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■ f ∈ Z[x]: monic and separable of degree 2g + 1 ≥ 3.

■ X/Q: hyperelliptic curve of genus g, given by

y2 = f(x)

■ ∞ ∈ X(Q): point at infinity

■ Div0(X): divisors on X of degree 0

■ J/Q: Jacobian of X

■ p: prime of good ordinary reduction for X

■ logp: branch of the p-adic logarithm
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The Coleman-Gross p-adic height pairing is a symmetric bilinear pairing

h : Div0(X)× Div0(X) → Qp, where

■ h can be decomposed into a sum of local height pairings h =
∑

v hv
over all finite places v of Q.

■ hv(D,E) is defined for D,E ∈ Div0(X ×Qv) with disjoint support.

■ We have h(D, div(β)) = 0 for β ∈ k(X)×, so h is well-defined on
J × J .

■ The local pairings hv can be extended (non-uniquely) such that
h(D) := h(D,D) =

∑

v hv(D,D) for all D ∈ Div0(X).

■ We fix a certain extension and write hv(D) := hv(D,D).
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Consider

■ v 6= p prime,

■ D,E ∈ Div0(X ×Qv) with disjoint support,

■ X /Spec(Zv): proper regular model of X,

■ ( . )v: intersection pairing on X ,

■ D, E ∈ Div(X )⊗Q: extensions of D,E to X such that
(D . F )v = (E . F )v = 0 for all vertical divisors F ∈ Div(X ).

Then we have
hv(D,E) = −(D . E)v · logp(v).

■ Cf. the decomposition of the Néron-Tate height due to Faltings and
Hriljac.
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■ Xp := X ×Qp:

■ Fix a decomposition

H1

dR(Xp) = Ω1(Xp)⊕W, (1)

where W is isotropic with respect to the cup product pairing.

■ ωD: differential of the third kind on Xp such that

◆ Res(ωD) = D,

◆ ωD is normalized with respect to (1).

■ If D and E have disjoint support, hp(D,E) is the Coleman integral

hp(D,E) =

∫

E

ωD.
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■ ωi :=
xidx
2y

for i = 0, . . . , g − 1

■ {ω̄0, . . . , ω̄g−1}: basis of W dual to {ω0, . . . , ωg−1} with respect to the
cup product pairing.

■ τ(P ) := hp(P −∞) for P ∈ X(Qp)

Theorem 1 (Balakrishnan–Besser–M.)
We have

τ(P ) = −2

∫ P

∞

g−1
∑

i=0

ωiω̄i

■ The integral is an iterated Coleman integral, normalized to have constant
term 0 with respect to a certain choice of tangent vector at ∞.

■ The proof uses Besser’s p-adic Arakelov theory.
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Our second theorem is a generalization of the following result due to M. Kim:
Theorem (Kim).
Let X = E have genus 1 and rank 1 over Q such that the given model is
minimal and all Tamagawa numbers are 1. Then

∫ P

∞
ω0 xω0

(
∫ P

∞
ω0)2

,

normalized as above, is constant on non-torsion P ∈ E(Z).

Balakrishnan and Besser have given a simple proof of this result:

■ By Theorem 1 we have −2
∫ P

∞
ω0 xω0 = τ(P ).

■ One can show that h(P −∞) = τ(P ) for non-torsion P ∈ E(Z).

■ Both h(P −∞) and (
∫ P

∞
ω0)

2 are quadratic forms on E(Q)⊗Q.
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■ For i ∈ {0, . . . , g − 1} let fi(P ) =
∫ P

∞
ωi.

Theorem 2 (Balakrishnan–Besser–M.)
Suppose that the Mordell-Weil rank of J/Q is g and that the fi induce
linearly independent Qp-valued functionals on J(Q)⊗Q. Then we have:

(i) There exist constants αij ∈ Qp, i, j ∈ {0, . . . , g − 1} such that

ρ := τ −
∑

i≤j

αijfifj

only takes values on X(Z[1/p]) in an effectively computable finite set T .

(ii) If P ∈ X(Z[1/p]) reduces to a nonsingular point modulo every v 6= p,
then ρ(P ) = 0.

(iii) On each residue disk, ρ is given by a convergent power series.
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Sketch of proof.
Set ρ(P ) := −

∑

v 6=p hv(P −∞), so we have

h(P −∞) = hp(P −∞) +
∑

v 6=p

hv(P −∞) = τ(P )− ρ(P )

If the fi induce linearly independent functionals on J(Q)⊗Q, then the set
{fifj}0≤i≤j≤g−1 is a basis of the space of Qp-valued quadratic forms on
J(Q)⊗Q. Since h(P −∞) is also quadratic in P , we can write

h(P −∞) =
∑

i≤j

αijfi(P )fj(P ), αij ∈ Qp

and conclude
ρ(P ) = τ(P )−

∑

i≤j

αijfi(P )fj(P ).
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To prove (i) and (ii), we show that there is a global choice of a proper regular
model X of X such that for all v 6= p and P ∈ X(Q) \ {∞} we have

hv(P −∞) = (PX .∞X )v + δv(P ),

where

■ PX is the section in X (Z) corresponding to P ,

■ ∞X is the section in X (Z) corresponding to ∞,

■ δv(P ) only depends on which component PX intersects on Xv,

■ δv(P ) = 0 whenever PX intersects the same component as ∞X .

