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Cichoń’s diagram

“What pentagram is to heavy metal, Cichoń’s diagam is to set theory.”

— Jinďrich Zapletal

cov(N ) // non(M) // cof(M) // cof(N ) // 2ℵ0

b //

OO

d

OO

ℵ1
// add(N ) //

OO

add(M)

OO

// cov(M)

OO

// non(N )

OO

1 Each inequality appearing in the diagram is provable in ZFC.

2 Each inequality not appearing in the diagram is not provable in ZFC, except

3 add(M) = min(b, cov(M)) and cof(M) = max(d,non(M)).
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Regularity properties

Let A ⊆ ωω or 2ω.

A has the Baire property iff for every basic open [s] there is a basic
open [t] ⊆ [s] such that [t] ⊆∗ A or [t] ∩ A =∗ ∅.

A is Lebesgue-measurable iff for every closed set C of positive
measure there is a closed subset C ′ ⊆ C of positive measure, such
that C ⊆ A or C ∩ A = ∅.

Baire property = Cohen forcing

Lebesgue measure = random forcing
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Yurii Khomskii (KGRC) Cichoń’s Diagram and Regularity Properties 15 July 2013 3 / 52



More Forcing Notions

S = Sacks forcing: conditions are perfect trees on 2<ω.

M = Miller forcing: conditions are super-perfect trees on ω<ω

(every node has an extensions which is infinitely splitting).

L = Laver forcing: conditions are Laver trees

(every node beyond the stem is infinitely splitting).
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More Regularity Properties

Definition

A ⊆ 2ω is Sacks-measurable (Marczewski-measurable) iff

∀T ∈ S ∃S ∈ S,S ≤ T ([S ] ⊆ A or [S ] ∩ A = ∅).

A ⊆ ωω is Miller-measurable iff

∀T ∈M ∃S ∈M,S ≤ T ([S ] ⊆ A or [S ] ∩ A = ∅).

A ⊆ ωω is Laver-measurable iff

∀T ∈ L ∃S ∈ L,S ≤ T ([S ] ⊆ A or [S ] ∩ A = ∅).
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Regularity of projective sets

One can also give an abstract definition of P-measurability (Ikegami, my
PhD Thesis).

We focus on Cohen (C), random (B), Sacks (S), Miller (M) and Laver (L).

Let Γ be a projective pointclass. “Γ(P)” abbreviates the statement “all
sets of complexity Γ are P-measurable”.

Σ1
1(P) is true.

But Σ1
2(P) and ∆1

2(P) are already independent of ZFC.
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Cichoń’s diagram for regularity properties

∆1
2(B) +3 Σ1

2(S)
∆1

2(S)

Σ1
2(L)

∆1
2(L)

+3 Σ1
2(M)

∆1
2(M)

4<qqqqqqqq

qqqqqqqq

∀r(ω
L[r ]
1 < ω1) +3 Σ1

2(B) +3

KS

Σ1
2(C)

KS

+3 ∆1
2(C)

KS

1 Each implication appearing in the diagram is provable in ZFC.

2 Each implication not appearing in the diagram is not provable in ZFC,
except

3 ∆1
2(L) + ∆1

2(C) =⇒ Σ1
2(C)
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Characterization (1)

Why this analogy?

Theorem (Judah-Shelah 1989)

The following are equivalent:

1 ∆1
2(C)

2 ∀r ∃x (x is Cohen over L[r ]).

Theorem (Solovay 1970)

The following are equivalent:

1 Σ1
2(C)

2 ∀r {x | x Cohen over L[r ]} is comeager.

Yurii Khomskii (KGRC) Cichoń’s Diagram and Regularity Properties 15 July 2013 8 / 52



Characterization (1)

Why this analogy?

Theorem (Judah-Shelah 1989)

The following are equivalent:

1 ∆1
2(C)

2 ∀r ∃x (x is Cohen over L[r ]).

Theorem (Solovay 1970)

The following are equivalent:

1 Σ1
2(C)

2 ∀r {x | x Cohen over L[r ]} is comeager.
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Characterization (2)

Why this analogy?

