
Computing canonical heights using

arithmetic intersection theory

Jan Steffen Müller (Universität Hamburg)

9.12.2011



Kummer variety
Heights Arithmetic intersection theory Computational arithmetic intersection theory Examples, timings and outlook

Jan Steffen Müller Computing canonical heights – 2 / 34

Notation.

■ A/Q: abelian variety,

■ g = dim(A),

■ K = A/{±1}: Kummer variety of A.

Facts.

■ K is a projective variety.

■ K can be embedded into P2g−1.
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■ Suppose we can construct an explicit embedding K →֒ P2g−1.

■ Let κ : A −→→ K →֒ P2g−1.

Definition.
The naive height h on A is defined by h(P ) := h(κ(P )), where the latter is
the usual height on P2g−1.

Fact.
The naive height is quadratic up to a bounded function.

Definition.
The canonical (or Néron-Tate) height ĥ on A is defined by

ĥ(P ) := lim
n→∞

4−nh(2nP ).
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■ T : Torsion subgroup of A(Q).

■ Λ := A(Q)/T ∼= Zr, where r = Rank(A(Q)).

Properties.

(a) ĥ is a positive definite quadratic form on Λ and Λ⊗Z R.

(b) ĥ− h is bounded.

(c) {P ∈ A(Q) : ĥ(P ) ≤ B} is finite for any B ∈ R.

(c) (Λ, ĥ) defines a lattice in Λ⊗Z R.

Question.
Given A and P ∈ A(Q), can we compute ĥ(P ) in practice?
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Given generators of a finite index subgroup of Λ, we can use the lattice
structure to find generators of A(Q) assuming we have

■ a bound on supP∈A(Q) |ĥ(P )− h(P )|,

■ an algorithm for the computation of ĥ,

■ a method for computing {P ∈ A(Q) : h(P ) ≤ B} for a given bound B.
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■ P1, . . . , Pr: generators of Λ,

■ mij :=
ĥ(Pi+Pj)−ĥ(Pi)−ĥ(Pj)

2 for 1 ≤ i, j ≤ r,

■ R = det ((mij)1≤i,j≤r) is called the regulator of A.

R appears in the statement of the Birch and Swinnerton-Dyer conjecture for
abelian varieties.

So we need a method to compute R in order to collect empirical evidence for
the conjecture.
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Idea.
Decompose ĥ(P ) = h(P ) +

∑
v µv(P ), where the µv are certain bounded

local error functions (due to Néron) that vanish for almost all v. Then
compute h(P ) and each µv(P ).

This strategy works for

■ g = 1 (Néron, Tate, Silverman, Bost-Mestre)

■ g = 2 (Flynn-Smart, Stoll, Uchida, M.)

For the computation of h(P ) and µv(P ) we need

■ an explicit embedding K →֒ P2g−1,

■ defining equations for the image of K,

■ an explicit duplication map on the image of K.
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Problem.
The explicit arithmetic of K becomes increasingly complicated for larger g.

For g = 3, A = Jac(C), C hyperelliptic, we have

■ an explicit embedding K →֒ P2g−1 (Stubbs),

■ defining equations for the image of K (Stubbs, M.),

■ a map δ on the image of K (Duquesne, M.) that is conjectured to be
the duplication map.

We currently cannot prove the correctness of δ due to the complexity of the
algebra involved.
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■ C/Q: smooth projective geometrically irreducible curve of genus g > 0,

■ A = Jac(C).

Idea.
Instead of working on A or K, try to pull the computation of ĥ back to C.

■ Can compute ĥ using arithmetic intersection theory.

■ Conjectured by Arakelov,

■ proved by Hriljac and Faltings.
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Definition. A model π : X → S of C over S = Spec(Z) is a 2-dimensional
flat S-scheme whose generic fiber is isomorphic to C.
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Suppose X is a proper regular model.

On such models, we have an intersection multiplicity as follows:

■ D, E : effective Q-rational divisors on X without common component.

■ For x ∈ X let ID,x, IE,x be defining ideals of D, E in x.

