Polarized partition properties on the second level of the projective hierarchy

Yurii Khomskii

University of Amsterdam

Joint work with Jörg Brendle (Kobe University, Japan)

ISLA 2010, Hyderabad, India
Introduction: Regularity properties and the projective hierarchy.
Regularity Properties

Regularity properties for sets of reals

(e.g. Lebesgue measurability, Baire property, Ramsey property, Bernstein property)
Regularity Properties

Regularity properties for sets of reals
(e.g. Lebesgue measurability, Baire property, Ramsey property, Bernstein property)

- True for Borel sets
Regularity Properties

Regularity properties for sets of reals
(e.g. Lebesgue measurability, Baire property, Ramsey property, Bernstein property)

- True for Borel sets
- True for analytic sets
Regularity Properties

Regularity properties for sets of reals
(e.g. Lebesgue measurability, Baire property, Ramsey property, Bernstein property)

- True for Borel sets
- True for analytic sets
- False for all sets (AC)
Regularity Properties

Regularity properties for sets of reals

- True for Borel sets
- True for analytic sets
- False for all sets (AC)
- Δ^1_2 / Σ^1_2?
Regularity Properties

Regularity properties for sets of reals
(e.g. Lebesgue measurability, Baire property, Ramsey property, Bernstein property)

- True for Borel sets
- True for analytic sets
- False for all sets (AC)
- Δ^1_2/Σ^1_2? Independent of ZFC
Regularity properties for sets of reals

(e.g. Lebesgue measurability, Baire property, Ramsey property, Bernstein property)

- True for Borel sets
- True for analytic sets
- False for all sets (AC)
- \(\Delta^1_2/\Sigma^1_2 \)? Independent of ZFC
 - False if \(V = L \)
Regularity properties for sets of reals

(e.g. Lebesgue measurability, Baire property, Ramsey property, Bernstein property)

- True for Borel sets
- True for analytic sets
- False for all sets (AC)
- Δ^1_2/Σ^1_2? Independent of ZFC
 - False if $V = L$
 - True if $L[a] \cap \omega^\omega$ is countable for all $a \in \omega^\omega$.
Regularity Properties

Regularity properties for sets of reals
(e.g. Lebesgue measurability, Baire property, Ramsey property, Bernstein property)

- True for Borel sets
- True for analytic sets
- False for all sets (AC)
- Δ^1_2/Σ^1_2? Independent of ZFC
 - False if $V = L$
 - True if $L[a] \cap \omega^\omega$ is countable for all $a \in \omega^\omega$.

More regularity on Δ^1_2/Σ^1_2-level \(\sim \) \(L \) gets smaller
Examples

- Δ^1_2(Lebesgue) $\iff \forall a \exists$ random-generic/$L[a]$
- Δ^1_2(Baire Property) $\iff \forall a \exists$ Cohen-generic/$L[a]$
Examples

- \(\Delta^1_2(\text{Lebesgue}) \iff \forall a \exists \text{random-generic}/L[a] \)
- \(\Delta^1_2(\text{Baire Property}) \iff \forall a \exists \text{Cohen-generic}/L[a] \)
- \(\Delta^1_2(\text{Ramsey}) \iff \forall a \exists \text{Ramsey real }/L[a] \)
- \(\Delta^1_2(\text{Laver}) \iff \forall a \exists \text{dominating real }/L[a] \)
- \(\Delta^1_2(\text{Miller}) \iff \forall a \exists \text{unbounded real }/L[a] \)
- \(\Delta^1_2(\text{Sacks}) \iff \forall a \exists \text{real } \notin L[a] \)
More Examples

- Σ^1_2 (Lebesgue) $\iff \forall a \exists \text{measure-one set of random-generics}/L[a]
- Σ^1_2 (Baire Property) $\iff \forall a \exists \text{comeager set of Cohen-generics}/L[a]$
More Examples

- \(\Sigma^1_2(\text{Lebesgue}) \iff \forall a \exists \text{ measure-one set of random-generics}/L[a] \)
- \(\Sigma^1_2(\text{Baire Property}) \iff \forall a \exists \text{ comeager set of Cohen-generics}/L[a] \)
- \(\Sigma^1_2(\text{Ramsey}) \iff \Delta^1_2(\text{Ramsey}) \)
- \(\Sigma^1_2(\text{Laver}) \iff \Delta^1_2(\text{Laver}) \)
- \(\Sigma^1_2(\text{Miller}) \iff \Delta^1_2(\text{Miller}) \)
- \(\Sigma^1_2(\text{Sacks}) \iff \Delta^1_2(\text{Sacks}) \)
Implications and non-implications

Given two regularity properties Reg_1 and Reg_2 we are interested in:

$$\Gamma(\text{Reg}_1) \implies \Gamma'(\text{Reg}_2)?$$

for $\Gamma, \Gamma' \in \{\Delta^1_2, \Sigma^1_2\}$
Implications and non-implications

Given two regularity properties Reg_1 and Reg_2 we are interested in:

$$\Gamma(\text{Reg}_1) \implies \Gamma'(\text{Reg}_2)?$$

for $\Gamma, \Gamma' \in \{\Delta^1_2, \Sigma^1_2\}$

- Positive answer: find a ZFC-proof
- Negative answer: find a model M s.t. $M \models \Gamma(\text{Reg}_1)$ but $M \models \neg \Gamma'(\text{Reg}_2)$
Introduction

