Cichoń's Diagram and Regularity Properties

Yurii Khomskii Kurt Gödel Research Center

joint with Vera Fischer and Sy Friedman

4th European Set Theory Conference, Barcelona

・ ロ ト ・ 一戸 ト ・ 三

"What pentagram is to heavy metal, Cichoń's diagam is to set theory." — Jindřich Zapletal

"What pentagram is to heavy metal, Cichoń's diagam is to set theory." — Jindřich Zapletal

• Each inequality appearing in the diagram is provable in ZFC.

2 Each inequality **not** appearing in the diagram is **not** provable in ZFC, except

$$\ \, {\rm add}(\mathcal{M})={\rm min}(\mathfrak{b},{\rm cov}(\mathcal{M})) \ {\rm and} \ {\rm cof}(\mathcal{M})={\rm max}(\mathfrak{d},{\rm non}(\mathcal{M})).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

Let $A \subseteq \omega^{\omega}$ or 2^{ω} .

- A has the Baire property iff for every basic open [s] there is a basic open [t] ⊆ [s] such that [t] ⊆* A or [t] ∩ A =* Ø.
- A is **Lebesgue-measurable** iff for every closed set C of positive measure there is a closed subset $C' \subseteq C$ of positive measure, such that $C \subseteq A$ or $C \cap A = \emptyset$.

Let $A \subseteq \omega^{\omega}$ or 2^{ω} .

- A has the Baire property iff for every basic open [s] there is a basic open [t] ⊆ [s] such that [t] ⊆* A or [t] ∩ A =* Ø.
- A is **Lebesgue-measurable** iff for every closed set C of positive measure there is a closed subset $C' \subseteq C$ of positive measure, such that $C \subseteq A$ or $C \cap A = \emptyset$.

Baire property = Cohen forcing

Lebesgue measure = random forcing

• $\mathbb{S} =$ Sacks forcing: conditions are **perfect trees** on $2^{<\omega}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- $\mathbb{S} =$ Sacks forcing: conditions are **perfect trees** on $2^{<\omega}$.
- M = Miller forcing: conditions are super-perfect trees on ω^{<ω} (every node has an extensions which is infinitely splitting).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

4 / 52

- $\mathbb{S} =$ Sacks forcing: conditions are **perfect trees** on $2^{<\omega}$.
- M = Miller forcing: conditions are super-perfect trees on ω^{<ω} (every node has an extensions which is infinitely splitting).
- L = Laver forcing: conditions are Laver trees (every node beyond the stem is infinitely splitting).

More Regularity Properties

Definition

 $A \subseteq 2^{\omega}$ is **Sacks-measurable** (Marczewski-measurable) iff

$$\forall T \in \mathbb{S} \exists S \in \mathbb{S}, S \leq T ([S] \subseteq A \text{ or } [S] \cap A = \emptyset).$$

596

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

More Regularity Properties

Definition

 $A \subseteq 2^{\omega}$ is **Sacks-measurable** (Marczewski-measurable) iff

$$\forall T \in \mathbb{S} \exists S \in \mathbb{S}, S \leq T ([S] \subseteq A \text{ or } [S] \cap A = \emptyset).$$

 $A \subseteq \omega^{\omega}$ is **Miller-measurable** iff

 $\forall T \in \mathbb{M} \exists S \in \mathbb{M}, S \leq T ([S] \subseteq A \text{ or } [S] \cap A = \emptyset).$

More Regularity Properties

Definition

 $A \subseteq 2^{\omega}$ is **Sacks-measurable** (Marczewski-measurable) iff

$$\forall T \in \mathbb{S} \exists S \in \mathbb{S}, S \leq T ([S] \subseteq A \text{ or } [S] \cap A = \emptyset).$$

 $A \subseteq \omega^{\omega}$ is **Miller-measurable** iff

 $\forall T \in \mathbb{M} \exists S \in \mathbb{M}, S \leq T ([S] \subseteq A \text{ or } [S] \cap A = \emptyset).$

 $A \subseteq \omega^{\omega}$ is Laver-measurable iff

 $\forall T \in \mathbb{L} \exists S \in \mathbb{L}, S \leq T ([S] \subseteq A \text{ or } [S] \cap A = \emptyset).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

We focus on Cohen (\mathbb{C}), random (\mathbb{B}), Sacks (\mathbb{S}), Miller (\mathbb{M}) and Laver (\mathbb{L}).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

6 / 52

We focus on Cohen (\mathbb{C}), random (\mathbb{B}), Sacks (\mathbb{S}), Miller (\mathbb{M}) and Laver (\mathbb{L}).

Let Γ be a projective pointclass. " $\Gamma(\mathbb{P})$ " abbreviates the statement "all sets of complexity Γ are \mathbb{P} -measurable".

We focus on Cohen (\mathbb{C}), random (\mathbb{B}), Sacks (\mathbb{S}), Miller (\mathbb{M}) and Laver (\mathbb{L}).

Let Γ be a projective pointclass. " $\Gamma(\mathbb{P})$ " abbreviates the statement "all sets of complexity Γ are \mathbb{P} -measurable".

 $\Sigma^1_1(\mathbb{P})$ is true.

We focus on Cohen (\mathbb{C}), random (\mathbb{B}), Sacks (\mathbb{S}), Miller (\mathbb{M}) and Laver (\mathbb{L}).

Let Γ be a projective pointclass. " $\Gamma(\mathbb{P})$ " abbreviates the statement "all sets of complexity Γ are \mathbb{P} -measurable".

 $\Sigma^1_1(\mathbb{P})$ is true.

