p-adic heights and integral points on hyperelliptic curves

Steffen Müller Universität Hamburg joint with Jennifer Balakrishnan and Amnon Besser

Rational Points – Geometric, Analytic and Explicit Approaches University of Warwick

Tuesday, May 28, 2013

Notation

p-adic heights <code>Results</code> <code>Examples</code>

- $f \in \mathbb{Z}[x]$: monic and separable of degree $2g + 1 \ge 3$.
- **\blacksquare** X/\mathbb{Q} : hyperelliptic curve of genus g, given by

$$y^2 = f(x)$$

- $\blacksquare \ \infty \in X(\mathbb{Q}): \text{ point at infinity}$
- $Div^0(X)$: divisors on X of degree 0
- $\blacksquare \ J/\mathbb{Q}: \text{ Jacobian of } X$
- \blacksquare p: prime of good ordinary reduction for X
- \blacksquare log_p: branch of the *p*-adic logarithm

Coleman-Gross *p*-adic height pairing

p-adic heights Results Examples

The Coleman-Gross *p*-adic height pairing is a symmetric bilinear pairing

$$h: \operatorname{Div}^0(X) \times \operatorname{Div}^0(X) \to \mathbb{Q}_p, \quad \text{where}$$

- h can be decomposed into a sum of local height pairings $h = \sum_{v} h_{v}$ over all finite places v of \mathbb{Q} .
- $h_v(D, E)$ is defined for $D, E \in \text{Div}^0(X \times \mathbb{Q}_v)$ with disjoint support.
- We have $h(D, \operatorname{div}(\beta)) = 0$ for $\beta \in k(X)^{\times}$, so h is well-defined on $J \times J$.
- The local pairings h_v can be extended (non-uniquely) such that $h(D) := h(D, D) = \sum_v h_v(D, D)$ for all $D \in \text{Div}^0(X)$.
- We fix a certain extension and write $h_v(D) := h_v(D, D)$.

Local heights away from \boldsymbol{p}

p-adic heights Results Examples

Consider

 $\blacksquare \ v \neq p \text{ prime,}$

- \blacksquare $D, E \in \text{Div}^0(X \times \mathbb{Q}_v)$ with disjoint support,
- $\blacksquare \mathcal{X} / \operatorname{Spec}(\mathbb{Z}_v)$: proper regular model of X,
- \blacksquare (.)_v: intersection pairing on \mathcal{X} ,
- $\square \mathcal{D}, \mathcal{E} \in \mathsf{Div}(\mathcal{X}) \otimes \mathbb{Q}: \text{ extensions of } D, E \text{ to } \mathcal{X} \text{ such that} \\ (\mathcal{D} \cdot F)_v = (\mathcal{E} \cdot F)_v = 0 \text{ for all vertical divisors } F \in \mathsf{Div}(\mathcal{X}).$

Then we have

$$h_v(D, E) = -(\mathcal{D} \cdot \mathcal{E})_v \cdot \log_p(v).$$

Cf. the decomposition of the Néron-Tate height due to Faltings and Hriljac.

Local heights at \boldsymbol{p}

p-adic heights Results Examples

- $\blacksquare X_p := X \times \mathbb{Q}_p:$
- Fix a decomposition

$$H^1_{\mathrm{dR}}(X_p) = \Omega^1(X_p) \oplus W, \tag{1}$$

where W is isotropic with respect to the cup product pairing.

 $\blacksquare \omega_D$: differential of the third kind on X_p such that

- $\operatorname{Res}(\omega_D) = D$,
- ω_D is normalized with respect to (1).

If D and E have disjoint support, $h_p(D, E)$ is the Coleman integral

$$h_p(D,E) = \int_E \omega_D.$$

Theorem 1

p-adic heights Results Examples

•
$$\omega_i := \frac{x^i dx}{2y}$$
 for $i = 0, \dots, g-1$

- $\{\bar{\omega}_0, \ldots, \bar{\omega}_{g-1}\}$: basis of W dual to $\{\omega_0, \ldots, \omega_{g-1}\}$ with respect to the cup product pairing.
- $\blacksquare \ \tau(P) := h_p(P \infty) \text{ for } P \in X(\mathbb{Q}_p)$

Theorem 1 (Balakrishnan–Besser–M.)

We have

$$\tau(P) = -2 \int_{\infty}^{P} \sum_{i=0}^{g-1} \omega_i \bar{\omega}_i$$

- The integral is an iterated Coleman integral, normalized to have constant term 0 with respect to a certain choice of tangent vector at ∞.
 - The proof uses Besser's *p*-adic Arakelov theory.

A result of Kim

p-adic heights **Results** Examples

Our second theorem is a generalization of the following result due to M. Kim: **Theorem (Kim).**

Let X = E have genus 1 and rank 1 over \mathbb{Q} such that the given model is minimal and all Tamagawa numbers are 1. Then

 $\frac{\int_{\infty}^{P}\omega_0 \, x\omega_0}{(\int_{\infty}^{P}\omega_0)^2}\,,$

normalized as above, is constant on non-torsion $P \in E(\mathbb{Z})$.