Implications and non-implications

Given two regularity properties Reg_1 and Reg_2 we are interested in:

$$\Gamma(\text{Reg}_1) \implies \Gamma'(\text{Reg}_2)?$$

for $\Gamma, \Gamma' \in \{\Delta^1_2, \Sigma^1_2\}$

- Positive answer: find a ZFC-proof
- Negative answer: find a model M s.t. $M \models \Gamma(\text{Reg}_1)$ but $M \models \neg \Gamma'(\text{Reg}_2)$

What has been established so far?
Diagram of implications

\[\Sigma_2^1(E) = \Sigma_2^1(D) \]
\[\Sigma_2^1(B) = \Delta_2^1(A) \]
\[\Sigma_2^1(R) = \Delta_2^1(R) \]
\[\Sigma_2^1(C) = \Delta_2^1(D) \]
\[\Delta_2^1(E) \]
\[\Delta_2^1(B) \]
\[\Sigma_2^1(L) = \Delta_2^1(L) \]
\[\Delta_2^1(C) \]
\[\Sigma_2^1(V) \]
\[\text{ev. diff.} \]
\[\Sigma_2^1(M) = \Delta_2^1(M) \]
\[\Delta_2^1(V) \]
\[\Sigma_2^1(S) = \Delta_2^1(S) \]

Diagram: Brendle & Löwe, *Eventually different functions and inaccessible cardinals*
Polarized partition properties.
Polarized partitions

We work in ω^ω. Letters H, J, \ldots stand for infinite sequences of finite subsets of ω, i.e. $H : \omega \rightarrow [\omega]^<\omega$. Use abbreviation: $[H] = \prod_{i \in \omega} H(i)$.
Polarized partitions

We work in ω^ω. Letters H, J, \ldots stand for infinite sequences of finite subsets of ω, i.e. $H : \omega \rightarrow [\omega]^<\omega$. Use abbreviation: $[H] = \prod_{i \in \omega} H(i)$.

Definition (unbounded polarized partition)

A set $A \subseteq \omega^\omega$ satisfies the property $\left(\begin{array}{c} \omega \\ \ldots \end{array} \right) \rightarrow \left(\begin{array}{c} m_0 \\ m_1 \\ \ldots \end{array} \right)$ if

$$\exists H \text{ s.t. } \forall i \ (|H(i)| = m_i) \text{ and } [H] \subseteq A \text{ or } [H] \cap A = \emptyset$$
Polarized partitions

We work in ω^ω. Letters H, J, \ldots stand for infinite sequences of finite subsets of ω, i.e. $H : \omega \rightarrow [\omega]^\omega$. Use abbreviation: $[H] = \prod_{i \in \omega} H(i)$.

Definition (unbounded polarized partition)

A set $A \subseteq \omega^\omega$ satisfies the property $\begin{pmatrix} \omega \\ \vdots \end{pmatrix} \rightarrow \begin{pmatrix} m_0 \\ m_1 \\ \vdots \end{pmatrix}$ if

$\exists H \text{ s.t. } \forall i \ (|H(i)| = m_i)$ and $[H] \subseteq A$ or $[H] \cap A = \emptyset$

Definition (bounded polarized partition)

A set $A \subseteq \omega^\omega$ satisfies the property $\begin{pmatrix} n_0 \\ n_1 \\ \vdots \end{pmatrix} \rightarrow \begin{pmatrix} m_0 \\ m_1 \\ \vdots \end{pmatrix}$ if

$\exists H \text{ s.t. } \forall i \ (|H(i)| = m_i \text{ and } H(i) \subseteq n_i)$ and $[H] \subseteq A$ or $[H] \cap A = \emptyset$

and n_1, n_2, \ldots are recursive in m_1, m_2, \ldots.
Some facts

Polarized partition properties have been studied by Henle, Llopis, DiPrisco, Todorčević and Zapletal.
Some facts

Polarized partition properties have been studied by Henle, Llopis, DiPrisco, Todorčević and Zapletal.

Easy observations:

1. In order for $(\vec{n} \rightarrow \vec{m})$ to hold even for very simple sets, $\vec{n} \gg \vec{m}$.
Some facts

Polarized partition properties have been studied by Henle, Llopis, DiPrisco, Todorčević and Zapletal.

Easy observations:

1. In order for \((\vec{n} \rightarrow \vec{m})\) to hold even for very simple sets, \(\vec{n} \gg \vec{m}\).
2. \(\Gamma(\vec{n} \rightarrow \vec{m}) \implies \Gamma(\vec{\omega} \rightarrow \vec{m})\).
Some facts

Polarized partition properties have been studied by Henle, Llopis, DiPrisco, Todorčević and Zapletal.

Easy observations:

1. In order for $(\vec{n} \rightarrow \vec{m})$ to hold even for very simple sets, $\vec{n} \gg \vec{m}$.
2. $\Gamma(\vec{n} \rightarrow \vec{m}) \implies \Gamma(\vec{\omega} \rightarrow \vec{m})$.
3. $\Gamma(\vec{\omega} \rightarrow \vec{m}) \iff \Gamma(\vec{\omega} \rightarrow \vec{m}')$, for all $\vec{m}, \vec{m} \geq 2$.
 - If $\Gamma(\vec{n} \rightarrow \vec{m})$, then for every other \vec{m}' there is \vec{n}' such that $\Gamma(\vec{n}' \rightarrow \vec{m}')$
Some facts

Polarized partition properties have been studied by Henle, Llopis, DiPrisco, Todorčević and Zapletal.

Easy observations:

1. In order for \((\vec{n} \to \vec{m})\) to hold even for very simple sets, \(\vec{n} \gg \vec{m}\).

2. \(\Gamma(\vec{n} \to \vec{m}) \implies \Gamma(\vec{\omega} \to \vec{m})\).