But $\Sigma_2^1(\mathbb{P})$ and $\Delta_2^1(\mathbb{P})$ are already independent of ZFC.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Cichoń's diagram for regularity properties

▲ 프 ► = =

▲ 伊 ▶ ▲ 三 ▶

Cichoń's diagram for regularity properties

- Each implication appearing in the diagram is provable in ZFC.
- Each implication not appearing in the diagram is not provable in ZFC, except

Why this analogy?

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Why this analogy?

Theorem (Judah-Shelah 1989)

The following are equivalent:

- $\bullet \ \Delta^1_2(\mathbb{C})$
- ② $\forall r \exists x (x \text{ is Cohen over } L[r]).$

Theorem (Solovay 1970)

The following are equivalent:

- $\Sigma_2^1(\mathbb{C})$
- **2** $\forall r \{x \mid x \text{ Cohen over } L[r]\}$ is comeager.

- 4 同 ト 4 目 ト

Why this analogy?

Theorem (Judah-Shelah 1989)

The following are equivalent:

- $\bullet \ \Delta^1_2(\mathbb{B})$
- ② $\forall r \exists x (x \text{ is random over } L[r]).$

Theorem (Solovay 1970)

The following are equivalent:

- $\Sigma_2^1(\mathbb{B})$
- $\forall r \ \mu(\{x \mid x \text{ random over } L[r]\}) = 1.$

- 4 同 ト 4 目 ト

Characterization (3)

Theorem (Brendle-Löwe 1999)

- The following are equivalent:
 - 2 $\Sigma_2^{\overline{1}}(\mathbb{L})$
 - **3** $\forall r \exists x (x \text{ is dominating over } L[r])$
- The following are equivalent:

 - 2 $\Sigma_2^{\overline{1}}(\mathbb{M})$
 - 3 $\forall r \exists x (x \text{ is unbounded over } L[r])$
- The following are equivalent:

1
$$\Delta_2^1(\mathbb{S})$$

2 $\Sigma_2^1(\mathbb{S})$

$$\forall r \exists x (x \notin L[r])$$

nac

< ∃ >

< □ > < 同 > < 回 >

Regularity hypothesis	Transcendence over <i>L</i> [<i>r</i>]	Cardinal
		characteristic
$\forall r(\omega_1^{\mathcal{L}[r]} < \omega_1)$	"making ground-model reals countable"	\aleph_1
$\Sigma_2^1(\mathbb{B})$	measure-one many random reals	$\operatorname{add}(\mathcal{N})$
$\Delta^1_2(\mathbb{B})$	random reals	$\operatorname{cov}(\mathcal{N})$
$\Sigma_2^1(\mathbb{C})$	co-meager many Cohen reals	$\operatorname{add}(\mathcal{M})$
$\Delta^1_2(\mathbb{C})$	Cohen reals	$\operatorname{cov}(\mathcal{M})$
$\Delta^1_2(\mathbb{L}) \ / \ \Sigma^1_2(\mathbb{L})$	dominating reals	b
$\Delta^1_2(\mathbb{M}) \ / \ \mathbf{\Sigma}^1_2(\mathbb{M})$	unbounded reals	б
$\mathbf{\Delta}_2^1(\mathbb{S}) \;/\; \mathbf{\Sigma}_2^1(\mathbb{S})$	new reals	2 ^{×0}

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 句 ◆ ○

Analogy between hypotheses about regularity on 2nd level and cardinal characteristics.

Analogy between hypotheses about regularity on 2nd level and cardinal characteristics.

Question

What happens at higher levels of the projective hierarchy?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

One possible answer (Ikegami, Judah-Spinas, Friedman): assume suitable large cardinals to "lift" characterization theorems to higher levels, replacing L by some other suitable inner model.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

- One possible answer (Ikegami, Judah-Spinas, Friedman): assume suitable large cardinals to "lift" characterization theorems to higher levels, replacing L by some other suitable inner model.
- Then by similar arguments, one obtains the analogous diagram on higher projective levels.

Our approach is different, for the following reasons:

Since Proj(P) can be obtained just from an inaccessible, it seems unnatural to require stronger hypotheses for questions about Σ¹_n(P) and Δ¹_n(P) for low values of n (Bagaria, Judah, Shelah).

- 4 同 ト 4 三 ト - 三 - りくや

Our approach is different, for the following reasons:

- Since Proj(P) can be obtained just from an inaccessible, it seems unnatural to require stronger hypotheses for questions about Σ¹_n(P) and Δ¹_n(P) for low values of n (Bagaria, Judah, Shelah).
- Assuming too strong hypotheses trivializes the question (e.g. PD). We need exactly the right large cardinal strength, which seems artificial.

Recall the Bartoszynski-Raisonnier-Stern implication: $\Sigma_2^1(\mathbb{B}) \Rightarrow \Sigma_2^1(\mathbb{C})$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Recall the Bartoszynski-Raisonnier-Stern implication: $\Sigma_2^1(\mathbb{B}) \Rightarrow \Sigma_2^1(\mathbb{C})$. Assuming suitable large cardinals, this lifts to $\Sigma_3^1(\mathbb{B}) \Rightarrow \Sigma_3^1(\mathbb{C})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

15 / 52

Recall the Bartoszynski-Raisonnier-Stern implication: $\Sigma_2^1(\mathbb{B}) \Rightarrow \Sigma_2^1(\mathbb{C})$.

Assuming suitable large cardinals, this lifts to $\Sigma^1_3(\mathbb{B}) \Rightarrow \Sigma^1_3(\mathbb{C})$.

Theorem (Friedman-Schrittesser, 2013)

It is consistent (relative to a Mahlo) that $\operatorname{Proj}(\mathbb{B}) + \neg \Delta_3^1(\mathbb{C})$.

Recall the Bartoszynski-Raisonnier-Stern implication: $\Sigma_2^1(\mathbb{B}) \Rightarrow \Sigma_2^1(\mathbb{C})$.