Theorem (Judah-Shelah 1989)

The following are equivalent:

1 ∆1
2(B)

2 ∀r ∃x (x is random over L[r ]).

Theorem (Solovay 1970)

The following are equivalent:

1 Σ1
2(B)

2 ∀r µ({x | x random over L[r ]}) = 1.
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Characterization (3)

Theorem (Brendle-Löwe 1999)

The following are equivalent:
1 ∆1

2(L)
2 Σ1

2(L)
3 ∀r ∃x (x is dominating over L[r ])

The following are equivalent:
1 ∆1

2(M)
2 Σ1

2(M)
3 ∀r ∃x (x is unbounded over L[r ])

The following are equivalent:
1 ∆1

2(S)
2 Σ1

2(S)
3 ∀r ∃x (x /∈ L[r ])
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Correspondence

Regularity hypothesis Transcendence over L[r ]
Cardinal

characteristic

∀r(ω
L[r ]
1 < ω1) “making ground-model reals countable” ℵ1

Σ1
2(B) measure-one many random reals add(N )

∆1
2(B) random reals cov(N )

Σ1
2(C) co-meager many Cohen reals add(M)

∆1
2(C) Cohen reals cov(M)

∆1
2(L) / Σ1

2(L) dominating reals b

∆1
2(M) / Σ1

2(M) unbounded reals d

∆1
2(S) / Σ1

2(S) new reals 2ℵ0

Yurii Khomskii (KGRC) Cichoń’s Diagram and Regularity Properties 15 July 2013 11 / 52



Cichon’s diagram

∆1
2(B) +3 Σ1

2(S)
∆1

2(S)

Σ1
2(L)

∆1
2(L)

+3 Σ1
2(M)

∆1
2(M)

4<qqqqqqqq

qqqqqqqq

∀r(ω
L[r ]
1 < ω1) +3 Σ1

2(B) +3

KS

Σ1
2(C)

KS

+3 ∆1
2(C)

KS

Analogy between hypotheses about regularity on 2nd level and cardinal
characteristics.

Question

What happens at higher levels of the projective hierarchy?
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Large cardinals?

One possible answer (Ikegami, Judah-Spinas, Friedman): assume suitable
large cardinals to “lift” characterization theorems to higher levels,
replacing L by some other suitable inner model.

Then by similar arguments, one obtains the analogous diagram on higher
projective levels.
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Disadvantage of large cardinals

Our approach is different, for the following reasons:

1 Since Proj(P) can be obtained just from an inaccessible, it seems
unnatural to require stronger hypotheses for questions about Σ1

n(P)
and ∆1

n(P) for low values of n (Bagaria, Judah, Shelah).

2 Assuming too strong hypotheses trivializes the question (e.g. PD).
We need exactly the right large cardinal strength, which seems
artificial.
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Additional motivation

Recall the Bartoszynski-Raisonnier-Stern implication: Σ1
2(B)⇒ Σ1

2(C).

Assuming suitable large cardinals, this lifts to Σ1
3(B)⇒ Σ1

3(C).

Theorem (Friedman-Schrittesser, 2013)

It is consistent (relative to a Mahlo) that Proj(B) + ¬∆1
3(C).

We will see more examples.
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Yurii Khomskii (KGRC) Cichoń’s Diagram and Regularity Properties 15 July 2013 15 / 52



Additional motivation

Recall the Bartoszynski-Raisonnier-Stern implication: Σ1
2(B)⇒ Σ1

2(C).

Assuming suitable large cardinals, this lifts to Σ1
3(B)⇒ Σ1

3(C).

Theorem (Friedman-Schrittesser, 2013)

It is consistent (relative to a Mahlo) that Proj(B) + ¬∆1
3(C).

We will see more examples.
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ZFC

So our framework is ZFC or ZFC + inaccessible.

Without characterization results, can anything at all be said for
regularity properties on higher projective levels?
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Some straightforward implications

Fact

Let Γ be any pointclass closed under continuous pre-images. Then:

1 Γ(L)⇒ Γ(M)⇒ Γ(S).

2 Γ(B)⇒ Γ(S).

3 Γ(C)⇒ Γ(M).

Proof.