Now if P ∈ X(Z[1/p]), then we have (PX .∞X )v = 0, which finishes the
proof.
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We have Sage-code for the computation of the following objects:

■ single and double Coleman-integrals

■ hp(D,E)

The main tool is Kedlaya’s algorithm for the matrix of Frobenius.

We also have Magma-code for the computation of:

■ hv(D,E) for v 6= p

■ the set T

The algorithms rely on Gröbner bases and linear algebra.
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Example 1.

■ X : y2 = x3 − 3024x+ 70416: non-minimal model of “57a1”

■ X(Q) has rank 1 and trivial torsion.

■ p = 7 is a good ordinary prime.

■ Q = (60,−324) ∈ X(Q)

■ Compute

α00 =
h(Q−∞)
(

∫ Q

∞
w0

)2
.

■ Compute

T = {i · log7(2) + j · log7(3) : i ∈ {0, 2}, j ∈ {0, 2, 5/2}}.
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■ X : y2 = x3 − 3024x+ 70416

■ T = {i · log7(2) + j · log7(3) : i ∈ {0, 2}, j ∈ {0, 2, 5/2}}

There are 16 integral points on X; we have

P ρ(P )

(−48,±324) 2 log7(2) +
5

2
log7(3)

(−12,±324) 2 log7(2) + 2 log7(3)
(24,±108) 2 log7(2) + 2 log7(3)
(33,±81) 5

2
log7(3)

(40,±116) 2 log7(2)
(60,±324) 2 log7(2) +

5

2
log7(3)

(132,±1404) 2 log7(2) + 2 log7(3)
(384,±7452) 2 log7(2) +

5

2
log7(3)
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Example 2.

■ X : y2 = x3(x− 1)2 + 1

■ J(Q) has rank 2 and trivial torsion.

■ Q1 = (2,−3), Q2 = (1,−1), Q3 = (0, 1) ∈ X(Q) are the only integral
points on X up to involution (computed by M. Stoll).

■ Set D1 = Q1 −∞, D2 = Q2 −Q3, then

■ [D1] and [D2] are independent.

■ p = 11 is a good, ordinary prime.

■ Goal: Recover the integral points and prove that there are no others up
to a prescribed height bound.
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■ Compute
T = {0, 1/2 · log11(2), 2/3 · log11(2)}.

■ Compute the height pairings h(Di, Dj) and the Coleman integrals
∫

Di
ωk

∫

Dj
ωl and deduce the αij from (α00, α01, α11)

t =




∫

D1
ω0

∫

D1
ω0

∫

D1
ω0

∫

D1
ω1

∫

D1
ω1

∫

D1
ω1

∫

D1
ω0

∫

D2
ω0

∫

D1
ω0

∫

D2
ω1

∫

D1
ω1

∫

D2
ω1

∫

D2
ω0

∫

D2
ω0

∫

D2
ω0

∫

D2
ω1

∫

D2
ω1

∫

D2
ω1





−1



h(D1, D1)
h(D1, D2)
h(D2, D2)





■ Use power series expansions of τ and of the double and single Coleman
integrals to give a power series describing ρ in each residue disk.
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How can we express τ as a power series on a residue disk D?

■ Construct the dual basis {ω̄0, ω̄1} of W .

■ Fix a point P0 ∈ D.

■ Compute τ(P0) = hp(P0 −∞, P0 −∞) and use

τ(P ) = τ(P0)− 2

g−1
∑

i=0

(∫ P

P0

ωiω̄i +

∫ P

P0

ωi

∫ P0

∞

ω̄i

)

to give a power series describing τ in the residue disk.

■ The integral points P ∈ D are solutions to

ρ(P ) = τ(P )−
∑

αijfi(P )fj(P ) ∈ T.
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For example, on the residue disk containing (0, 1), the only solutions to
ρ(P ) ∈ T modulo O(1111) have x-coordinate O(1111) or

4·11+7·112+9·113+7·114+9·116+8·117+118+4·119+10·1110+O(1111)

Here are the recovered integral points and their corresponding ρ values:

P ρ(P )

(2,±3) 2

3
log11(2)

(1,±1) 1

2
log11(2)

(0,±1) 2

3
log11(2)
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What next?

■ Further explore the connection with Kim’s nonabelian Chabauty.

■ Theorem 2 also yields a bound on the number of integral points on X,
but the bound needs computations of certain Coleman integrals.
Improve on this to get a Coleman-like bound which only depends on
simpler numerical data.

■ Try to come up with an efficient algorithm to compute all integral points
on X.

■ Extend Theorems 1 and 2 to more general classes of curves, e. g.
general hyperelliptic curves or superelliptic curves.
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