Assuming suitable large cardinals, this lifts to $\Sigma^1_3(\mathbb{B}) \Rightarrow \Sigma^1_3(\mathbb{C})$.

Theorem (Friedman-Schrittesser, 2013)

It is consistent (relative to a Mahlo) that $\operatorname{Proj}(\mathbb{B}) + \neg \Delta_3^1(\mathbb{C})$.

We will see more examples.

So our framework is ZFC or ZFC + inaccessible.

◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ● ● ●

So our framework is ZFC or ZFC + inaccessible.

Without **characterization results**, can anything at all be said for regularity properties on higher projective levels?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

Some straightforward implications

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q ()
Some straightforward implications

Proof.

First, note that for $T \in \mathbb{P}$ there is a homemorphism between [T] and ω^{ω} (or 2^{ω}). So we can ignore the "below any condition"-clause in the definition of \mathbb{P} -measurability!

- A Laver tree is a Miller tree, which is (almost) a Sacks tree.
- **2** A closed set of positive measure contains a perfect subset of positive measure.
- 3 A set comeager in a basic open set contains a super-perfect tree.

・ロト ・同ト ・ヨト ・ヨト - ヨー

Cichoń's diagram on the third level

15 July 2013 18 / 52

3

SQA

Cichoń's diagram on the third level

Eventually, we would like to "solve" this diagram in ZFC or ZFC + inaccessible.

18 / 52

• $Con(\Delta_3^1(\mathbb{C}) + \neg \Delta_3^1(\mathbb{B}))$ from ZFC (Bagaria-Judah 1993)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- Con $(\Delta_3^1(\mathbb{C}) + \neg \Delta_3^1(\mathbb{B}))$ from ZFC (Bagaria-Judah 1993)
- $\mathsf{Con}(\Delta^1_3(\mathbb{B}) + \neg \Delta^1_3(\mathbb{C}))$ from ZFC (Bagaria-Judah 1993, Bagaria-Woodin 1997)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

- $\mathsf{Con}(\Delta^1_3(\mathbb{C}) + \neg \Delta^1_3(\mathbb{B}))$ from ZFC (Bagaria-Judah 1993)
- Con $(\Delta_3^1(\mathbb{B}) + \neg \Delta_3^1(\mathbb{C}))$ from ZFC (Bagaria-Judah 1993, Bagaria-Woodin 1997)
- Con $(\Delta_3^1(\mathbb{C}) + \neg \Sigma_3^1(\mathbb{C}))$ and Con $(\Delta_3^1(\mathbb{B}) + \neg \Sigma_3^1(\mathbb{B}))$ from ZFC (Bagaria-Judah 1993)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

- $\mathsf{Con}(\Delta^1_3(\mathbb{C}) + \neg \Delta^1_3(\mathbb{B}))$ from ZFC (Bagaria-Judah 1993)
- $\mathsf{Con}(\Delta^1_3(\mathbb{B}) + \neg \Delta^1_3(\mathbb{C}))$ from ZFC (Bagaria-Judah 1993, Bagaria-Woodin 1997)
- Con $(\Delta_3^1(\mathbb{C}) + \neg \Sigma_3^1(\mathbb{C}))$ and Con $(\Delta_3^1(\mathbb{B}) + \neg \Sigma_3^1(\mathbb{B}))$ from ZFC (Bagaria-Judah 1993)
- Con $(\Delta_4^1(\mathbb{B}) + \neg \Delta_4^1(\mathbb{C}))$ from inaccessible (Judah-Spinas 1995)

・ロ ・ ・ ヨ ・ ・ ヨ ・ ・ 日 ・ う つ つ

Solving the diagrams

Solving the entire diagram on the 3rd or higher levels still seems difficult.

Solving the diagrams

Solving the entire diagram on the 3rd or higher levels still seems difficult.

Question

Are $\Sigma_3^1(\mathbb{P})$ and $\Delta_3^1(\mathbb{P})$ equivalent for $\mathbb{P} \in \{\mathbb{S}, \mathbb{L}, \mathbb{M}\}$?

Yurii Khomskii (KGRC) Cichoń's Diagram and Regularity Properties 15 July 2013 20 / 52

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

Solving the diagrams

Solving the entire diagram on the 3rd or higher levels still seems difficult.

Question

Are $\Sigma_3^1(\mathbb{P})$ and $\Delta_3^1(\mathbb{P})$ equivalent for $\mathbb{P} \in \{\mathbb{S}, \mathbb{L}, \mathbb{M}\}$?

But it is easier if we restrict attention exclusively to Δ_3^1 , Σ_3^1 or Δ_4^1 sets!

Yurii Khomskii (KGRC)

15 July 2013 20 / 52

= 900

The Δ_3^1 -diagram

There are 11 possible combinations of assigning "true" and "false" to these regularity statements without contradicting the diagram.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

The Δ_3^1 -diagram

There are 11 possible combinations of assigning "true" and "false" to these regularity statements without contradicting the diagram.

Theorem (Fischer-Friedman-Kh)

Using ZFC + inaccessible, there is a model for each such combination.

In 8 out of 11 cases, ZFC is sufficient.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

The Σ_3^1 -diagram

There are 11 possible combinations of assigning "true" and "false" to these regularity statements without contradicting the diagram.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

There are 11 possible combinations of assigning "true" and "false" to these regularity statements without contradicting the diagram.

Theorem (Fischer-Friedman-Kh)

From ZFC + inaccessible, 5 out of 11 combinations have a model.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

The Δ_4^1 -diagram

There are 11 possible combinations of assigning "true" and "false" to these regularity statements without contradicting the diagram.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

There are 11 possible combinations of assigning "true" and "false" to these regularity statements without contradicting the diagram.