First, note that for T ∈ P there is a homemorphism between [T ] and ωω (or 2ω). So we
can ignore the “below any condition”-clause in the definition of P-measurability!

1 A Laver tree is a Miller tree, which is (almost) a Sacks tree.

2 A closed set of positive measure contains a perfect subset of positive measure.

3 A set comeager in a basic open set contains a super-perfect tree.
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Cichoń’s diagram on the third level

∆1
3(B) +3 ∆1

3(S)

∆1
3(L) +3 ∆1

3(M)

2:nnnnnnnnnnnn

nnnnnnnnnnnn
Σ1

3(S)

KS

Σ1
3(L) +3

KS

Σ1
3(M)

KS 2:nnnnnnnnnnnn

nnnnnnnnnnnn

? +3 Σ1
3(B)

KS

Σ1
3(C) +3

6>uuuuuuuu

uuuuuuuu
∆1

3(C)

]e

Eventually, we would like to “solve” this diagram in ZFC or ZFC +
inaccessible.
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Cohen and Random

Concerning Cohen and Random, some things were known:

Con(∆1
3(C) + ¬∆1

3(B)) from ZFC (Bagaria-Judah 1993)

Con(∆1
3(B) + ¬∆1

3(C)) from ZFC (Bagaria-Judah 1993, Bagaria-Woodin 1997)

Con(∆1
3(C) + ¬Σ1

3(C)) and Con(∆1
3(B) + ¬Σ1

3(B)) from ZFC (Bagaria-Judah
1993)

Con(∆1
4(B) + ¬∆1

4(C)) from inaccessible (Judah-Spinas 1995)
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Solving the diagrams

∆1
3(B) +3 ∆1

3(S)

∆1
3(L) +3 ∆1

3(M)

2:nnnnnn
nnnnnn

Σ1
3(S)

KS

Σ1
3(L) +3

KS

Σ1
3(M)

KS 2:nnnnnnn
nnnnnnn

? +3 Σ1
3(B)

KS

Σ1
3(C) +3

6>uuuu
uuuu

∆1
3(C)

\d

Solving the entire diagram on the 3rd or higher levels still seems difficult.

Question

Are Σ1
3(P) and ∆1

3(P) equivalent for P ∈ {S,L,M}?

But it is easier if we restrict attention exclusively to ∆1
3, Σ1

3 or ∆1
4 sets!
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But it is easier if we restrict attention exclusively to ∆1
3, Σ1

3 or ∆1
4 sets!
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The ∆1
3-diagram

∆1
3(B) +3 ∆1

3(S)

∆1
3(L) +3 ∆1

3(M)

6>tttttt
tttttt

∆1
3(C)

KS

There are 11 possible combinations of assigning “true” and “false” to these regularity

statements without contradicting the diagram.

Theorem (Fischer-Friedman-Kh)

Using ZFC + inaccessible, there is a model for each such combination.

In 8 out of 11 cases, ZFC is sufficient.
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The Σ1
3-diagram

Σ1
3(B) +3 Σ1

3(S)

Σ1
3(L) +3 Σ1

3(M)

6>uuuuuu
uuuuuu

Σ1
3(C)

KS

There are 11 possible combinations of assigning “true” and “false” to these regularity

statements without contradicting the diagram.

Theorem (Fischer-Friedman-Kh)

From ZFC + inaccessible, 5 out of 11 combinations have a model.
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The ∆1
4-diagram

∆1
4(B) +3 ∆1

4(S)

∆1
4(L) +3 ∆1

4(M)

6>tttttt
tttttt

∆1
4(C)

KS

There are 11 possible combinations of assigning “true” and “false” to these regularity

statements without contradicting the diagram.

Theorem (Fischer-Friedman-Kh)

From ZFC + inaccessible, 7 out of 11 combinations have a model.
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Separating Σ from ∆

Theorem (Fischer-Friedman-Kh)

Starting from ZFC, there is a model where ∆1
3(P) holds for all P but

Σ1
3(B) and Σ1

3(C) fail.

Starting from ZFC + inaccessible, there is a model where ∆1
4(P) holds for

all P but Σ1
4(B) and Σ1

4(C) fail.