3. \(\Gamma(\vec{\omega} \to \vec{m}) \iff \Gamma(\vec{\omega} \to \vec{m}')\), for all \(\vec{m}, \vec{m}' \geq 2\).
 - If \(\Gamma(\vec{n} \to \vec{m})\), then for every other \(\vec{m}'\) there is \(\vec{n}'\) such that \(\Gamma(\vec{n}' \to \vec{m}')\).

From now on, use generic notations \((\vec{\omega} \to \vec{m})\) and \((\vec{n} \to \vec{m})\).
Which sets satisfy this property?

In [DiPrisco & Todorcevic, 2003]:

- $(\vec{\omega} \rightarrow \vec{m})$ and $(\vec{n} \rightarrow \vec{m})$ hold for analytic sets.
- Explicit bounds \vec{n} computed from \vec{m} (using Ackermann-like function).
Which sets satisfy this property?

In [DiPrisco & Todorčević, 2003]:

- $(\vec{\omega} \to \vec{m})$ and $(\vec{n} \to \vec{m})$ hold for analytic sets.
- Explicit bounds \vec{n} computed from \vec{m} (using Ackermann-like function).

On the other hand, easy to find counterexample using AC.
Which sets satisfy this property?

In [DiPrisco & Todorčević, 2003]:
- $(\vec{\omega} \to \vec{m})$ and $(\vec{n} \to \vec{m})$ hold for analytic sets.
- Explicit bounds \vec{n} computed from \vec{m} (using Ackermann-like function).

On the other hand, easy to find counterexample using AC.

So, what about $\Delta^1_2/\Sigma^1_2(\vec{\omega} \to \vec{m})$ and $\Delta^1_2/\Sigma^1_2(\vec{n} \to \vec{m})$?
Δ^1_2-level: easy results.
Upper and lower bounds

Theorem

\[\Delta^1_2(Ramsey) \implies \Delta^1_2(\bar{\omega} \rightarrow \bar{m}). \]
Upper and lower bounds

Theorem
\[\Delta^1_2(Ramsey) \iff \Delta^1_2(\bar{\omega} \to \bar{m}). \]

Theorem (Brendle)
If \(\Delta^1_2(\bar{\omega} \to \bar{m}) \) then \(\forall a \) there is an eventually different real over \(L[a] \).
Upper and lower bounds

Theorem
\[\Delta_2^1(Ramsey) \iff \Delta_2^1(\vec{\omega} \to \vec{m}). \]

Theorem (Brendle)

If \(\Delta_2^1(\vec{\omega} \to \vec{m}) \) then \(\forall a \) there is an eventually different real over \(L[a] \).

Proof.

Assume otherwise and use the canonical \(\Delta_2^1(a) \)-well-ordering of \(L[a] \) to construct a counterexample.
Diagram of implications

\[\Delta^1_2(\text{Ramsey}) \]
\[\forall a \exists \text{Ramsey}/L[a] \]

\[\Delta^1_2(\bar{\omega} \rightarrow \bar{m}) \]

\[\Delta^1_2(\bar{m} \rightarrow \bar{m}) \]

\[\forall a \exists \text{ev. diff.}/L[a] \]
Diagram of implications

\[\Delta^1_2(\text{Ramsey}) \]
\[\forall a \exists \text{Ramsey}/L[a] \]

\[\Delta^1_2(\text{Laver}) \]
\[\forall a \exists \text{dominating}/L[a] \]

\[\Delta^1_2(\vec{\omega} \rightarrow \vec{m}) \]

\[\Delta^1_2(\vec{m} \rightarrow \vec{m}) \]

\[\forall a \exists \text{ev. diff.}/L[a] \]
Diagram of implications

\[\Delta^1_2(\text{Ramsey}) \]
\[\forall a \exists \text{Ramsey}/L[a] \]
\[\Delta^1_2(\text{Laver}) \]
\[\forall a \exists \text{dominating}/L[a] \]
\[\Delta^1_2(\text{Miller}) \]
\[\forall a \exists \text{unbounded}/L[a] \]
\[\Delta^1_2(\bar{n} \rightarrow \bar{m}) \]
\[\forall a \exists \text{ev. diff.}/L[a] \]
Diagram of implications

\[\Delta^1_2(\text{Ramsey}) \]
\[\forall a \exists \text{Ramsey}/L[a] \]

\[\Delta^1_2(\text{Laver}) \]
\[\forall a \exists \text{dominating}/L[a] \]

\[\Delta^1_2(\text{Miller}) \]
\[\forall a \exists \text{unbounded}/L[a] \]

\[\Delta^1_2(\bar{\omega} \rightarrow \bar{m}) \]

\[\Delta^1_2(n \rightarrow m) \]

\[\forall a \exists \text{ev. diff.}/L[a] \]

Question: which implications cannot be reversed?
Diagram of implications

\[\Delta^1_2(\text{Ramsey}) \]
\[\forall a \exists \text{Ramsey}/L[a] \]

\[\Delta^1_2(\text{Laver}) \]
\[\forall a \exists \text{dominating}/L[a] \]

\[\Delta^1_2(\text{Miller}) \]
\[\forall a \exists \text{unbounded}/L[a] \]

\[\Delta^1_2(n \to \bar{m}) \]

Question: which implications cannot be reversed?
Theorem (Brendle-Kh)