Theorem (Fischer-Friedman-Kh)

From ZFC + inaccessible, 7 out of 11 combinations have a model.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Separating Σ from Δ

Theorem (Fischer-Friedman-Kh)

Starting from ZFC, there is a model where $\Delta_3^1(\mathbb{P})$ holds for all \mathbb{P} but $\Sigma_3^1(\mathbb{B})$ and $\Sigma_3^1(\mathbb{C})$ fail.

Starting from ZFC + inaccessible, there is a model where $\Delta_4^1(\mathbb{P})$ holds for all \mathbb{P} but $\Sigma_4^1(\mathbb{B})$ and $\Sigma_4^1(\mathbb{C})$ fail.

Separating Σ from Δ

Theorem (Fischer-Friedman-Kh)

Starting from ZFC, there is a model where $\Delta_3^1(\mathbb{P})$ holds for all \mathbb{P} but $\Sigma_3^1(\mathbb{B})$ and $\Sigma_3^1(\mathbb{C})$ fail.

Starting from ZFC + inaccessible, there is a model where $\Delta_4^1(\mathbb{P})$ holds for all \mathbb{P} but $\Sigma_4^1(\mathbb{B})$ and $\Sigma_4^1(\mathbb{C})$ fail.

Recall the Truss-implication: $\Delta_2^1(\mathbb{L}) + \Delta_2^1(\mathbb{C}) \Rightarrow \Sigma_2^1(\mathbb{C})$.

Separating Σ from Δ

Theorem (Fischer-Friedman-Kh)

Starting from ZFC, there is a model where $\Delta_3^1(\mathbb{P})$ holds for all \mathbb{P} but $\Sigma_3^1(\mathbb{B})$ and $\Sigma_3^1(\mathbb{C})$ fail.

Starting from ZFC + inaccessible, there is a model where $\Delta_4^1(\mathbb{P})$ holds for all \mathbb{P} but $\Sigma_4^1(\mathbb{B})$ and $\Sigma_4^1(\mathbb{C})$ fail.

Recall the Truss-implication: $\Delta_2^1(\mathbb{L}) + \Delta_2^1(\mathbb{C}) \Rightarrow \Sigma_2^1(\mathbb{C})$.

By the above theorem, this fails to lift to the 3rd and 4th levels.

• Suslin and Suslin⁺ proper (not necessarily ccc) forcing iterations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

- Suslin and Suslin⁺ proper (not necessarily ccc) forcing iterations.
- **2** A model L^* in which
 - $\Sigma_2^1(\mathbb{P})$ holds for all \mathbb{P} , but
 - there is a Σ_3^1 -good wellorder of the reals.

- Suslin and Suslin⁺ proper (not necessarily ccc) forcing iterations.
- **2** A model L^* in which
 - $\Sigma_2^1(\mathbb{P})$ holds for all \mathbb{P} , but
 - there is a Σ_3^1 -good wellorder of the reals.
- **③** "David's model" L^d in which
 - $\forall r (\omega_1^{L[r]} < \omega_1)$, but
 - there is a Σ_3^1 -good wellorder of the reals.

- Suslin and Suslin⁺ proper (not necessarily ccc) forcing iterations.
- **2** A model L^* in which
 - $\Sigma_2^1(\mathbb{P})$ holds for all \mathbb{P} , but
 - there is a Σ_3^1 -good wellorder of the reals.
- **③** "David's model" L^d in which
 - $\forall r (\omega_1^{L[r]} < \omega_1)$, but
 - there is a Σ_3^1 -good wellorder of the reals.

All our results are obtained by ω_1 -iterations of Suslin or Suslin⁺ proper forcing, with countable support, starting from *L*, L^* or L^d . If we use *L* or L^* we have a ZFC-proof; if we use L^d we require an inaccessible.

ロト (同) (三) (三) (回) (回)

25 / 52

- **1** Suslin and Suslin⁺ proper forcing.
- Methods for obtaining regularity.
- Solving the diagrams.

= 900

26 / 52

- ₹ 🖿 🕨

< □ > < 同 > < 三 >

1. Suslin and Suslin⁺ proper forcing.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

イロト イポト イヨト イヨト 二日

• Recall: \mathbb{P} is **proper** if for every $M \prec \mathcal{H}_{\theta}$ with $\mathbb{P} \in M$ and every $p \in \mathbb{P} \cap M$, there is $q \leq p$ which is (M, \mathbb{P}) -generic, i.e.

 $q \Vdash_{(\mathbb{P} \text{ over } V)} ``M[G]$ is a $(\mathbb{P} \cap M)$ -generic extension of M".

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = - のぐぐ

• Recall: \mathbb{P} is **proper** if for every $M \prec \mathcal{H}_{\theta}$ with $\mathbb{P} \in M$ and every $p \in \mathbb{P} \cap M$, there is $q \leq p$ which is (M, \mathbb{P}) -generic, i.e.

 $q \Vdash_{(\mathbb{P} \text{ over } V)} ``M[G]$ is a $(\mathbb{P} \cap M)$ -generic extension of M".

Idea: replace M ≺ H_θ by any countable transitive model M of (a sufficient fragment of) ZFC.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

28 / 52

• Recall: \mathbb{P} is **proper** if for every $M \prec \mathcal{H}_{\theta}$ with $\mathbb{P} \in M$ and every $p \in \mathbb{P} \cap M$, there is $q \leq p$ which is (M, \mathbb{P}) -generic, i.e.

 $q \Vdash_{(\mathbb{P} \text{ over } V)} ``M[G]$ is a $(\mathbb{P} \cap M)$ -generic extension of M".