Recall the Truss-implication: ∆1
2(L) + ∆1

2(C)⇒ Σ1
2(C).

By the above theorem, this fails to lift to the 3rd and 4th levels.
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The main ingredients

What we use in our proofs:

1 Suslin and Suslin+ proper (not necessarily ccc) forcing iterations.

2 A model L∗ in which

Σ1
2(P) holds for all P, but

there is a Σ1
3-good wellorder of the reals.

3 “David’s model” Ld in which

∀r (ω
L[r ]
1 < ω1), but

there is a Σ1
3-good wellorder of the reals.

All our results are obtained by ω1-iterations of Suslin or Suslin+ proper
forcing, with countable support, starting from L, L∗ or Ld . If we use L or
L∗ we have a ZFC-proof; if we use Ld we require an inaccessible.
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For the rest of the talk...

1 Suslin and Suslin+ proper forcing.

2 Methods for obtaining regularity.

3 Solving the diagrams.
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1. Suslin and Suslin+ proper forcing.
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Properness Without Elementaricity

Suslin and Suslin+ proper forcing (in general “non-elementary proper
forcing”) has been studied by Judah, Shelah, Goldstern and Kellner.

Recall: P is proper if for every M ≺ Hθ with P ∈ M and every
p ∈ P ∩M, there is q ≤ p which is (M,P)-generic, i.e.

q 
(P over V ) “M[Ġ ] is a (P ∩M)-generic extension of M”.

Idea: replace M ≺ Hθ by any countable transitive model M of (a
sufficient fragment of) ZFC.

But “P ∩M” etc. does not make sense when M is not elementary.
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Suslin proper forcing

Definition

A forcing notion P is Suslin if elements of P are (coded by) reals and
“p ∈ P”,“p ≤ q” and “p⊥q” are Σ1

1 relations.

If P is Suslin and M is any countable model containing the parameters
defining P, then PM refers to the interpretation of P within M.

Definition

A forcing notion P is Suslin proper if it is Suslin and for any countable
transitive model M containing the parameters of P, and every p ∈ PM ,
there is q ≤ p which is (M,P)-generic, i.e.,

q 
(P over V ) “M[Ġ ] is a PM -generic extension of M”.
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Suslin+ proper forcing

Problem: Unfortunately, many standard forcing notions (in particular
Sacks, Miller and Laver) are not exactly Suslin, because ⊥ is only Π1

1 but
not Σ1

1.

Solution: (Shelah; Goldstern) Replace “Suslin” by “Suslin+”, where we
don’t require ⊥ to be Σ1

1. Instead, we make sure that there is an
“effective” version of being an (M,P)-generic condition.

Technically, require that there exists a Σ1
2, (ω + 1)-place relation epd(pi , q) such that if

epd(pi , q) holds then {pi | i < ω} is predense below q (provably in ZFC), and use epd to define

an effectively (M,P)-generic condition.
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Remarks about Suslin+

Remarks:

1 All standard definable forcings used in the theory of the reals which
are known to be proper, are actually Suslin+ proper.

2 In fact, they satisfy an effective version of Axiom A which implies
Suslin+ properness (Kellner 2006).
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Why is this useful?

Iterations of Suslin+ proper forcing notions satisfy nice properties which
other iterations do not.

Let Pα be an iteration of length α whose iterands are Suslin+ proper, for
α < ω1.

1 The relations “p ∈ Pα” and “p ≤α q” are Π1
2.

2 If θ is a Π1
n formula for n ≥ 2, p ∈ Pα and τ a (countable) Pα-name

for a real, then “p 
α θ(τ)” is Π1
n.

3 If V |= ∀r (ω
L[r ]
1 < ω1) then V Pα |= ∀r (ω

L[r ]
1 < ω1).

4 If V |= ∀r (ω
L[r ]
1 < ω1) then Σ1

3-absoluteness holds between any pair
of models N and N ′ with V ⊆ N ⊆ N ′ ⊆ V Pα .
(This was proved by Judah for Suslin ccc forcing).
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2. Methods for obtaining regularity.
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Methods for obtaining regularity

Classical results say, roughly:

An iteration of length ω1 of P yields ∆1
2(P), and

An iteration of length ω1 of “amoeba-for-P” yields Σ1
2(P).

The point is to squeeze out stronger results using Suslin+ properness.
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Amoeba and Quasi-amoeba

Definition

Let P be a tree-like forcing notion, and AP another forcing. We say that

1 AP is a quasi-amoeba for P if for every p ∈ P and every AP-generic
G , in V [G ] there is a q ≤ p such that

V [G ] |= ∀x ∈ [q] (x is P-generic over V ).

2 AP is an amoeba for P if for every p ∈ P and every AP-generic G , in
V [G ] there is a q ≤ p such that for any larger model W ⊇ V [G ],

W |= ∀x ∈ [q] (x is P-generic over V ).
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Examples

For Cohen and random, quasi-amoeba and amoeba are the same thing.
But in general they are different.

Examples:

1 S is a quasi-amoeba, but not an amoeba, for itself (Brendle 1998).

2 M is a quasi-amoeba, but not an amoeba, for itself (Brendle 1998).

3 L is not a quasi-amoeba for itself (Brendle 1998), but there are
amoebas for L.

4 Mathias forcing R is an amoeba for itself.
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The methods

Method 1 (Bagaria-Judah)

1 If V |= Σ1
2(B) then V Bω1 |= ∆1

3(B).

2 If V |= Σ1
2(C) then V Cω1 |= ∆1

3(C).

Method 2 (Fischer-Friedman-Kh)

Suppose APi is a quasi-amoeba for Pi for all i ≤ k, and all Pi and APi are

Suslin+ proper. Then V (P0∗AP0∗···∗Pk∗APk )ω1 |= ∆1
3(Pi ) for each i .

Corollary

V Sω1 |= ∆1
3(S) and V Mω1 |= ∆1

3(M).
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Suppose APi is a quasi-amoeba for Pi for all i ≤ k , and all Pi and APi are

Suslin+ proper. Then V (P0∗AP0∗···∗Pk∗APk )ω1 |= ∆1
3(Pi ) for each i .

Corollary

V Sω1 |= ∆1
3(S) and V Mω1 |= ∆1

3(M).
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Some aspects of the proof

This method is based on the proof of Judah-Shelah that the ω1-iteration
of Mathias-forcing yields ∆1

3(Ramsey).

However, replacing “amoebas” by “quasi-amoebas” is an innovation which
yields stronger results for Sacks and Miller forcing.

Idea: in the intermediary extension, the quasi-amoeba gives us a
P-condition q such that all x ∈ [q] are generic over the ground model.
From this we conclude (in this intermediary extension) that for all x ∈ [q],
the statement “a certain condition forces a certain Π1

2-statement
concerning x” is true. Then in the final extension, it may not be true that
all x ∈ [q] are generic but that doesn’t matter because the above
statement is preserved by Π1

2-absoluteness.

For this to work, we rely heavily on properties of Suslin+ proper iterations!
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Yurii Khomskii (KGRC) Cichoń’s Diagram and Regularity Properties 15 July 2013 38 / 52



More methods

Method 3 (Fischer-Friedman-Kh)

Suppose V |= ∀r (ω
L[r ]
1 < ω1) and Pω1 := 〈Pα, Q̇α | α < ω1〉 is an iteration of

Suslin+ proper forcing notions in which P appears cofinally often. Then

V Pω1 |= ∆1
3(P).

Idea: Here, we use the Σ1
3-absoluteness between models N,N ′ with

V ⊆ N ⊆ N ′ ⊆ V [Gω1 ], and the preservation of ∀r (ω
L[r ]
1 < ω1) by Suslin+

proper iterations.
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Even more methods

Method 4 (Fischer-Friedman-Kh)

Suppose V |= ∀r (ω
L[r ]
1 < ω1), APi is a quasi-amoeba for Pi for all i ≤ k, and all

Pi and APi are Suslin+ proper. Then V (P0∗AP0∗···∗Pk∗APk )ω1 |= ∆1
4(Pi ) for each i .

Corollary

If V |= ∀r (ω
L[r ]
1 < ω1) then V Sω1 |= ∆1

4(S) and V Mω1 |= ∆1
4(M).