Balakrishnan and Besser have given a simple proof of this result:

• By Theorem 1 we have $-2\int_{\infty}^{P}\omega_0 x\omega_0 = \tau(P)$.

• One can show that $h(P - \infty) = \tau(P)$ for non-torsion $P \in E(\mathbb{Z})$.

■ Both $h(P - \infty)$ and $(\int_{\infty}^{P} \omega_0)^2$ are quadratic forms on $E(\mathbb{Q}) \otimes \mathbb{Q}$.

Theorem 2

p-adic heights Results Examples

• For
$$i \in \{0, \ldots, g-1\}$$
 let $f_i(P) = \int_{\infty}^{P} \omega_i$.

Theorem 2 (Balakrishnan–Besser–M.)

Suppose that the Mordell-Weil rank of J/\mathbb{Q} is g and that the f_i induce linearly independent \mathbb{Q}_p -valued functionals on $J(\mathbb{Q}) \otimes \mathbb{Q}$. Then we have:

(i) There exist constants $\alpha_{ij} \in \mathbb{Q}_p, i, j \in \{0, \dots, g-1\}$ such that

$$\rho := \tau - \sum_{i \le j} \alpha_{ij} f_i f_j$$

only takes values on $X(\mathbb{Z}[1/p])$ in an effectively computable finite set T.

(ii) If $P \in X(\mathbb{Z}[1/p])$ reduces to a nonsingular point modulo every $v \neq p$, then $\rho(P) = 0$.

(iii) On each residue disk, ρ is given by a convergent power series.

Proof of Theorem 2

p-adic heights Results Examples

Sketch of proof. Set $\rho(P) := -\sum_{v \neq p} h_v(P - \infty)$, so we have

$$h(P - \infty) = h_p(P - \infty) + \sum_{v \neq p} h_v(P - \infty) = \tau(P) - \rho(P)$$

If the f_i induce linearly independent functionals on $J(\mathbb{Q}) \otimes \mathbb{Q}$, then the set $\{f_i f_j\}_{0 \le i \le j \le g-1}$ is a basis of the space of \mathbb{Q}_p -valued quadratic forms on $J(\mathbb{Q}) \otimes \mathbb{Q}$. Since $h(P - \infty)$ is also quadratic in P, we can write

$$h(P - \infty) = \sum_{i \le j} \alpha_{ij} f_i(P) f_j(P), \quad \alpha_{ij} \in \mathbb{Q}_p$$

and conclude

$$\rho(P) = \tau(P) - \sum_{i \le j} \alpha_{ij} f_i(P) f_j(P).$$

Proof of Theorem 2 continued

p-adic heights **Results** Examples

To prove (i) and (ii), we show that there is a global choice of a proper regular model \mathcal{X} of X such that for all $v \neq p$ and $P \in X(\mathbb{Q}) \setminus \{\infty\}$ we have

$$h_v(P-\infty) = (P_{\mathcal{X}} \cdot \infty_{\mathcal{X}})_v + \delta_v(P),$$

where

- \blacksquare $P_{\mathcal{X}}$ is the section in $\mathcal{X}(\mathbb{Z})$ corresponding to P,
- $\blacksquare \infty_{\mathcal{X}}$ is the section in $\mathcal{X}(\mathbb{Z})$ corresponding to ∞ ,
- \blacksquare $\delta_v(P)$ only depends on which component $P_{\mathcal{X}}$ intersects on \mathcal{X}_v ,
- $\bullet \delta_v(P) = 0 \text{ whenever } P_{\mathcal{X}} \text{ intersects the same component as } \infty_{\mathcal{X}}.$

Now if $P \in X(\mathbb{Z}[1/p])$, then we have $(P_{\mathcal{X}} \cdot \infty_{\mathcal{X}})_v = 0$, which finishes the proof.

p-adic heights Results Examples

We have Sage-code for the computation of the following objects:

- single and double Coleman-integrals
- $\blacksquare h_p(D, E)$

The main tool is Kedlaya's algorithm for the matrix of Frobenius.

We also have Magma-code for the computation of:

$$\blacksquare h_v(D,E) \text{ for } v \neq p$$

 \blacksquare the set T

The algorithms rely on Gröbner bases and linear algebra.

p-adic heights Results Examples

Example 1.

■ $X: y^2 = x^3 - 3024x + 70416$: non-minimal model of "57a1"

 \blacksquare $X(\mathbb{Q})$ has rank 1 and trivial torsion.