- Idea: replace M ≺ H_θ by any countable transitive model M of (a sufficient fragment of) ZFC.
- But " $\mathbb{P} \cap M$ " etc. does not make sense when M is not elementary.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Suslin proper forcing

Definition

A forcing notion \mathbb{P} is **Suslin** if elements of \mathbb{P} are (coded by) reals and " $p \in \mathbb{P}$ ", " $p \leq q$ " and " $p \perp q$ " are Σ_1^1 relations.

SQA

- 4 同 1 - 4 回 1 - 4 回 1 - 4

Definition

A forcing notion \mathbb{P} is **Suslin** if elements of \mathbb{P} are (coded by) reals and " $p \in \mathbb{P}$ ", " $p \leq q$ " and " $p \perp q$ " are Σ_1^1 relations.

If \mathbb{P} is Suslin and M is any countable model containing the parameters defining \mathbb{P} , then \mathbb{P}^M refers to the **interpretation** of \mathbb{P} within M.

Definition

A forcing notion \mathbb{P} is **Suslin** if elements of \mathbb{P} are (coded by) reals and " $p \in \mathbb{P}$ ", " $p \leq q$ " and " $p \perp q$ " are Σ_1^1 relations.

If \mathbb{P} is Suslin and M is any countable model containing the parameters defining \mathbb{P} , then \mathbb{P}^M refers to the **interpretation** of \mathbb{P} within M.

Definition

A forcing notion \mathbb{P} is **Suslin proper** if it is Suslin and for **any** countable transitive model M containing the parameters of \mathbb{P} , and every $p \in \mathbb{P}^M$, there is $q \leq p$ which is (M, \mathbb{P}) -generic, i.e.,

 $q \Vdash_{(\mathbb{P} \text{ over } V)} ``M[\dot{G}] \text{ is a } \mathbb{P}^M$ -generic extension of M".

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Problem: Unfortunately, many standard forcing notions (in particular Sacks, Miller and Laver) are not **exactly** Suslin, because \perp is only Π^1_1 but not Σ^1_1 .

・ロト ・ 一 ト ・ ヨ ト

200

30 / 52

- **Problem:** Unfortunately, many standard forcing notions (in particular Sacks, Miller and Laver) are not **exactly** Suslin, because \perp is only Π_1^1 but not Σ_1^1 .
- **Solution:** (Shelah; Goldstern) Replace "Suslin" by "Suslin⁺", where we don't require \perp to be Σ_1^1 . Instead, we make sure that there is an "effective" version of being an (M, \mathbb{P}) -generic condition.

Technically, require that there exists a Σ_2^1 , $(\omega + 1)$ -place relation $epd(p_i, q)$ such that if $epd(p_i, q)$ holds then $\{p_i \mid i < \omega\}$ is predense below q (provably in ZFC), and use epd to define an effectively (M, \mathbb{P}) -generic condition.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Remarks:

- All standard definable forcings used in the theory of the reals which are known to be proper, are actually Suslin⁺ proper.
- In fact, they satisfy an effective version of Axiom A which implies Suslin⁺ properness (Kellner 2006).

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = - のぐぐ

Iterations of Suslin⁺ proper forcing notions satisfy nice properties which other iterations do not.

Let \mathbb{P}_{α} be an iteration of length α whose iterands are Suslin⁺ proper, for $\alpha < \omega_1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の ()

32 / 52
Iterations of Suslin⁺ proper forcing notions satisfy nice properties which other iterations do not.

Let \mathbb{P}_{α} be an iteration of length α whose iterands are Suslin⁺ proper, for $\alpha < \omega_1$.

• The relations " $p \in \mathbb{P}_{\alpha}$ " and " $p \leq_{\alpha} q$ " are Π_{2}^{1} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

Iterations of Suslin⁺ proper forcing notions satisfy nice properties which other iterations do not.

Let \mathbb{P}_{α} be an iteration of length α whose iterands are Suslin⁺ proper, for $\alpha < \omega_1$.

- The relations " $p \in \mathbb{P}_{\alpha}$ " and " $p \leq_{\alpha} q$ " are Π_{2}^{1} .
- **②** If θ is a Π¹_n formula for n ≥ 2, p ∈ P_α and τ a (countable) P_α-name for a real, then "p ⊢_α θ(τ)" is Π¹_n.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = - のぐぐ

Iterations of Suslin⁺ proper forcing notions satisfy nice properties which other iterations do not.

Let \mathbb{P}_{α} be an iteration of length α whose iterands are Suslin⁺ proper, for $\alpha < \omega_1$.

- The relations " $p \in \mathbb{P}_{\alpha}$ " and " $p \leq_{\alpha} q$ " are Π_{2}^{1} .
- **②** If θ is a Π¹_n formula for n ≥ 2, p ∈ P_α and τ a (countable) P_α-name for a real, then "p ⊨_α θ(τ)" is Π¹_n.
- If $V \models \forall r (\omega_1^{L[r]} < \omega_1)$ then $V^{\mathbb{P}_{\alpha}} \models \forall r (\omega_1^{L[r]} < \omega_1)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Iterations of Suslin⁺ proper forcing notions satisfy nice properties which other iterations do not.

Let \mathbb{P}_{α} be an iteration of length α whose iterands are Suslin⁺ proper, for $\alpha < \omega_1$.

- **1** The relations " $p \in \mathbb{P}_{\alpha}$ " and " $p <_{\alpha} q$ " are Π_{2}^{1} .
- 2 If θ is a Π^1_r formula for $n \ge 2$, $p \in \mathbb{P}_{\alpha}$ and τ a (countable) \mathbb{P}_{α} -name for a real, then " $p \Vdash_{\alpha} \theta(\tau)$ " is Π_{p}^{1} .
- **3** If $V \models \forall r (\omega_1^{L[r]} < \omega_1)$ then $V^{\mathbb{P}_{\alpha}} \models \forall r (\omega_1^{L[r]} < \omega_1)$.
- If $V \models \forall r (\omega_1^{L[r]} < \omega_1)$ then Σ_3^1 -absoluteness holds between any pair of models N and N' with $V \subseteq N \subseteq N' \subseteq V^{\mathbb{P}_{\alpha}}$.