■ (D · E)x := ℓOX ,x
(OX ,x/ID,x + IE,x).

■ (D · E)p :=
∑

x∈Xp
(D · E)x[k(x) : Fp] is called the intersection

multiplicity of D and E above p.

■ (D · E)fin :=
∑

p(D · E)p log p is called the (finite) intersection
multiplicity of D and E .

■ Can extend the pairings above by linearity (to arbitrary Q-rational
divisors without common component).
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■ A divisor D ∈ Div(X ) is called horizontal if π(D) = S and vertical if
π(D) is a finite union of points.

■ For D ∈ Div(C)(Q) we write DX for the Zariski closure of D on X
(with multiplicities).

Lemma (Hriljac).
Suppose D ∈ Div(C)(Q) has degree zero. Then there exists a vertical
Q-divisor Φ(D) =

∑
pΦp(D) on X such that

(DX +Φ(D) · F)fin = 0

for any vertical divisor F on X .
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Problem.
The intersection multiplicity on X as defined above does not respect linear
equivalence.

Reason (among others).
The base curve S is not complete.

Idea (Arakelov).

■ “Complete” S by adding a point ∞ to S.

■ Add a formal fiber X∞, corresponding to the Riemann surface C(C).

■ Amend the intersection multiplicity using information on X∞.
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■ X: compact Riemann surface,

■ D ∈ Div(X),

■ µ: volume form on X such that
∫
X
µ = 1.

Definition.
A Green’s function on X with respect to D (and µ) is a smooth function
gD : X \ supp(D) → R such that

■ gD has a logarithmic singularity along supp(D),

■ ddcgD = deg(D)µ outside of supp(D),

■
∫
X
gDµ = 0.
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■ X : proper regular model of C over S

■ D, E : Q-rational divisors on X without common component,

■ gD: Green’s function on C(C) with respect to D ⊗ C and any volume
form normalized as above,

■ E ⊗ C =
∑

i ni(Qi).

Definition (Arakelov).
Let

(D · E)∞ := gD(E) :=
∑

i

nigD(Qi).

Then
(D · E) := (D · E)fin + (D · E)∞

is called the arithmetic intersection multiplicity of D and E .
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Proposition (Arakelov).
(− · −) respects linear equivalence.

Now we can finally state the connection to canonical heights.

■ D,E ∈ Div(C)(Q): linearly equivalent and of degree zero,

■ P ∈ A: corresponding to the class of D and E.

Theorem 1 (Faltings, Hriljac).
We have

ĥ(P ) = −(DX +Φ(D) · EX ).
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Suppose we are given P ∈ A(Q) and D,E of degree zero and relatively
prime, both representing P .

In order to use Theorem 1 to compute ĥ(P ), we need to be able to perform
the following steps:

(i) Compute gD(E).

(ii) Compute a proper regular model X of C over S.

(iii) For each p such that Xp is reducible, find (Φp(D) ·EX )p.

(iv) Determine a finite set of primes U containing {p : (DX · EX )p 6= 0}.

(v) For each p ∈ U compute (DX · EX )p.
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Since we only deal with divisors of degree zero, we only need a Green’s
function up to an additive constant. Moreover, the value gD(E) does not
depend on the volume form.

Green’s functions up to additive constants can be obtained by pulling back
theta functions with respect to the analytic Jacobian (conjectured by
Arakelov, proved by Hriljac).
Let

■ ι : C(C) →֒ A(C): any embedding,

■ τ ∈ hg such that A(C) ∼= Cg/Zg ⊕ τZg,

■ a = (12 , . . . ,
1
2), b = ( g2 ,

g−1
2 . . . , 1, 12) ∈

1
2Z

g,

■ For z ∈ Cg let

θa,b(z) =
∑

m∈Zg

exp

(
2πi

(
1

2
(m+ a)T τ(m+ a) + (m+ a)T (z + b)

))
.
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Suppose that E = E1 − E2, where E1, E2 ∈ Div(C) are non-special divisors
with disjoint support.