Idea: Direct generalization of Method 2, using Σ1
3-absoluteness between

intermediary models instead of Shoenfield absoluteness.

Yurii Khomskii (KGRC) Cichoń’s Diagram and Regularity Properties 15 July 2013 40 / 52



Even more methods

Method 4 (Fischer-Friedman-Kh)

Suppose V |= ∀r (ω
L[r ]
1 < ω1), APi is a quasi-amoeba for Pi for all i ≤ k, and all

Pi and APi are Suslin+ proper. Then V (P0∗AP0∗···∗Pk∗APk )ω1 |= ∆1
4(Pi ) for each i .

Corollary

If V |= ∀r (ω
L[r ]
1 < ω1) then V Sω1 |= ∆1

4(S) and V Mω1 |= ∆1
4(M).

Idea: Direct generalization of Method 2, using Σ1
3-absoluteness between

intermediary models instead of Shoenfield absoluteness.

Yurii Khomskii (KGRC) Cichoń’s Diagram and Regularity Properties 15 July 2013 40 / 52



Even more methods

Method 4 (Fischer-Friedman-Kh)

Suppose V |= ∀r (ω
L[r ]
1 < ω1), APi is a quasi-amoeba for Pi for all i ≤ k, and all

Pi and APi are Suslin+ proper. Then V (P0∗AP0∗···∗Pk∗APk )ω1 |= ∆1
4(Pi ) for each i .

Corollary

If V |= ∀r (ω
L[r ]
1 < ω1) then V Sω1 |= ∆1

4(S) and V Mω1 |= ∆1
4(M).

Idea: Direct generalization of Method 2, using Σ1
3-absoluteness between

intermediary models instead of Shoenfield absoluteness.
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Method 1 (Bagaria-Judah)

1 If V |= Σ1
2(B) then V Bω1 |= ∆1

3(B).

2 If V |= Σ1
2(C) then V Cω1 |= ∆1

3(C).

Method 2 (Fischer-Friedman-Kh)

Suppose APi is a quasi-amoeba for Pi for all i ≤ k, and all Pi and APi are Suslin+

proper. Then V (P0∗AP0∗···∗Pk∗APk )ω1 |= ∆1
3(Pi ) for each i .

Method 3 (Fischer-Friedman-Kh)

Suppose V |= ∀r (ω
L[r ]
1 < ω1) and Pω1 := 〈Pα, Q̇α | α < ω1〉 is an iteration of Suslin+

proper forcing notions in which P appears cofinally often. Then V Pω1 |= ∆1
3(P).

Method 4 (Fischer-Friedman-Kh)

Suppose V |= ∀r (ω
L[r ]
1 < ω1), APi is a quasi-amoeba for Pi for all i ≤ k, and all Pi and

APi are Suslin+ proper. Then V (P0∗AP0∗···∗Pk∗APk )ω1 |= ∆1
4(Pi ) for each i .
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3. Solving the diagrams.
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Separation

We almost have all ingredients necessary to separate regularity properties.
But we need a method for guaranteeing the failure of regularity.

Using information from the original characterization theorems, we
conclude:

Fact

Let V be a model with a Σ1
3-good wellorder of the reals.

1 If there are no Cohen reals over V then ¬∆1
3(C).

2 If there are no random reals over V then ¬∆1
3(B).

3 If there are no dominating reals over V then ¬∆1
3(L).

4 If there are no unbounded reals over V then ¬∆1
3(M).

5 If ωω ∩ V = ωω then ¬∆1
3(S).
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Solving the ∆1
3-diagram

∆1
3(B) +3 ∆1

3(S)

∆1
3(L) +3 ∆1

3(M)

5=ssss
ssss

∆1
3(C)

KS

Recall:
1 L∗ is a model where

Σ1
2(P) holds for all P, but

there is a Σ1
3-good wellorder of the reals.