(This was proved by Judah for Suslin ccc forcing).

2. Methods for obtaining regularity.

◆ロ ▶ ◆ 昂 ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ● ●

Methods for obtaining regularity

Yurii Khomskii (KGRC) Cichoń's Diagram and Regularity Properties

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 母 ト ◆ 母 ト

Classical results say, roughly:

- An iteration of length ω_1 of \mathbb{P} yields $\Delta^1_2(\mathbb{P})$, and
- An iteration of length ω_1 of "amoeba-for- \mathbb{P} " yields $\Sigma_2^1(\mathbb{P})$.

The point is to squeeze out stronger results using Suslin⁺ properness.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Amoeba and Quasi-amoeba

Definition

Let $\mathbb P$ be a tree-like forcing notion, and $\mathbb A\mathbb P$ another forcing. We say that

▲ P is a quasi-amoeba for P if for every p ∈ P and every AP-generic G, in V[G] there is a q ≤ p such that

 $V[G] \models \forall x \in [q] (x \text{ is } \mathbb{P}\text{-generic over } V).$

Amoeba and Quasi-amoeba

Definition

Let $\mathbb P$ be a tree-like forcing notion, and $\mathbb A\mathbb P$ another forcing. We say that

▲ P is a quasi-amoeba for P if for every p ∈ P and every AP-generic G, in V[G] there is a q ≤ p such that

 $V[G] \models \forall x \in [q] (x \text{ is } \mathbb{P}\text{-generic over } V).$

② AP is an amoeba for P if for every p ∈ P and every AP-generic G, in V[G] there is a q ≤ p such that for any larger model W ⊇ V[G],

 $W \models \forall x \in [q] (x \text{ is } \mathbb{P}\text{-generic over } V).$

For Cohen and random, **quasi-amoeba** and **amoeba** are the same thing. But in general they are different.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

For Cohen and random, **quasi-amoeba** and **amoeba** are the same thing. But in general they are different.

Examples:

- \bigcirc S is a quasi-amoeba, but not an amoeba, for itself (Brendle 1998).
- 2 \mathbb{M} is a quasi-amoeba, but not an amoeba, for itself (Brendle 1998).
- I is not a quasi-amoeba for itself (Brendle 1998), but there are amoebas for L.
- Mathias forcing $\mathbb R$ is an amoeba for itself.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = - のぐぐ

36 / 52

The methods

Method 1 (Bagaria-Judah)

• If
$$V \models \Sigma_2^1(\mathbb{B})$$
 then $V^{\mathbb{B}_{\omega_1}} \models \Delta_3^1(\mathbb{B})$.
• If $V \models \Sigma_2^1(\mathbb{C})$ then $V^{\mathbb{C}_{\omega_1}} \models \Delta_3^1(\mathbb{C})$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

The methods

Method 1 (Bagaria-Judah)

1 If
$$V \models \Sigma_2^1(\mathbb{B})$$
 then $V^{\mathbb{B}\omega_1} \models \Delta_3^1(\mathbb{B})$.
2 If $V \models \Sigma_2^1(\mathbb{C})$ then $V^{\mathbb{C}\omega_1} \models \Delta_2^1(\mathbb{C})$

Method 2 (Fischer-Friedman-Kh)

Suppose \mathbb{AP}_i is a quasi-amoeba for \mathbb{P}_i for all $i \leq k$, and all \mathbb{P}_i and \mathbb{AP}_i are Suslin⁺ proper. Then $V^{(\mathbb{P}_0 * \mathbb{AP}_0 * \cdots * \mathbb{P}_k * \mathbb{AP}_k)_{\omega_1}} \models \Delta_3^1(\mathbb{P}_i)$ for each *i*.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Method 1 (Bagaria-Judah)

1 If
$$V \models \Sigma_2^1(\mathbb{B})$$
 then $V^{\mathbb{B}\omega_1} \models \Delta_3^1(\mathbb{B})$.
2 If $V \models \Sigma_2^1(\mathbb{C})$ then $V^{\mathbb{C}\omega_1} \models \Delta_2^1(\mathbb{C})$

Method 2 (Fischer-Friedman-Kh)

Suppose \mathbb{AP}_i is a quasi-amoeba for \mathbb{P}_i for all $i \leq k$, and all \mathbb{P}_i and \mathbb{AP}_i are Suslin⁺ proper. Then $V^{(\mathbb{P}_0 * \mathbb{AP}_0 * \cdots * \mathbb{P}_k * \mathbb{AP}_k)_{\omega_1}} \models \Delta_3^1(\mathbb{P}_i)$ for each *i*.

Corollary

$$V^{\mathbb{S}_{\omega_1}} \models \Delta^1_3(\mathbb{S})$$
 and $V^{\mathbb{M}_{\omega_1}} \models \Delta^1_3(\mathbb{M})$.

- 4 同 ト 4 ヨ ト 4 ヨ

・ロト ・ 一 ト ・ ヨ ト

However, replacing "amoebas" by "quasi-amoebas" is an innovation which yields stronger results for Sacks and Miller forcing.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = - のぐぐ

However, replacing "amoebas" by "quasi-amoebas" is an innovation which yields stronger results for Sacks and Miller forcing.

Idea: in the intermediary extension, the quasi-amoeba gives us a \mathbb{P} -condition q such that all $x \in [q]$ are generic over the ground model. From this we conclude (in this intermediary extension) that for all $x \in [q]$, the statement "a certain condition forces a certain Π_2^1 -statement concerning x" is true. Then in the final extension, it may **not** be true that all $x \in [q]$ are generic but that **doesn't matter** because the above statement is preserved by Π_2^1 -absoluteness.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

However, replacing "amoebas" by "quasi-amoebas" is an innovation which yields stronger results for Sacks and Miller forcing.