• p = 7 is a good ordinary prime.

$$\blacksquare \ Q = (60, -324) \in X(\mathbb{Q})$$

■ Compute

$$\alpha_{00} = \frac{h(Q - \infty)}{\left(\int_{\infty}^{Q} w_0\right)^2}.$$

Compute

$$T = \{i \cdot \log_7(2) + j \cdot \log_7(3) : i \in \{0, 2\}, j \in \{0, 2, 5/2\}\}.$$

Example 1 continued

p-adic heights Results Examples

$$\blacksquare \ X: y^2 = x^3 - 3024x + 70416$$

 $\blacksquare T = \{i \cdot \log_7(2) + j \cdot \log_7(3) : i \in \{0, 2\}, j \in \{0, 2, 5/2\}\}$

There are 16 integral points on X; we have

P	ho(P)
$(-48, \pm 324)$	$2\log_7(2) + \frac{5}{2}\log_7(3)$
$(-12,\pm 324)$	$2\log_7(2) + 2\log_7(3)$
$(24, \pm 108)$	$2\log_7(2) + 2\log_7(3)$
$(33, \pm 81)$	$rac{5}{2}\log_7(3)$
$(40, \pm 116)$	$\overline{2}\log_7(2)$
$(60, \pm 324)$	$2\log_7(2) + \frac{5}{2}\log_7(3)$
$(132, \pm 1404)$	$2\log_7(2) + \overline{2}\log_7(3)$
$(384,\pm7452)$	$2\log_7(2) + \frac{5}{2}\log_7(3)$

p-adic heights Results Examples

Example 2.

- $\blacksquare X: y^2 = x^3(x-1)^2 + 1$
- $J(\mathbb{Q})$ has rank 2 and trivial torsion.
- $Q_1 = (2, -3), Q_2 = (1, -1), Q_3 = (0, 1) \in X(\mathbb{Q})$ are the only integral points on X up to involution (computed by M. Stoll).

• Set
$$D_1 = Q_1 - \infty$$
, $D_2 = Q_2 - Q_3$, then

- \blacksquare $[D_1]$ and $[D_2]$ are independent.
- \blacksquare p = 11 is a good, ordinary prime.
- Goal: Recover the integral points and prove that there are no others up to a prescribed height bound.

Example 2 continued

p-adic heights Results Examples

Compute

 $T = \{0, 1/2 \cdot \log_{11}(2), 2/3 \cdot \log_{11}(2)\}.$

■ Compute the height pairings $h(D_i, D_j)$ and the Coleman integrals $\int_{D_i} \omega_k \int_{D_j} \omega_l$ and deduce the α_{ij} from $(\alpha_{00}, \alpha_{01}, \alpha_{11})^t =$ $\begin{pmatrix} \int_{D_1} \omega_0 \int_{D_1} \omega_0 & \int_{D_1} \omega_0 \int_{D_1} \omega_1 & \int_{D_1} \omega_1 \int_{D_1} \omega_1 \\ \int_{D_1} \omega_0 \int_{D_2} \omega_0 & \int_{D_1} \omega_0 \int_{D_2} \omega_1 & \int_{D_1} \omega_1 \int_{D_2} \omega_1 \\ \int_{D_2} \omega_0 \int_{D_2} \omega_0 & \int_{D_2} \omega_0 \int_{D_2} \omega_1 & \int_{D_2} \omega_1 \int_{D_2} \omega_1 \\ h(D_2, D_2) \end{pmatrix}$

Use power series expansions of τ and of the double and single Coleman integrals to give a power series describing ρ in each residue disk.

Example 2 continued

p-adic heights Results Examples

How can we express τ as a power series on a residue disk \mathcal{D} ?

- Construct the dual basis $\{\bar{\omega}_0, \bar{\omega}_1\}$ of W.
- **Fix a point** $P_0 \in \mathcal{D}$.
- Compute $\tau(P_0) = h_p(P_0 \infty, P_0 \infty)$ and use

$$\tau(P) = \tau(P_0) - 2\sum_{i=0}^{g-1} \left(\int_{P_0}^P \omega_i \bar{\omega}_i + \int_{P_0}^P \omega_i \int_{\infty}^{P_0} \bar{\omega}_i \right)$$

to give a power series describing τ in the residue disk.

 \blacksquare The integral points $P \in \mathcal{D}$ are solutions to

$$\rho(P) = \tau(P) - \sum \alpha_{ij} f_i(P) f_j(P) \in T.$$

Example 2 continued

p-adic heights Results Examples

For example, on the residue disk containing (0,1), the only solutions to $\rho(P) \in T$ modulo $O(11^{11})$ have x-coordinate $O(11^{11})$ or

 $4 \cdot 11 + 7 \cdot 11^2 + 9 \cdot 11^3 + 7 \cdot 11^4 + 9 \cdot 11^6 + 8 \cdot 11^7 + 11^8 + 4 \cdot 11^9 + 10 \cdot 11^{10} + O(11^{11})$

Here are the recovered integral points and their corresponding ρ values:

$$\begin{array}{|c|c|c|} P & \rho(P) \\ \hline (2, \pm 3) & \frac{2}{3} \log_{11}(2) \\ (1, \pm 1) & \frac{1}{2} \log_{11}(2) \\ (0, \pm 1) & \frac{2}{3} \log_{11}(2) \end{array}$$

What next?

- Further explore the connection with Kim's nonabelian Chabauty.
- Theorem 2 also yields a bound on the number of integral points on X, but the bound needs computations of certain Coleman integrals. Improve on this to get a Coleman-like bound which only depends on simpler numerical data.
- Try to come up with an efficient algorithm to compute all integral points on X.
- Extend Theorems 1 and 2 to more general classes of curves, e. g. general hyperelliptic curves or superelliptic curves.