X (n) must be larger then 2((2
1/εn )n)]

Yurii Khomskii (University of Amsterdam) Polarized Partitions ISLA 2010, Hyderabad, India 24 / 34



∆1
2-level: creature forcing

Creature forcing

Such a forcing notion exists!

A certain kind of creature forcing, due to [Kellner-Shelah, 2009] and
[Shelah-Zapletal, unpublished]. We shall refer to it as PKSZ.

Definition

At each n, a small εn is given, and we build a “mini-forcing” Pn:

Let X (n) ∈ ω be a ‘large’ upper bound. Pn consists of ‘conditions’ of
the form (c , k) with c ⊆ X (n) and k ∈ ω such that log3(|c |) ≥ k + 1
(c ′, k ′) ≤n (c , k) iff c ′ ⊆ c and k ′ ≥ k.

Let an := 21/εn . Define normn(c , k) := logan
(log3(|c|)− k) for each

(c , k) ∈ Pn.

If X (n) is sufficiently large, then ∃(c , k) ∈ Pn s.t. normn(c, k) ≥ n.

[To be precise: X (n) must be larger then 2((2
1/εn )n)]

Yurii Khomskii (University of Amsterdam) Polarized Partitions ISLA 2010, Hyderabad, India 24 / 34



∆1
2-level: creature forcing

Creature forcing

Such a forcing notion exists!

A certain kind of creature forcing, due to [Kellner-Shelah, 2009] and
[Shelah-Zapletal, unpublished]. We shall refer to it as PKSZ.

Definition

At each n, a small εn is given, and we build a “mini-forcing” Pn:

Let X (n) ∈ ω be a ‘large’ upper bound. Pn consists of ‘conditions’ of
the form (c , k) with c ⊆ X (n) and k ∈ ω such that log3(|c |) ≥ k + 1

(c ′, k ′) ≤n (c , k) iff c ′ ⊆ c and k ′ ≥ k.

Let an := 21/εn . Define normn(c , k) := logan
(log3(|c|)− k) for each

(c , k) ∈ Pn.

If X (n) is sufficiently large, then ∃(c , k) ∈ Pn s.t. normn(c, k) ≥ n.

[To be precise: X (n) must be larger then 2((2
1/εn )n)]

Yurii Khomskii (University of Amsterdam) Polarized Partitions ISLA 2010, Hyderabad, India 24 / 34



∆1
2-level: creature forcing

Creature forcing

Such a forcing notion exists!

A certain kind of creature forcing, due to [Kellner-Shelah, 2009] and
[Shelah-Zapletal, unpublished]. We shall refer to it as PKSZ.

Definition

At each n, a small εn is given, and we build a “mini-forcing” Pn:

Let X (n) ∈ ω be a ‘large’ upper bound. Pn consists of ‘conditions’ of
the form (c , k) with c ⊆ X (n) and k ∈ ω such that log3(|c |) ≥ k + 1
(c ′, k ′) ≤n (c , k) iff c ′ ⊆ c and k ′ ≥ k .

Let an := 21/εn . Define normn(c , k) := logan
(log3(|c|)− k) for each

(c , k) ∈ Pn.

If X (n) is sufficiently large, then ∃(c , k) ∈ Pn s.t. normn(c, k) ≥ n.

[To be precise: X (n) must be larger then 2((2
1/εn )n)]

Yurii Khomskii (University of Amsterdam) Polarized Partitions ISLA 2010, Hyderabad, India 24 / 34



∆1
2-level: creature forcing

Creature forcing

Such a forcing notion exists!

A certain kind of creature forcing, due to [Kellner-Shelah, 2009] and
[Shelah-Zapletal, unpublished]. We shall refer to it as PKSZ.

Definition

At each n, a small εn is given, and we build a “mini-forcing” Pn:

Let X (n) ∈ ω be a ‘large’ upper bound. Pn consists of ‘conditions’ of
the form (c , k) with c ⊆ X (n) and k ∈ ω such that log3(|c |) ≥ k + 1
(c ′, k ′) ≤n (c , k) iff c ′ ⊆ c and k ′ ≥ k .

Let an := 21/εn . Define normn(c , k) := logan
(log3(|c|)− k) for each

(c , k) ∈ Pn.

If X (n) is sufficiently large, then ∃(c , k) ∈ Pn s.t. normn(c, k) ≥ n.

[To be precise: X (n) must be larger then 2((2
1/εn )n)]

Yurii Khomskii (University of Amsterdam) Polarized Partitions ISLA 2010, Hyderabad, India 24 / 34



∆1
2-level: creature forcing

Creature forcing

Such a forcing notion exists!

A certain kind of creature forcing, due to [Kellner-Shelah, 2009] and
[Shelah-Zapletal, unpublished]. We shall refer to it as PKSZ.

Definition

At each n, a small εn is given, and we build a “mini-forcing” Pn:

Let X (n) ∈ ω be a ‘large’ upper bound. Pn consists of ‘conditions’ of
the form (c , k) with c ⊆ X (n) and k ∈ ω such that log3(|c |) ≥ k + 1
(c ′, k ′) ≤n (c , k) iff c ′ ⊆ c and k ′ ≥ k .