Idea: in the intermediary extension, the quasi-amoeba gives us a \mathbb{P} -condition q such that all $x \in [q]$ are generic over the ground model. From this we conclude (in this intermediary extension) that for all $x \in [q]$, the statement "a certain condition forces a certain Π_2^1 -statement concerning x" is true. Then in the final extension, it may **not** be true that all $x \in [q]$ are generic but that **doesn't matter** because the above statement is preserved by Π_2^1 -absoluteness.

For this to work, we rely heavily on properties of Suslin⁺ proper iterations!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Method 3 (Fischer-Friedman-Kh)

Suppose $V \models \forall r (\omega_1^{L[r]} < \omega_1)$ and $\mathbb{P}_{\omega_1} := \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} \mid \alpha < \omega_1 \rangle$ is an iteration of Suslin⁺ proper forcing notions in which \mathbb{P} appears cofinally often. Then $V^{\mathbb{P}_{\omega_1}} \models \Delta_3^1(\mathbb{P}).$

Method 3 (Fischer-Friedman-Kh)

Suppose $V \models \forall r (\omega_1^{L[r]} < \omega_1)$ and $\mathbb{P}_{\omega_1} := \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} \mid \alpha < \omega_1 \rangle$ is an iteration of Suslin⁺ proper forcing notions in which \mathbb{P} appears cofinally often. Then $V^{\mathbb{P}_{\omega_1}} \models \Delta_3^1(\mathbb{P}).$

Idea: Here, we use the Σ_3^1 -absoluteness between models N, N' with $V \subseteq N \subseteq N' \subseteq V[G_{\omega_1}]$, and the preservation of $\forall r (\omega_1^{L[r]} < \omega_1)$ by Suslin⁺ proper iterations.

39 / 52

Method 4 (Fischer-Friedman-Kh)

Suppose $V \models \forall r (\omega_1^{L[r]} < \omega_1)$, \mathbb{AP}_i is a quasi-amoeba for \mathbb{P}_i for all $i \le k$, and all \mathbb{P}_i and \mathbb{AP}_i are Suslin⁺ proper. Then $V^{(\mathbb{P}_0 * \mathbb{AP}_0 * \cdots * \mathbb{P}_k * \mathbb{AP}_k)_{\omega_1}} \models \Delta_4^1(\mathbb{P}_i)$ for each i.

イロト イポト イヨト イヨト 二日

40 / 52

Method 4 (Fischer-Friedman-Kh)

Suppose $V \models \forall r (\omega_1^{L[r]} < \omega_1)$, \mathbb{AP}_i is a quasi-amoeba for \mathbb{P}_i for all $i \le k$, and all \mathbb{P}_i and \mathbb{AP}_i are Suslin⁺ proper. Then $V^{(\mathbb{P}_0 * \mathbb{AP}_0 * \cdots * \mathbb{P}_k * \mathbb{AP}_k)_{\omega_1}} \models \Delta_4^1(\mathbb{P}_i)$ for each i.

Corollary

If
$$V \models \forall r \ (\omega_1^{L[r]} < \omega_1)$$
 then $V^{\mathbb{S}_{\omega_1}} \models \Delta_4^1(\mathbb{S})$ and $V^{\mathbb{M}_{\omega_1}} \models \Delta_4^1(\mathbb{M})$.

Method 4 (Fischer-Friedman-Kh)

Suppose $V \models \forall r (\omega_1^{L[r]} < \omega_1)$, \mathbb{AP}_i is a quasi-amoeba for \mathbb{P}_i for all $i \le k$, and all \mathbb{P}_i and \mathbb{AP}_i are Suslin⁺ proper. Then $V^{(\mathbb{P}_0 * \mathbb{AP}_0 * \cdots * \mathbb{P}_k * \mathbb{AP}_k)_{\omega_1}} \models \Delta_4^1(\mathbb{P}_i)$ for each i.

Corollary

If
$$V \models \forall r \ (\omega_1^{L[r]} < \omega_1)$$
 then $V^{\mathbb{S}_{\omega_1}} \models \Delta_4^1(\mathbb{S})$ and $V^{\mathbb{M}_{\omega_1}} \models \Delta_4^1(\mathbb{M})$.

Idea: Direct generalization of Method 2, using Σ_3^1 -absoluteness between intermediary models instead of Shoenfield absoluteness.

Method 1 (Bagaria-Judah)

1 If
$$V \models \Sigma_2^1(\mathbb{B})$$
 then $V^{\mathbb{B}_{\omega_1}} \models \Delta_3^1(\mathbb{B})$.
2 If $V \models \Sigma_2^1(\mathbb{C})$ then $V^{\mathbb{C}_{\omega_1}} \models \Delta_3^1(\mathbb{C})$.

Method 2 (Fischer-Friedman-Kh)

Suppose \mathbb{AP}_i is a quasi-amoeba for \mathbb{P}_i for all $i \leq k$, and all \mathbb{P}_i and \mathbb{AP}_i are Suslin⁺ proper. Then $V^{(\mathbb{P}_0*\mathbb{AP}_0*\cdots*\mathbb{P}_k*\mathbb{AP}_k)_{\omega_1}} \models \Delta^1_3(\mathbb{P}_i)$ for each *i*.

Method 3 (Fischer-Friedman-Kh)

Suppose $V \models \forall r (\omega_1^{L[r]} < \omega_1)$ and $\mathbb{P}_{\omega_1} := \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} \mid \alpha < \omega_1 \rangle$ is an iteration of Suslin⁺ proper forcing notions in which \mathbb{P} appears cofinally often. Then $V^{\mathbb{P}_{\omega_1}} \models \Delta_3^1(\mathbb{P})$.