Let \(V \) be obtained by an \(\omega_1 \)-iteration of Mathias forcing beginning from \(L \). Then \(\Delta^1_2(\text{Ramsey}) \) holds whereas \(\Delta^1_2(\vec{n} \to \vec{m}) \) fails.
Diagram of implications

\[\Delta^1_2(\text{Ramsey}) \]
\[\forall a \exists \text{Ramsey} / L[a] \]

\[\Delta^1_2(\text{Laver}) \]
\[\forall a \exists \text{dominating} / L[a] \]

\[\Delta^1_2(\text{Miller}) \]
\[\forall a \exists \text{unbounded} / L[a] \]

\[\Delta^1_2(\bar{m} \rightarrow m) \]

\[\forall a \exists \text{ev. diff.} / L[a] \]

\[\Delta^1_2(\bar{n} \rightarrow \bar{m}) \]

False

True
Mathias model

Theorem (Brendle-Kh)

Let V be obtained by an ω_1-iteration of Mathias forcing beginning from L. Then Δ^1_2(Ramsey) holds whereas $\Delta^1_2(\vec{n} \to \vec{m})$ fails.
Mathias model

Theorem (Brendle-Kh)

Let V be obtained by an ω_1-iteration of Mathias forcing beginning from L. Then Δ^1_2(Ramsey) holds whereas $\Delta^1_2(\vec{n} \to \vec{m})$ fails.

Proof.

Use the fact that Mathias forcing satisfies the Laver property.
Diagram of implications

\[\Delta_2^1(\text{Ramsey}) \]
\[\forall a \exists \text{Ramsey}/L[a] \]

\[\Delta_2^1(\text{Laver}) \]
\[\forall a \exists \text{dominating}/L[a] \]

\[\Delta_2^1(\text{Miller}) \]
\[\forall a \exists \text{unbounded}/L[a] \]

\[\Delta_2^1(\tilde{\omega} \rightarrow \tilde{m}) \]

\[\Delta_2^1(n \rightarrow m) \]

\[\forall a \exists \text{ev. diff.}/L[a] \]
Diagram of implications

\[\Delta_2^1(\text{Ramsey}) \]
\[\forall a \exists \text{Ramsey}/L[a] \]

\[\Delta_2^1(\text{Laver}) \]
\[\forall a \exists \text{dominating}/L[a] \]

\[\Delta_2^1(\text{Miller}) \]
\[\forall a \exists \text{unbounded}/L[a] \]

\[\Delta_2^1(\vec{\omega} \rightarrow \vec{m}) \]

\[\Delta_2^1(\vec{n} \rightarrow \vec{m}) \]
Δ^1_2-level: creature forcing.
The non-implication

Theorem (Brendle-Kh)

There is a model in which $\Delta^1_2(\vec{n} \rightarrow \vec{m})$ holds but $\Delta^1_2(\text{Miller})$ fails. (i.e. there are no unbounded reals).
Diagram of implications
The non-implication

Theorem (Brendle-Kh)

There is a model in which $\Delta^1_2(n \to m)$ holds but Δ^1_2 (Miller) fails.

(i.e. there are **no unbounded reals**).
The non-implication

Theorem (Brendle-Kh)

There is a model in which $\Delta^1_2(\vec{n} \rightarrow \vec{m})$ holds but $\Delta^1_2(\text{Miller})$ fails. (i.e. there are no unbounded reals).

Look for a forcing notion which is:
The non-implication

Theorem (Brendle-Kh)

There is a model in which $\Delta^1_2(\vec{n} \to \vec{m})$ holds but $\Delta^1_2(\text{Miller})$ fails. (i.e. there are no unbounded reals).

Look for a forcing notion which is:

1. Proper and ω^ω-bounding—for all \dot{x} there is a y in the ground model and a p s.t. $p \Vdash \forall n (\dot{x}(n) \leq \dot{y}(n))$.
The non-implication

Theorem (Brendle-Kh)

There is a model in which $\Delta^1_2(\vec{n} \rightarrow \vec{m})$ holds but $\Delta^1_2(\text{Miller})$ fails. (i.e. there are no unbounded reals).

Look for a forcing notion which is:

1. Proper and ω^ω-bounding—for all \dot{x} there is a y in the ground model and a p s.t. $p \models \forall n (\dot{x}(n) \leq \check{y}(n))$.

2. An ω_1-iteration beginning from L yields a model where $\Delta^1_2(\vec{n} \rightarrow \vec{m})$ holds.
Creature forcing

Such a forcing notion exists!
Creature forcing

Such a forcing notion exists!

A certain kind of creature forcing, due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, unpublished]. We shall refer to it as \mathbb{P}_{KSZ}.

Definition

At each n, a small ϵ_n is given, and we build a "mini-forcing" \mathbb{P}_n:

Let $X(n) \in \omega$ be a 'large' upper bound. \mathbb{P}_n consists of 'conditions' of the form (c, k) with $c \subseteq X(n)$ and $k \in \omega$ such that $\log_3(|c|) \geq k + 1$.

Let $a_n := 2^{1/\epsilon_n}$. Define

$\text{norm}_n(c, k) := \log_3(a_n)(\log_3(|c|) - k)$

for each $(c, k) \in \mathbb{P}_n$.

If $X(n)$ is sufficiently large, then $\exists (c, k) \in \mathbb{P}_n$ s.t. $\text{norm}_n(c, k) \geq n$.

[To be precise: $X(n)$ must be larger than $2^{((2^{1/\epsilon_n})^n)}$.]
Creature forcing

Such a forcing notion exists!

A certain kind of **creature forcing**, due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, unpublished]. We shall refer to it as \mathbb{P}_{KSZ}.