2 Ld is a model where

∀r (ω
L[r ]
1 < ω1), but

there is a Σ1
3-good wellorder of the reals.
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◦ = FALSE • = TRUE

◦ ◦

◦ ◦
}}

◦

L

◦ •

◦ ◦
}}

◦

LSω1

• •

◦ ◦
}}

◦

(L∗)Bω1

◦ •

◦ •
}}

◦

LMω1

◦ •

• •
}}

◦

L(L∗AL)ω1 or LRω1

◦ •

◦ •
}}

•

(L∗)Cω1

• •

◦ •
}}

◦

(Ld )(B∗M)ω1

• •

• •
}}

◦

(Ld )(B∗L)ω1

• •

◦ •
}}

•

(Ld )(B∗C)ω1

◦ •

• •
}}

•

(Ld )(C∗L)ω1

or a ZFC-model of
Bartoszyński-Judah

• •

• •
}}

•

L(B∗A∗C∗L∗AL)ω1

or L(B∗A∗C∗R)ω1
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Σ1
3(B) +3 Σ1

3(S)

Σ1
3(L) +3 Σ1

3(M)

6>uuuuuu
uuuuuu

Σ1
3(C)

KS
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◦ = FALSE • = TRUE

◦ ◦

◦ ◦
}}

◦

L

◦ •

◦ ◦
}}

◦

(Ld )Sω1

• •

◦ ◦
}}

◦

???

◦ •

◦ •
}}

◦

(Ld )Mω1

◦ •

• •
}}

◦

(Ld )(L∗AL)ω1 or (Ld )Rω1

◦ •

◦ •
}}

•

???

• •

◦ •
}}

◦

???

• •

• •
}}

◦

???

• •

◦ •
}}

•

???

◦ •

• •
}}

•

???

• •

• •
}}

•

(Ld )(B∗A∗C∗L∗AL)ω1

or (Ld )(B∗A∗C∗R)ω1

(or Solovay Model)
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∆1
4(B) +3 ∆1

4(S)

∆1
4(L) +3 ∆1

4(M)

6>tttttt
tttttt

∆1
4(C)
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Yurii Khomskii (KGRC) Cichoń’s Diagram and Regularity Properties 15 July 2013 48 / 52



◦ = FALSE • = TRUE

◦ ◦

◦ ◦
}}

◦

L

◦ •

◦ ◦
}}

◦

(Ld )Sω1

• •

◦ ◦
}}

◦

??

◦ •

◦ •
}}

◦

(Ld )Mω1

◦ •

• •
}}

◦

(Ld )(L∗AL)ω1 or (Ld )Rω1

◦ •

◦ •
}}

•

??

• •

◦ •
}}

◦

???

• •

• •
}}

◦

???

• •

◦ •
}}

•

???

◦ •

• •
}}

•

???

• •

• •
}}

•

(Ld )(B∗A∗C∗L∗AL)ω1

or (Ld )(B∗A∗C∗R)ω1

(or Solovay Model)

? Judah-Spinas 1995
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Separating ∆ from Σ

Theorem (Fischer-Friedman-Kh)

Starting from ZFC, there is a model where ∆1
3(P) holds for all P but Σ1

3(B) and
Σ1

3(C) fail.

Starting from ZFC + inaccessible, there is a model where ∆1
4(P) holds for all P

but Σ1
4(B) and Σ1

4(C) fail.

Idea:

For the first assertion, use the Σ1
3 Raisonnier filter defined from the

reals of L, and ωL
1 = ω1.

For the second assertion, use the Σ1
4 Raisonnier filter defined using

the reals of Ld and ωLd
1 = ω1.
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Open Questions

Open questions:

1 Is Σ1
3(P) and ∆1

3(P) equivalent for Sacks, Miller and Laver? (we
conjecture that they are not).

2 Solve the ∆1
3-diagram in ZFC.

3 Solve the other diagrams.

4 Consistency strength of Σ1
3(L)?
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Yurii Khomskii (KGRC) Cichoń’s Diagram and Regularity Properties 15 July 2013 51 / 52



Open Questions

Open questions:

1 Is Σ1
3(P) and ∆1

3(P) equivalent for Sacks, Miller and Laver? (we
conjecture that they are not).

2 Solve the ∆1
3-diagram in ZFC.

3 Solve the other diagrams.

4 Consistency strength of Σ1
3(L)?
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Thank you!
Yurii Khomskii

yurii@deds.nl
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