p-adic heights and integral points on hyperelliptic curves

Steffen Müller Universität Hamburg joint with Jennifer Balakrishnan and Amnon Besser

> Heights and Moduli Spaces Lorentz Center, Leiden University

> > Tuesday, June 11, 2013

Notation

Introduction *p*-adic heights Example Outlook

- $f \in \mathbb{Z}[x]$: monic and separable of degree $2g + 1 \ge 3$.
- **\blacksquare** X/\mathbb{Q} : hyperelliptic curve of genus g, given by

$$y^2 = f(x)$$

- $\blacksquare \ O \in X(\mathbb{Q}): \text{ point at infinity}$
- $\blacksquare \mathcal{U} = \operatorname{Spec} \left(\mathbb{Z}[x, y] / (y^2 f(x)) \right)$
- $Div^0(X)$: divisors on X of degree 0
- $\blacksquare J/\mathbb{Q}: \text{ Jacobian of } X$
- $\blacksquare \ r = \operatorname{rank}(J/\mathbb{Q})$

Chabauty

Introduction *p*-adic heights Example Outlook

 \blacksquare p: prime of good ordinary reduction for X

•
$$\omega_i = rac{x^i dx}{2y}$$
 for $i = 0, \dots, g-1$

•
$$f_i(P) = \int_O^P \omega_i \text{ for } P \in X(\overline{\mathbb{Q}_p})$$

Theorem (Chabauty, 1941).

Suppose that $g \ge 2$ and r < g. Then there exist $\alpha_0, \ldots, \alpha_{g-1} \in \mathbb{Q}_p$, not all equal to 0, such that a-1

$$\rho(P) = \sum_{i=0}^{g-1} \alpha_i f_i(P)$$

satisfies

•
$$\rho(P) = 0$$
 for all $P \in X(\mathbb{Q})$;

for every $\tilde{P}_0 \in \tilde{X}(\overline{\mathbb{F}_p})$, the function ρ is given by a convergent power series on the residue disk $\operatorname{red}^{-1}(\tilde{P}_0) \subset X(\overline{\mathbb{Q}_p})$.

A result of Kim

Introduction *p*-adic heights Example Outlook

An explicit version of Chabauty's Theorem due to Coleman can often be used to find $X(\mathbb{Q})$ in practice.

Question. Can we remove or weaken the condition r < g?

Theorem (Kim, 2010). Let X have genus 1 and rank 1 over \mathbb{Q} such that the given equation is minimal and all Tamagawa numbers are 1. Then there is a function $\rho: X(\mathbb{Q}_p) \to \mathbb{Q}_p$ such that

•
$$\rho(P) = 0$$
 for all non-torsion $P \in \mathcal{U}(\mathbb{Z})$;

• on each residue disk of X/\mathbb{Q}_p , ρ is given by a convergent power series.

■ The following result generalizes Kim's theorem.

Theorem I (Balakrishnan–Besser–M.)

Suppose that r = g and that the f_i induce linearly independent \mathbb{Q}_p -valued functionals on $J(\mathbb{Q}) \otimes \mathbb{Q}$. Then we have:

- (i) There exist a function $\rho: X(\mathbb{Q}_p) \to \mathbb{Q}_p$ which only takes values on $\mathcal{U}(\mathbb{Z}[1/p])$ in an effectively computable finite set T.
- (ii) If $P \in \mathcal{U}(\mathbb{Z}[1/p])$ reduces to a nonsingular point modulo every $v \neq p$, then $\rho(P) = 0$.
- (iii) On each residue disk, ρ is given by a convergent power series.

For the proof, we use p-adic heights.

Coleman-Gross *p*-adic height pairing

Introduction *p*-adic heights Example Outlook

For every finite place v of \mathbb{Q} and $D, E \in \text{Div}^0(X \times \mathbb{Q}_v)$ with disjoint support, one can define a symmetric bilinear \mathbb{Q}_p -valued pairing $h_v(D, E)$, the local height pairing at v, such that if $D, E \in \text{Div}^0(X)$ have disjoint support, then

 $\blacksquare h_v(D \times \mathbb{Q}_v, E \times \mathbb{Q}_v) \neq 0 \text{ for only finitely many } v;$

such that if $D, E \in Div^0(X)$ have disjoint support, then

- $\blacksquare h_v(D \times \mathbb{Q}_v, E \times \mathbb{Q}_v) \neq 0 \text{ for only finitely many } v;$
- we have $\sum_{v} h_v(D \times \mathbb{Q}_v, E \times \mathbb{Q}_v) = 0$ if $E = \operatorname{div}(\beta)$ for some $\beta \in k(X)^*$.

The Coleman-Gross p-adic height pairing is the symmetric bilinear pairing

$$h: \mathsf{Div}^{0}(X) \times \mathsf{Div}^{0}(X) \to \mathbb{Q}_{p}$$
$$(D, E) \mapsto \sum_{v} h_{v}(D \times \mathbb{Q}_{v}, E \times \mathbb{Q}_{v}).$$

Coleman-Gross *p*-adic height pairing

Introduction *p*-adic heights Example Outlook

For every finite place v of \mathbb{Q} and $D, E \in \text{Div}^0(X \times \mathbb{Q}_v)$ with disjoint support, one can define a symmetric bilinear \mathbb{Q}_p -valued pairing $h_v(D, E)$, the local height pairing at v, such that if $D, E \in \text{Div}^0(X)$ have disjoint support, then

 $\blacksquare h_v(D \times \mathbb{Q}_v, E \times \mathbb{Q}_v) \neq 0 \text{ for only finitely many } v;$

such that if $D, E \in Div^0(X)$ have disjoint support, then

- $\blacksquare h_v(D \times \mathbb{Q}_v, E \times \mathbb{Q}_v) \neq 0 \text{ for only finitely many } v;$
- we have $\sum_{v} h_v(D \times \mathbb{Q}_v, E \times \mathbb{Q}_v) = 0$ if $E = \operatorname{div}(\beta)$ for some $\beta \in k(X)^*$.

The Coleman-Gross p-adic height pairing is the symmetric bilinear pairing

$$h: J(\mathbb{Q}) \times J(\mathbb{Q}) \to \mathbb{Q}_p$$
$$(D, E) \mapsto \sum_v h_v (D \times \mathbb{Q}_v, E \times \mathbb{Q}_v).$$

Local heights away from \boldsymbol{p}

Introduction *p*-adic heights Example Outlook

- $\blacksquare \ v \neq p \text{ finite place of } \mathbb{Q},$
- \blacksquare $D, E \in \mathsf{Div}^0(X \times \mathbb{Q}_v)$ with disjoint support,
- $\blacksquare \mathcal{X} / \operatorname{Spec}(\mathbb{Z}_v)$: proper regular model of X,
- \blacksquare (.)_v: intersection pairing on \mathcal{X} ,
- $\mathcal{D}, \mathcal{E} \in \text{Div}(\mathcal{X}) \otimes \mathbb{Q}$: extensions of D, E to \mathcal{X} such that $(\mathcal{D}, F)_v = (\mathcal{E}, F)_v = 0$ for all vertical divisors $F \in \text{Div}(\mathcal{X})$.

Then

$$h_v(D, E) = -(\mathcal{D} \cdot \mathcal{E})_v \cdot \log_p(v),$$

where \log_p is a fixed branch of the *p*-adic logarithm.

Local heights at \boldsymbol{p}

Introduction *p*-adic heights Example Outlook

- \blacksquare $D, E \in \text{Div}^0(X \times \mathbb{Q}_p)$ with disjoint support,
- ω_D : differential of the third kind on $X \times \mathbb{Q}_p$ such that $\operatorname{Res}(\omega_D) = D$ (+ a normalization condition).

Then $h_p(D, E)$ is defined as the Coleman integral

$$h_p(D, E) = \int_E \omega_D.$$

Improper intersections

Introduction *p*-adic heights Example Outlook

- $v \neq p$: prime number
- $\blacksquare \mathcal{X} / \operatorname{Spec}(\mathbb{Z}_v)$: desingularization in the strong sense of $\overline{X \times \mathbb{Q}_v}^{\operatorname{Zar}}$
- $\blacksquare P \in X(\mathbb{Q}_v) \text{ with corresponding section } \mathcal{P} \in \mathcal{X}(\mathbb{Z}_v)$
- \blacksquare t_P : tangent vector at P
- \blacksquare z: local parameter at P, normalized such that $\partial_{t_P} z = 1$

$$\blacksquare \ \beta \in k(X)^* \text{ such that } P - \operatorname{div}_X(\beta) \cap P = \emptyset$$

Gross has defined

$$\mathcal{P}_{v}^{2} = (\mathcal{P} - \mathsf{div}_{\mathcal{X}}(\beta) \, . \, \mathcal{P})_{v} - \log \left| \frac{\beta}{z^{\mathrm{ord}_{P}\beta}}(P) \right|_{v}$$

Fact. This does not depend on the choice of β .

Extending h_v

Introduction *p*-adic heights Example Outlook

 $\blacksquare \ v \neq p: \text{ prime number}$

• $\Phi_v(P)$: vertical Q-divisor on \mathcal{X} such that $(\mathcal{P} - \mathcal{O} + \Phi_v(P) \cdot F)_v = 0$ for all vertical $F \in \text{Div}(\mathcal{X})$

Depending on the choice of t_P , we can define

$$h_v(P-O) := -((\mathcal{P} - \mathcal{O})_v^2 + \Phi_v(P)^2)\log_p(v).$$

■ Using Besser's *p*-adic Arakelov theory, can also extend h_p to divisors with common support, depending on the choice of a tangent vector for $P \in X(\mathbb{Q}_p)$.

•
$$\tau(P) := h_p(P - O)$$
 for $P \in X(\mathbb{Q}_p)$

Two propositions

Introduction *p*-adic heights Example Outlook

Proposition 1.

We can make a certain choice of tangent vectors for every point $P \in X$ such that

Proposition 2.

The function $\tau(P) = h_p(P - O)$ can be written as a convergent power series on every residue disk of $X \times \mathbb{Q}_p$.

■ In fact, $\tau(P)$ is an iterated Coleman integral.

Quadratic Chabauty

Introduction *p*-adic heights Example Outlook

• Recall that
$$f_i(P) = \int_O^P \omega_i$$
 for $i \in \{0, \dots, g-1\}$.

Theorem I (Balakrishnan–Besser–M.)

Suppose that the Mordell-Weil rank of J/\mathbb{Q} is g and that the f_i induce linearly independent \mathbb{Q}_p -valued functionals on $J(\mathbb{Q}) \otimes \mathbb{Q}$. Then we have:

(i) There exist constants $\alpha_{ij} \in \mathbb{Q}_p, \ 0 \le i \le j \le g-1$ such that

$$\rho := \tau - \sum_{i \le j} \alpha_{ij} f_i f_j$$

only takes values on $\mathcal{U}(\mathbb{Z}[1/p])$ in an effectively computable finite set T.

(ii) If $P \in \mathcal{U}(\mathbb{Z}[1/p])$ reduces to a nonsingular point modulo every $v \neq p$, then $\rho(P) = 0$.

(iii) On each residue disk, ρ is given by a convergent power series.

Proof of Theorem I

Introduction *p*-adic heights Example Outlook

Sketch of proof. For $P \in X(\mathbb{Q})$, we set $\rho(P) := -\sum_{v \neq p} h_v(P - O)$, so we have

$$h(P-O) = h_p(P-O) + \sum_{v \neq p} h_v(P-O) = \tau(P) - \rho(P).$$

If the f_i induce linearly independent functionals on $J(\mathbb{Q}) \otimes \mathbb{Q}$, then the set $\{f_i f_j\}_{0 \le i \le j \le g-1}$ is a basis of the space of \mathbb{Q}_p -valued quadratic forms on $J(\mathbb{Q}) \otimes \mathbb{Q}$.

Since h is also quadratic, we can write

$$h(P-O) = \sum_{i \le j} \alpha_{ij} f_i(P) f_j(P) \quad \text{for some } \alpha_{ij} \in \mathbb{Q}_p$$

and conclude

$$\rho(P) = \tau(P) - \sum_{i < j} \alpha_{ij} f_i(P) f_j(P).$$

Proof of Theorem I continued

Introduction *p*-adic heights Example Outlook

Recall that for $v \neq p$, we have

$$h_v(P-O) = -((\mathcal{P} - \mathcal{O})_v^2 + \Phi_v(P)^2)\log_p(v),$$

where $\Phi_v(P)^2$ is effectively computable and depends only on the component of the special fiber of \mathcal{X} that \mathcal{P} intersects. When \mathcal{P} and \mathcal{O} intersect the same component, we have $\Phi_v(P)^2 = 0$.

So we have to show that $\sum_{v \neq p} (\mathcal{P} - \mathcal{O})_v^2$ takes only a finite number of values on $\mathcal{U}(\mathbb{Z}[1/p])$. But for $v \neq p$ and $P \in \mathcal{U}(\mathbb{Z}[1/p])$ we have

$$(\mathcal{P} - \mathcal{O})_v^2 = \mathcal{P}_v^2 - 2(\mathcal{P} \cdot \mathcal{O})_v + \mathcal{O}_v^2 = \mathcal{P}_v^2 = -(\mathcal{P} \cdot \mathsf{div}_{\mathcal{X}}(\omega_0))_v$$

by Proposition 1.

Note that $\operatorname{div}_{\mathcal{X}}(\omega_0) = (2g-2)\mathcal{O} + F$, where F is vertical, proving (i). Moreover, we have $(\mathcal{O} \cdot F)_v = 0$, so $\mathcal{P}_v^2 = 0$ if P reduces to a nonsingular point modulo v. This proves (ii).

Introduction *p*-adic heights Example Outlook

We have Sage-code for the computation of:

- single and double Coleman-integrals
- $\blacksquare h_p(D, E)$

The main tool is Kedlaya's algorithm for the matrix of Frobenius.

We also have Magma-code for the computation of:

$$\blacksquare h_v(D,E) \text{ for } v \neq p$$

 \blacksquare the set T

The algorithms rely on Gröbner bases and linear algebra.

Introduction *p*-adic heights Example Outlook

Example 1.

- $\blacksquare \ X: y^2 = x^3(x-1)^2 + 1$
- $J(\mathbb{Q})$ has rank 2 and trivial torsion.
- $Q_1 = (2, -3), Q_2 = (1, -1), Q_3 = (0, 1) \in X(\mathbb{Q})$ are the only integral points on X up to involution (computed by M. Stoll).

• Set
$$D_1 = Q_1 - O$$
, $D_2 = Q_2 - Q_3$, then

- \blacksquare $[D_1]$ and $[D_2]$ are independent.
- \blacksquare p = 11 is a good, ordinary prime.
- Goal: Recover the integral points and prove that there are no others up to a prescribed height bound.

Example 1 continued

Introduction *p*-adic heights Example Outlook

Compute

$$T = \{0, 1/2 \cdot \log_{11}(2), 2/3 \cdot \log_{11}(2)\}.$$

■ Compute the height pairings $h(D_i, D_j)$ and the Coleman integrals $\int_{D_i} \omega_k \int_{D_j} \omega_l$ and deduce the α_{ij} from $(\alpha_{00}, \alpha_{01}, \alpha_{11})^t =$ $\begin{pmatrix} \int_{D_1} \omega_0 \int_{D_1} \omega_0 & \int_{D_1} \omega_0 \int_{D_1} \omega_1 & \int_{D_1} \omega_1 \int_{D_1} \omega_1 \\ \int_{D_1} \omega_0 \int_{D_2} \omega_0 & \int_{D_1} \omega_0 \int_{D_2} \omega_1 & \int_{D_1} \omega_1 \int_{D_2} \omega_1 \\ \int_{D_2} \omega_0 \int_{D_2} \omega_0 & \int_{D_2} \omega_0 \int_{D_2} \omega_1 & \int_{D_2} \omega_1 \int_{D_2} \omega_1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} h(D_1, D_1) \\ h(D_1, D_2) \\ h(D_2, D_2) \end{pmatrix}$

■ Use power series expansions of τ and of the Coleman integrals f_i to give a power series describing ρ in each residue disk.

Example 1 continued

Introduction *p*-adic heights Example Outlook

For example, on the residue disk containing (0, 1), the only solutions to $\rho(P) \in T$ modulo 11^{11} have x-coordinate 0 or

 $4 \cdot 11 + 7 \cdot 11^2 + 9 \cdot 11^3 + 7 \cdot 11^4 + 9 \cdot 11^6 + 8 \cdot 11^7 + 11^8 + 4 \cdot 11^9 + 10 \cdot 11^{10}$

Here are the recovered integral points and their corresponding ρ values:

$$\begin{array}{|c|c|c|} P & \rho(P) \\ \hline (2,\pm3) & \frac{2}{3}\log_{11}(2) \\ (1,\pm1) & \frac{1}{2}\log_{11}(2) \\ (0,\pm1) & \frac{2}{3}\log_{11}(2) \end{array}$$

Introduction *p*-adic heights Example **Outlook**

What next?

- Further explore the connection with Kim's nonabelian Chabauty.
- Try to come up with an efficient algorithm to compute all integral points on X.
- Theorem I also yields a bound on the number of integral points on X, but the bound needs computations of certain Coleman integrals. Improve on this to get a bound which only depends on simpler numerical data.
- Extend Theorem I to more general classes of curves, e. g. general hyperelliptic curves or superelliptic curves.