Definition

- At each n, a small ϵ_n is given, and we build a “mini-forcing” \mathbb{P}_n:

$$\text{Let } X(n) \in \omega \text{ be a 'large' upper bound. }$$

$$\mathbb{P}_n \text{ consists of 'conditions' of the form } (c, k) \text{ with } c \subseteq X(n) \text{ and } k \in \omega \text{ such that } \log_3(|c|) \geq k + 1 \iff (c', k') \leq_n (c, k).$$

$$\text{Let } a_n := 2^{1/\epsilon_n}. \text{ Define } \text{norm}_n(c, k) := \log_{a_n}(\log_3(|c|) - k) \text{ for each } (c, k) \in \mathbb{P}_n.$$

If $X(n)$ is sufficiently large, then $\exists (c, k) \in \mathbb{P}_n \text{ s.t. } \text{norm}_n(c, k) \geq n$.

[To be precise: $X(n)$ must be larger than $2^{((2^{1/\epsilon_n})^n)}$.]
Creature forcing

Such a forcing notion exists!

A certain kind of creature forcing, due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, unpublished]. We shall refer to it as \mathbb{P}_{KSZ}.

Definition

- At each n, a small ϵ_n is given, and we build a “mini-forcing” \mathbb{P}_n:
 - Let $X(n) \in \omega$ be a ‘large’ upper bound. \mathbb{P}_n consists of ‘conditions’ of the form (c, k) with $c \subseteq X(n)$ and $k \in \omega$ such that $\log_3(|c|) \geq k + 1$.
Creature forcing

Such a forcing notion exists!

A certain kind of creature forcing, due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, unpublished]. We shall refer to it as \mathbb{P}_{KSZ}.

Definition

- At each n, a small ϵ_n is given, and we build a “mini-forcing” \mathbb{P}_n:
 - Let $X(n) \in \omega$ be a ‘large’ upper bound. \mathbb{P}_n consists of ‘conditions’ of the form (c, k) with $c \subseteq X(n)$ and $k \in \omega$ such that $\log_3(|c|) \geq k + 1$
 - $(c', k') \leq_n (c, k)$ iff $c' \subseteq c$ and $k' \geq k$.
Creature forcing

Such a forcing notion exists!

A certain kind of **creature forcing**, due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, unpublished]. We shall refer to it as \mathbb{P}_{KSZ}.

Definition

- At each n, a small ϵ_n is given, and we build a “mini-forcing” \mathbb{P}_n:
 - Let $X(n) \in \omega$ be a ‘large’ upper bound. \mathbb{P}_n consists of ‘conditions’ of the form (c, k) with $c \subseteq X(n)$ and $k \in \omega$ such that $\log_3(|c|) \geq k + 1$
 - $(c', k') \leq_n (c, k)$ iff $c' \subseteq c$ and $k' \geq k$.
- Let $a_n := 2^{1/\epsilon_n}$. Define $\text{norm}_n(c, k) := \log_{a_n}(\log_3(|c|) - k)$ for each $(c, k) \in \mathbb{P}_n$.

```
Creature forcing

Such a forcing notion exists!

A certain kind of creature forcing, due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, unpublished]. We shall refer to it as $\mathbb{P}_{KSZ}$.

Definition

- At each $n$, a small $\epsilon_n$ is given, and we build a “mini-forcing” $\mathbb{P}_n$:
  - Let $X(n) \in \omega$ be a ‘large’ upper bound. $\mathbb{P}_n$ consists of ‘conditions’ of the form $(c, k)$ with $c \subseteq X(n)$ and $k \in \omega$ such that $\log_3(|c|) \geq k + 1$
  - $(c', k') \leq_n (c, k)$ iff $c' \subseteq c$ and $k' \geq k$.
- Let $a_n := 2^{1/\epsilon_n}$. Define $\text{norm}_n(c, k) := \log_{a_n}(\log_3(|c|) - k)$ for each $(c, k) \in \mathbb{P}_n$.

If $X(n)$ is sufficiently large, then $\exists (c, k) \in \mathbb{P}_n$ s.t. $\text{norm}_n(c, k) \geq n$.

[To be precise: $X(n)$ must be larger than $2^{((2^{1/\epsilon_n})^n)}$]
Definition (...continued)

Now let $P_{KSZ}$ consist of conditions $p$ such that:

There is stem $(p) \in \omega^{<\omega}$ and $\forall n \geq |stem(p)|: p(n) \in P_n$,

$$\lim_{n \to \infty} \text{norm}_n(p(n)) = \infty.$$  

$p' \leq p$ iff $stem(p') \supseteq stem(p)$

For $n$ with $|stem(p')| \leq n < |stem(p')|$: $p'(n) \in$ first coordinate of $p(n)$

For $n \geq |stem(p')|$: $p'(n) \leq np(n)$

Remark: $P_{KSZ}$ adds a generic real $x_G := \bigcup \{ stem(p) | p \in G \}$, but the generic filter is not determined from the generic real in the usual fashion and $P_{KSZ}$ is not in general representable as $B(\omega\omega)/I$ for a $\sigma$-ideal $I$. 

Yurii Khomskii (University of Amsterdam) 
Polarized Partitions 
ISLA 2010, Hyderabad, India
Definition (...continued)

Now let $\mathbb{P}_{\text{KSZ}}$ consist of conditions $p$ such that:

- There is $\text{stem}(p) \in \omega^{<\omega}$ and $\forall n \geq |\text{stem}(p)| : p(n) \in \mathbb{P}_n$.
Definition (...continued)

Now let $\mathbb{P}_{KSZ}$ consist of conditions $p$ such that:

- There is $\text{stem}(p) \in \omega^{<\omega}$ and $\forall n \geq |\text{stem}(p)| : p(n) \in \mathbb{P}_n$,

- $\lim_{n \to \infty} \text{norm}_n(p(n)) = \infty$. 

Remark: $\mathbb{P}_{KSZ}$ adds a generic real $x \in G = \bigcup \{\text{stem}(p) | p \in G\}$, but the generic filter is not determined from the generic real in the usual fashion and $\mathbb{P}_{KSZ}$ is not in general representable as $\mathbb{B}(\omega^\omega)/\mathbb{I}$ for a $\sigma$-ideal $\mathbb{I}$. 

Yuri Khomskii (University of Amsterdam) 
Polarized Partitions 
ISLA 2010, Hyderabad, India 
25 / 34
Creature forcing: continued

Definition (...continued)

Now let $\mathbb{P}_{KSZ}$ consist of conditions $p$ such that:

- There is $\text{stem}(p) \in \omega^{<\omega}$ and $\forall n \geq |\text{stem}(p)|: p(n) \in \mathbb{P}_n$, 
- $\lim_{n \to \infty} \text{norm}_n(p(n)) = \infty$. 
- $p' \leq p$ iff
Creature forcing: continued

Definition (...continued)

Now let $\mathbb{P}_{\text{KSZ}}$ consist of conditions $p$ such that:

- There is $\text{stem}(p) \in \omega^{<\omega}$ and $\forall n \geq |\text{stem}(p)| : p(n) \in \mathbb{P}_n$,
- $\lim_{n \to \infty} \text{norm}_n(p(n)) = \infty$.
- $p' \leq p$ iff
  - $\text{stem}(p') \supseteq \text{stem}(p)$

Remark:
$P_{\text{KSZ}}$ adds a generic real $x_G := \bigcup \{ \text{stem}(p) | p \in G \}$, but the generic filter is not determined from the generic real in the usual fashion and $P_{\text{KSZ}}$ is not in general representable as $B(\omega\omega)/I$ for a $\sigma$-ideal $I$. 

Yuri Khomskii (University of Amsterdam)
Polarized Partitions
ISLA 2010, Hyderabad, India 25 / 34
Definition (...continued)

Now let $\mathbb{P}_{\text{KSZ}}$ consist of conditions $p$ such that:

- There is $\text{stem}(p) \in \omega^{<\omega}$ and $\forall n \geq |\text{stem}(p)| : p(n) \in \mathbb{P}_n$,
- $\lim_{n \to \infty} \text{norm}_n(p(n)) = \infty$.
- $p' \leq p$ iff
  - $\text{stem}(p') \supseteq \text{stem}(p)$
  - For $n$ with $|\text{stem}(p)| \leq n < |\text{stem}(p')|$: $p'(n) \in$ first coordinate of $p(n)$

Remark: $\mathbb{P}_{\text{KSZ}}$ adds a generic real $x \subseteq \bigcup \{\text{stem}(p) | p \in G\}$, but the generic filter is not determined from the generic real in the usual fashion and $\mathbb{P}_{\text{KSZ}}$ is not in general representable as $B(\omega_\omega)/I$ for a $\sigma$-ideal $I$. 
Definition (…continued)

Now let $\mathbb{P}_{KSZ}$ consist of conditions $p$ such that:

- There is $\text{stem}(p) \in \omega^{<\omega}$ and $\forall n \geq |\text{stem}(p)| : p(n) \in \mathbb{P}_n$,
- $\lim_{n \to \infty} \text{norm}_n(p(n)) = \infty$.
- $p' \leq p$ iff
  - $\text{stem}(p') \supseteq \text{stem}(p)$
  - For $n$ with $|\text{stem}(p)| \leq n < |\text{stem}(p')|$: $p'(n) \in \text{first coordinate of } p(n)$
  - For $n \geq |\text{stem}(p')|$: $p'(n) \leq_n p(n)$
Definition (…continued)

Now let $\mathbb{P}_{KSZ}$ consist of conditions $p$ such that:

- There is $\text{stem}(p) \in \omega^{<\omega}$ and $\forall n \geq |\text{stem}(p)| : p(n) \in \mathbb{P}_n$,
- $\lim_{n \to \infty} \text{norm}_n(p(n)) = \infty$.
- $p' \leq p$ iff
  - $\text{stem}(p') \supseteq \text{stem}(p)$
  - For $n$ with $|\text{stem}(p)| \leq n < |\text{stem}(p')|$: $p'(n) \in$ first coordinate of $p(n)$
  - For $n \geq |\text{stem}(p')|$: $p'(n) \leq_n p(n)$

Remark: $\mathbb{P}_{KSZ}$ adds a generic real $x_G := \bigcup \{\text{stem}(p) \mid p \in G\}$
Creature forcing: continued

Definition (...continued)

Now let $P_{KSZ}$ consist of conditions $p$ such that:

- There is $\text{stem}(p) \in \omega^{<\omega}$ and $\forall n \geq |\text{stem}(p)| : p(n) \in P_n$,
- $\lim_{n \to \infty} \text{norm}_n(p(n)) = \infty$.
- $p' \leq p$ iff
  - $\text{stem}(p') \supseteq \text{stem}(p)$
  - For $n$ with $|\text{stem}(p)| \leq n < |\text{stem}(p')|$: $p'(n) \in$ first coordinate of $p(n)$
  - For $n \geq |\text{stem}(p')|$: $p'(n) \leq_n p(n)$

Remark: $P_{KSZ}$ adds a generic real $x_G := \bigcup \{\text{stem}(p) \mid p \in G\}$, but the generic filter is not determined from the generic real in the usual fashion.
Creature forcing: continued

**Definition (…continued)**

Now let $P_{KSZ}$ consist of conditions $p$ such that:

- There is $\text{stem}(p) \in \omega^{<\omega}$ and $\forall n \geq |\text{stem}(p)| : p(n) \in P_n$,
- $\lim_{n \to \infty} \text{norm}_n(p(n)) = \infty$.
- $p' \leq p$ iff
  - $\text{stem}(p') \supseteq \text{stem}(p)$
  - For $n$ with $|\text{stem}(p)| \leq n < |\text{stem}(p')|$: $p'(n) \in \text{first coordinate of } p(n)$
  - For $n \geq |\text{stem}(p')|$: $p'(n) \leq_n p(n)$

**Remark:** $P_{KSZ}$ adds a **generic real** $x_G := \bigcup \{\text{stem}(p) \mid p \in G\}$, but the generic filter is not determined from the generic real in the usual fashion and $P_{KSZ}$ is not in general representable as $B(\omega^\omega)/I$ for a $\sigma$-ideal $I$. 
Proper and $\omega^\omega$-bounding

Theorem (Kellner-Shelah, Shelah-Zapletal)

If $\mathbb{P}_{KSZ}$ is as above, and moreover $\forall n \left( \epsilon_n \leq \frac{1}{n \cdot \prod_{j<n} X(j)} \right)$, then $\mathbb{P}_{KSZ}$ is proper and $\omega^\omega$-bounding.
Proper and $\omega^\omega$-bounding

**Theorem (Kellner-Shelah, Shelah-Zapletal)**

If $\mathbb{P}_{KSZ}$ is as above, and moreover $\forall n \left( \epsilon_n \leq \frac{1}{n \cdot \prod_{j<n} X(j)} \right)$, then $\mathbb{P}_{KSZ}$ is proper and $\omega^\omega$-bounding.

**Proof.**

Show that each component $\mathbb{P}_n$ of $\mathbb{P}_{KSZ}$ satisfies two properties from the general theory of creature forcings: “$\epsilon_n$-bigness” and “$\epsilon_n$-halving”. □
Proper and $\omega^\omega$-bounding

Theorem (Kellner-Shelah, Shelah-Zapletal)

If $P_{KSZ}$ is as above, and moreover $\forall n \left( \varepsilon_n \leq \frac{1}{n \cdot \prod_{j<n} X(j)} \right)$, then $P_{KSZ}$ is proper and $\omega^\omega$-bounding.

Proof.

Show that each component $P_n$ of $P_{KSZ}$ satisfies two properties from the general theory of creature forcings: “$\varepsilon_n$-bigness” and “$\varepsilon_n$-halving”.

Remark: $X(n)$ is a function of $\varepsilon_n$, and $\varepsilon_n$ is a function of $X(m)$ for $m < n$. So we have to define them inductively.
Forcing $\Delta^1_2(\vec{n} \to \vec{m})$

**Theorem (Brendle-Kh)**

An $\omega_1$-iteration of $\mathbb{P}_{\text{KSZ}}$, starting from $L$, gives a model in which $\Delta^1_2(\vec{n} \to \vec{m})$ holds but $\Delta^1_2(\text{Miller})$ fails.
Forcing $\Delta^1_2(\vec{n} \rightarrow \vec{m})$

**Theorem (Brendle-Kh)**

An $\omega_1$-iteration of $\mathbb{P}_{KSZ}$, starting from $L$, gives a model in which $\Delta^1_2(\vec{n} \rightarrow \vec{m})$ holds but $\Delta^1_2(\text{Miller})$ fails.

The bounds “$\vec{n}$” have been explicitly computed beforehand: they are the $X(n)$’s from the definition of $\mathbb{P}_{KSZ}$. 
Diagram of implications

$\Delta_2^1\text{-level: creature forcing}$

$\Delta_2^1(\text{Ramsey})$
$\forall a \exists \text{Ramsey}/L[a]$

$\Delta_2^1(\text{Laver})$
$\forall a \exists \text{dominating}/L[a]$

$\Delta_2^1(\text{Miller})$
$\forall a \exists \text{unbounded}/L[a]$

$\Delta_2^1(\vec{\omega} \rightarrow \vec{m})$

$\Delta_2^1(\vec{n} \rightarrow \vec{m})$

$\forall a \exists \text{ev. diff.}/L[a]$
Open questions for $\Delta^1_2$
Open questions

1. Is the implication $\Delta^1_2(\vec{\omega} \rightarrow \vec{m}) \implies \exists$ ev. diff. reals strict?
Open questions

1. Is the implication $\Delta^1_2(\bar{\omega} \rightarrow \bar{m}) \implies \exists$ ev. diff. reals strict?

**Conjecture:** Yes, $\Delta^1_2(\bar{\omega} \rightarrow \bar{m})$ fails in the Random model.
Open questions for $\Delta^1_2$