Let an := 21/εn . Define normn(c , k) := logan
(log3(|c|)− k) for each

(c , k) ∈ Pn.

If X (n) is sufficiently large, then ∃(c , k) ∈ Pn s.t. normn(c, k) ≥ n.

[To be precise: X (n) must be larger then 2((2
1/εn )n)]

Yurii Khomskii (University of Amsterdam) Polarized Partitions ISLA 2010, Hyderabad, India 24 / 34



∆1
2-level: creature forcing

Creature forcing: continued

Definition (...continued)

Now let PKSZ consist of conditions p such that:

There is stem(p) ∈ ω<ω and ∀n ≥ |stem(p)| : p(n) ∈ Pn,

limn→∞ normn(p(n)) =∞.

p′ ≤ p iff

stem(p′) ⊇ stem(p)
For n with |stem(p)| ≤ n < |stem(p′)|: p′(n) ∈ first coordinate of p(n)
For n ≥ |stem(p′)|: p′(n) ≤n p(n)

Remark: PKSZ adds a generic real xG :=
⋃
{stem(p) | p ∈ G}, but the

generic filter is not determined from the generic real in the usual fashion
and PKSZ is not in general representable as B(ωω)/I for a σ-ideal I .
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∆1
2-level: creature forcing

Proper and ωω-bounding

Theorem (Kellner-Shelah, Shelah-Zapletal)

If PKSZ is as above, and moreover ∀n
(
εn ≤ 1

n·
∏

j<n X (j)

)
, then PKSZ is

proper and ωω-bounding.

Proof.

Show that each component Pn of PKSZ satisfies two properties from the
general theory of creature forcings: “εn-bigness” and “εn-halving”.

Remark: X (n) is a function of εn, and εn is a function of X (m) for
m < n. So we have to define them inductively.
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∆1
2-level: creature forcing

Forcing ∆1
2(~n→ ~m)

Theorem (Brendle-Kh)

An ω1-iteration of PKSZ, starting from L, gives a model in which
∆1

2(~n→ ~m) holds but ∆1
2(Miller) fails.

The bounds “~n” have been explicitly computed beforehand: they are the
X (n)’s from the definition of PKSZ.
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∆1
2-level: creature forcing

Diagram of implications
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2
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Open questions for ∆1
2

Open questions

1 Is the implication ∆1
2(~ω → ~m) =⇒ ∃ ev. diff. reals strict?

Conjecture: Yes, ∆1
2(~ω → ~m) fails in the Random model.

2 Is there a characterization of ∆1
2(~ω → ~m) and ∆1

2(~n→ ~m) in terms
of transcendence over L?

3 Are ∆1
2(~ω → ~m) and Σ1

2(~ω → ~m) equivalent?

4 Same for (~n→ ~m).
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The Σ1
2-level

Forcing Σ1
2(~n→ ~m)

Can we extend the result about PKSZ to Σ1
2?

Not a priori, since PKSZ only adds one generic real.

In [DiPrisco & Todorčević, 2003] a forcing is defined which adds a generic
product HG satisfying what we will call the “clopification property”:

For all Borel sets B in the ground model,
B ∩ [HG ] is relatively clopen in [HG ].

Theorem (Brendle-Kh)

An ω1-iteration of any (proper) forcing notion with the clopification
property, starting from L, gives a model where Σ1

2(~n→ ~m) holds.
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2?

Not a priori, since PKSZ only adds one generic real.

In [DiPrisco & Todorčević, 2003] a forcing is defined which adds a generic
product HG satisfying what we will call the “clopification property”:

For all Borel sets B in the ground model,
B ∩ [HG ] is relatively clopen in [HG ].

Theorem (Brendle-Kh)

An ω1-iteration of any (proper) forcing notion with the clopification
property, starting from L, gives a model where Σ1

2(~n→ ~m) holds.
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2-level

Forcing Σ1
2(~n→ ~m): continued

Problem with using the DiPrisco-Todorčević forcing: difficult to see
whether it is ωω-bounding or not.

So instead, we combine elements of the DiPrisco-Todorčević forcing with
PKSZ, to produce a new creature forcing P which is still proper and
ωω-bounding, but instead of adding a real, adds a product of reals with
the clopification property.

Corollary

There is a model where Σ1
2(~n→ ~m) holds but Σ1

2(Miller) fails.
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PKSZ, to produce a new creature forcing P which is still proper and
ωω-bounding, but instead of adding a real, adds a product of reals with
the clopification property.

Corollary

There is a model where Σ1
2(~n→ ~m) holds but Σ1

2(Miller) fails.

Yurii Khomskii (University of Amsterdam) Polarized Partitions ISLA 2010, Hyderabad, India 33 / 34



The Σ1
2-level

Thank you!
Yurii Khomskii

yurii@deds.nl
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