Let D1 =
∑d

i=1(Pi) and D2 =
∑d

i=1(Qi) be two effective divisors such that
supp(Ei) ∩ supp(Dj) = ∅ for i, j ∈ {1, 2}.

Proposition.
If D = D1 −D2, then gD(E) is equal to

− log

d∏

i=1

|θa,b(z(ι(Pi))− z(ι(E1))) · θa,b(z(ι(Qi))− z(ι(E2)))|

|θa,b(z(ι(Pi))− z(ι(E2))) · θa,b(z(ι(Qi))− z(ι(E1)))|

− 2π
d∑

i=1

Im(z(ι(E1)− ι(E2)))
T Im(τ)−1 Im(z(ι(Pi))− z(ι(Qi))),

where for any Q ∈ A the tuple z(Q) ∈ Cg is any complex uniformiser for Q.
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So we need to be able to compute

■ τ ∈ hg given C,

■ ι(P ) given P ∈ C(C),

■ θa,b(z) given z ∈ Cg.

All of this is implemented in Magma (due to van Wamelen) in the
hyperelliptic case.

The necessary algorithms work in greater generality and are currently being
implemented in Sage by Deconinck et al.
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Since 2009, Magma can compute a desingularization X of the closure of C
over S in the strong sense (due to Donnelly).

The implementation only uses blow-ups, avoiding the need to perform explicit
normalizations.

This can be shown to always terminate using recent work of Cossart, Jannsen
and Saito.

In fact, Magma computes (an affine cover of) a proper regular model of
C × Spec(Qp) over Spec(Zp) for each bad prime p separately. This is
sufficient for our purposes.
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To compute (Φp(D) · EX )p for a prime p such that Xp is reducible, we need

■ the Moore-Penrose inverse of the intersection matrix Mp of Xp,

■ (DX · Γ) and (EX · Γ) for each irreducible componenent Γ of Xp.

Since Mp and defining ideals for all Γ are returned by Magma, (1) and (2)
can be computed quite easily, assuming that we have local defining ideals for
DX and EX .
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■ C =
⋃

i C
i affine cover, where

■ Ci = Spec(Q[x]/ICi), ICi ideal in Z[x].

■ D,E ∈ Div(C)(Q) effective and with disjoint support.

■ For each i, let ID,i, IE,i ⊂ Z[x] be defining ideals of D, E on Ci,
respectively.

■ For each i, let Ii := ICi + ID,i + IE,i.
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Lemma.
If p is a prime such that (DX · EX )p 6= 0, then we have

1 /∈ Ĩi ⊂ Fp[x]

for some i.

We can find all such p by computing

■ a Gröbner bases Bi of Ii over Z for each i,

■ the factorization of the unique integer qi ∈ Bi.
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■ p: prime such that (DX · EX )p 6= 0 is possible.

■ X × Spec(Zp) =
⋃

j X
j: affine cover, where

■ X j = Spec(Zp[x]/IXj ).

We make the following assumptions:

■ DX ∩ EX ∩ Xp ⊂ X j for some j.

■ We have defining ideals IDX ,j , IEX ,j ⊂ Zp[x] on X j of DX , EX ,
respectively.



Computing non-archimedean intersections
Heights Arithmetic intersection theory Computational arithmetic intersection theory Examples, timings and outlook

Jan Steffen Müller Computing canonical heights – 27 / 34

Proposition.
We have

(DX · EX )p = log |Zp[x]/(IX j + IDX ,j + IEX ,j)|.

■ The right hand side can be computed at once if we can find a Gröbner
basis of IX j + IDX ,j + IEX ,j over Zp.

■ Strategy: We find suitable defining ideals ID,i, IE,i of D,E, respectively,
and lift them through the blow-up process.

■ But to satisfy our assumptions, we might have to decompose D and E
into prime divisors over Zp or even Znr

p .
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Suppose C is the smooth projective model of C1 : y2 = f(x), f ∈ Z[x]
separable.

Example 1

■ D = ((x1, y1)), E = ((x2, y2)),

■ p: good prime,

■ X × Spec(Zp): Zariski closure of C over Spec(Zp).

Then we have

(DX · EX )p = min{ordp(x1 − x2), ordp(y1 − y2)} log p.
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Example 2

■ C as above,

■ D =
∑

j((xj, yj)), ordp(xj) ≥ 0 for all j,

■ a(x) =
∏

j(x− xj),

■ b(x) ∈ Zp[x] such that yj = b(xj) for all j.

Then we can use the defining ideal

ID,1 = (a(x), y − b(x)).

In general need to decompose D into prime divisors.

For hyperelliptic curves, this is possible using univariate factorization (of a(x)
over Zp or Znr

p ).
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We have a complete implementation in Magma for hyperelliptic curves over
number fields, to be included in the next Magma distribution
(December 2011).

A similar algorithm was found independently by D. Holmes.

A formal complexity analysis is difficult, since the algorithm uses external
subroutines whose complexity has not been analyzed yet.

■ The algorithm to compute the θ-function is exponential in g, but ok for
g ≤ 10.

■ We only need Gröbner bases of zero-dimensional ideals with at most 5
generators in at most 3 variables. This is polynomial in D3, where D is
the maximal degree of the generators (Hashemi-Lazard).

■ If the divisors are represented by ideals whose generators have very large
coefficients, the computation might break down because of the integer
factorization required.
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■ Cd: smooth projective model of y2 = xd + 3x2 + 1,

■ P = [(0, 1)− (0,−1)] ∈ Jac(Cd).

■ The computations were done using a 3.00 GHz Xeon processor.

d genus ĥ(P ) arch. time nonarch. time

5 2 1.20910894883943045491548486513 3.51s 0.33s
7 3 1.31935353209873515158774224282 6.70s 0.34s
9 4 1.39237255678179422540594853290 12.65s 0.87s
11 5 1.44187308116714103129667604112 32.30s 1.67s
13 6 1.47679608841931245229396457463 120.51s 2.99s
15 7 1.50265701979128671544005708236 791.14s 5.17s
17 8 1.52254076352483838532148827258 4729.03s 8.95s
19 9 1.53829882683402848666502818888 62535.55s 14.20s
21 10 1.55109127084768378637549292754 280731.59s 21.35s
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■ Now consider multiples of P = [(0, 1)− (0,−1)] ∈ Jac(C5).

■ The computation does not terminate for n = 10 because of the integer
factorization.

n ĥ(nP ) arch. time nonarch. time

1 1.20910894883943045491548486513 3.00s 0.31s
2 4.83643579535772181966193946057 3.15s 0.01s
3 10.8819805395548740942393637862 2.93s 0.21s
4 19.3457431814308872786477578421 3.28s 0.02s
5 30.2277237209857613728871216281 3.11s 0.31s
6 43.5279221582194963769574551447 3.29s 0.11s
7 59.2463384931320922908587583915 3.47s 0.34s
8 77.3829727257235491145910313685 3.90s 0.45s
9 97.9378248559938668481542740752 4.31s 1.02s
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Suppose A/Q is a modular Jacobian and p is a prime of good ordinary
reduction.

Combined with an algorithm for explicit Coleman integration due to J.
Balakrishnan, the non-archimedean part of our algorithm can be used to
compute p-adic heights (due to Néron, Mazur-Tate, Schneider,
Coleman-Gross,...) on A.

Current project (joint with J. Balakrishnan and W. Stein):

■ Formulate and gather empirical evidence for a generalization of the
p-adic Birch and Swinnerton-Dyer-type conjecture for elliptic curves due
to Mazur-Tate-Teitelbaum to general modular abelian varieties.

■ Need to compute p-adic regulators for this.
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A generalization of the canonical heights algorithm to other types of curves
needs

(a) implementations of the (existing) algorithms to compute the
archimedean data;

(b) a method to decompose divisors over local fields.

Note that (b) is not an issue if the divisors in question are pointwise
Q-rational (or pointwise Qp-rational for all relevant p).
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