Open questions

1. Is the implication $\Delta^1_2(\vec{\omega} \to \vec{m}) \implies \exists$ ev. diff. reals strict?

Conjecture: Yes, $\Delta^1_2(\vec{\omega} \to \vec{m})$ fails in the Random model.

2. Is there a characterization of $\Delta^1_2(\vec{\omega} \to \vec{m})$ and $\Delta^1_2(\vec{n} \to \vec{m})$ in terms of transcendence over $L$?
Open questions

1. Is the implication $\Delta^1_2(\vec{\omega} \to \vec{m}) \implies \exists$ ev. diff. reals strict?

   **Conjecture:** Yes, $\Delta^1_2(\vec{\omega} \to \vec{m})$ fails in the Random model.

2. Is there a characterization of $\Delta^1_2(\vec{\omega} \to \vec{m})$ and $\Delta^1_2(\vec{n} \to \vec{m})$ in terms of transcendence over $L$?

3. Are $\Delta^1_2(\vec{\omega} \to \vec{m})$ and $\Sigma^1_2(\vec{\omega} \to \vec{m})$ equivalent?
Open questions

1. Is the implication $\Delta^1_2(\vec{\omega} \rightarrow \vec{m}) \implies \exists$ ev. diff. reals strict?

   **Conjecture:** Yes, $\Delta^1_2(\vec{\omega} \rightarrow \vec{m})$ fails in the Random model.

2. Is there a characterization of $\Delta^1_2(\vec{\omega} \rightarrow \vec{m})$ and $\Delta^1_2(\vec{n} \rightarrow \vec{m})$ in terms of transcendence over $L$?

3. Are $\Delta^1_2(\vec{\omega} \rightarrow \vec{m})$ and $\Sigma^1_2(\vec{\omega} \rightarrow \vec{m})$ equivalent?

4. Same for $(\vec{n} \rightarrow \vec{m})$. 
The $\Sigma^1_2$-level
Forcing $\Sigma^1_2(\vec{n} \to \vec{m})$

Can we extend the result about $\mathbb{P}_{KSZ}$ to $\Sigma^1_2$?
Forcing $\Sigma_2^1(\vec{n} \rightarrow \vec{m})$

Can we extend the result about $\mathbb{P}_{KSZ}$ to $\Sigma_2^1$? 

Not a priori, since $\mathbb{P}_{KSZ}$ only adds one generic real.
Forcing $\Sigma^1_2(\vec{n} \rightarrow \vec{m})$

Can we extend the result about $\mathbb{P}_{KSZ}$ to $\Sigma^1_2$?

Not a priori, since $\mathbb{P}_{KSZ}$ only adds one generic real.

In [DiPrisco & Todorčević, 2003] a forcing is defined which adds a **generic product** $H_G$ satisfying what we will call the “clopification property”:
Forcing $\Sigma^1_2(\vec{n} \to \vec{m})$

Can we extend the result about $\mathbb{P}_{KSZ}$ to $\Sigma^1_2$?

Not a priori, since $\mathbb{P}_{KSZ}$ only adds one generic real.

In [DiPrisco & Todorčević, 2003] a forcing is defined which adds a generic product $H_G$ satisfying what we will call the “clopification property”:

For all Borel sets $B$ in the ground model, $B \cap [H_G]$ is relatively clopen in $[H_G]$. 
Forcing $\Sigma^1_2(\vec{n} \rightarrow \vec{m})$

Can we extend the result about $\mathbb{P}_{K SZ}$ to $\Sigma^1_2$?

Not a priori, since $\mathbb{P}_{K SZ}$ only adds one generic real.

In [DiPrisco & Todorčević, 2003] a forcing is defined which adds a generic product $H_G$ satisfying what we will call the “clopification property”:

For all Borel sets $B$ in the ground model, $B \cap [H_G]$ is relatively clopen in $[H_G]$.

Theorem (Brendle-Kh)

An $\omega_1$-iteration of any (proper) forcing notion with the clopification property, starting from $L$, gives a model where $\Sigma^1_2(\vec{n} \rightarrow \vec{m})$ holds.
Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is $\omega^\omega$-bounding or not.
Forcing $\Sigma^1_2(\vec{n} \rightarrow \vec{m})$: continued

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is $\omega^\omega$-bounding or not.

So instead, we combine elements of the DiPrisco-Todorčević forcing with $\mathbb{P}_{KSZ}$,
Forcing $\Sigma^1_2(\vec{n} \to \vec{m})$: continued

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is $\omega^\omega$-bounding or not.

So instead, we combine elements of the DiPrisco-Todorčević forcing with $P_{KSZ}$, to produce a new creature forcing $P$.
Forcing $\Sigma^1_2(\vec{n} \rightarrow \vec{m})$: continued

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is $\omega^\omega$-bounding or not.

So instead, we combine elements of the DiPrisco-Todorčević forcing with $P_{KSZ}$, to produce a new creature forcing $P$ which is still proper and $\omega^\omega$-bounding.
Forcing $\Sigma_2^1(\vec{n} \to \vec{m})$: continued

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is $\omega^\omega$-bounding or not.

So instead, we combine elements of the DiPrisco-Todorčević forcing with $P_{KSZ}$, to produce a new creature forcing $P$ which is still proper and $\omega^\omega$-bounding, but instead of adding a real, adds a product of reals with the clopification property.
The $\Sigma^1_2$-level

Forcing $\Sigma^1_2(\vec{n} \rightarrow \vec{m})$: continued

Problem with using the DiPrisco-Todorčević forcing: difficult to see whether it is $\omega^\omega$-bounding or not.

So instead, we combine elements of the DiPrisco-Todorčević forcing with $\mathbb{P}_{KSZ}$, to produce a new creature forcing $\mathbb{P}$ which is still proper and $\omega^\omega$-bounding, but instead of adding a real, adds a product of reals with the clopification property.

**Corollary**

*There is a model where $\Sigma^1_2(\vec{n} \rightarrow \vec{m})$ holds but $\Sigma^1_2(Miller)$ fails.*
Thank you!

Yurii Khomskii

yurii@deds.nl