Method 4 (Fischer-Friedman-Kh)

Suppose $V \models \forall r (\omega_1^{L[r]} < \omega_1)$, \mathbb{AP}_i is a quasi-amoeba for \mathbb{P}_i for all $i \le k$, and all \mathbb{P}_i and \mathbb{AP}_i are Suslin⁺ proper. Then $V^{(\mathbb{P}_0 * \mathbb{AP}_0 * \cdots * \mathbb{P}_k * \mathbb{AP}_k)\omega_1} \models \Delta_4^1(\mathbb{P}_i)$ for each *i*.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

3. Solving the diagrams.

◆ロ ▶ ◆ 昂 ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ● ●

Separation

We almost have all ingredients necessary to separate regularity properties. But we need a method for guaranteeing the **failure** of regularity.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

We almost have all ingredients necessary to separate regularity properties. But we need a method for guaranteeing the **failure** of regularity.

Using information from the original characterization theorems, we conclude:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

We almost have all ingredients necessary to separate regularity properties. But we need a method for guaranteeing the **failure** of regularity.

Using information from the original characterization theorems, we conclude:

Fact

Let V be a model with a Σ_3^1 -good wellorder of the reals.

- **1** If there are no Cohen reals over V then $\neg \Delta_3^1(\mathbb{C})$.
- 2 If there are no random reals over V then $\neg \Delta_3^1(\mathbb{B})$.
- **3** If there are no dominating reals over V then $\neg \Delta_3^1(\mathbb{L})$.
- If there are no unbounded reals over V then $\neg \Delta_3^1(\mathbb{M})$.
- **5** If $\omega^{\omega} \cap V = \omega^{\omega}$ then $\neg \Delta_3^1(\mathbb{S})$.

Solving the Δ^1_3 -diagram

Recall:

• L^* is a model where

- $\Sigma_2^1(\mathbb{P})$ holds for all \mathbb{P} , but
- there is a Σ_3^1 -good wellorder of the reals.

2 L^d is a model where

- $\forall r (\omega_1^{L[r]} < \omega_1)$, but
- there is a Σ_3^1 -good wellorder of the reals.

Yurii Khomskii (KGRC)

Cichoń's Diagram and Regularity Properties

15 July 2013 45 / 52

Yurii Khomskii (KGRC)

15 July 2013 45 / 52

◆ロ ▶ ◆ 昂 ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ● ●

Yurii Khomskii (KGRC)

Cichoń's Diagram and Regularity Properties

15 July 2013 47 / 52

Yurii Khomskii (KGRC)

Cichoń's Diagram and Regularity Properties

15 July 2013 47 / 52

◆ロ ▶ ◆ 昂 ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ● ●

Yurii Khomskii (KGRC)

Cichoń's Diagram and Regularity Properties

15 July 2013 49 / 52

900

Yurii Khomskii (KGRC)

Cichoń's Diagram and Regularity Properties

15 July 2013 49 / 52

990

Yurii Khomskii (KGRC)

Cichoń's Diagram and Regularity Properties

15 July 2013 49 / 52

990

Theorem (Fischer-Friedman-Kh)

Starting from ZFC, there is a model where $\Delta_3^1(\mathbb{P})$ holds for all \mathbb{P} but $\Sigma_3^1(\mathbb{B})$ and $\Sigma_3^1(\mathbb{C})$ fail.

Starting from ZFC + inaccessible, there is a model where $\Delta_4^1(\mathbb{P})$ holds for all \mathbb{P} but $\Sigma_4^1(\mathbb{B})$ and $\Sigma_4^1(\mathbb{C})$ fail.

Theorem (Fischer-Friedman-Kh)

Starting from ZFC, there is a model where $\Delta_3^1(\mathbb{P})$ holds for all \mathbb{P} but $\Sigma_3^1(\mathbb{B})$ and $\Sigma_3^1(\mathbb{C})$ fail.

Starting from ZFC + inaccessible, there is a model where $\Delta_4^1(\mathbb{P})$ holds for all \mathbb{P} but $\Sigma_4^1(\mathbb{B})$ and $\Sigma_4^1(\mathbb{C})$ fail.

Idea:

- For the first assertion, use the Σ_3^1 Raisonnier filter defined from the reals of *L*, and $\omega_1^L = \omega_1$.
- For the second assertion, use the Σ_4^1 Raisonnier filter defined using the reals of L^d and $\omega_1^{L^d} = \omega_1$.

• Is $\Sigma_3^1(\mathbb{P})$ and $\Delta_3^1(\mathbb{P})$ equivalent for Sacks, Miller and Laver? (we conjecture that they are not).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ()

51 / 52

- Is $\Sigma_3^1(\mathbb{P})$ and $\Delta_3^1(\mathbb{P})$ equivalent for Sacks, Miller and Laver? (we conjecture that they are not).
- 2 Solve the Δ_3^1 -diagram in ZFC.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Is $\Sigma_3^1(\mathbb{P})$ and $\Delta_3^1(\mathbb{P})$ equivalent for Sacks, Miller and Laver? (we conjecture that they are not).
- 2 Solve the Δ_3^1 -diagram in ZFC.
- 3 Solve the other diagrams.

↓ ∃ ▶ ∃ • ∩ Q (•

51 / 52

- Is Σ¹₃(ℙ) and Δ¹₃(ℙ) equivalent for Sacks, Miller and Laver? (we conjecture that they are not).
- 2 Solve the Δ_3^1 -diagram in ZFC.
- **3** Solve the other diagrams.
- Consistency strength of $\Sigma_3^1(\mathbb{L})$?

Thank you!

Yurii Khomskii yurii@deds.nl

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで