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■ f ∈ Z[x]: monic and separable of degree 2g + 1 ≥ 3.

■ X/Q: hyperelliptic curve of genus g, given by

y2 = f(x)

■ O ∈ X(Q): point at infinity

■ U = Spec
(
Z[x, y]/(y2 − f(x))

)

■ Div0(X): divisors on X of degree 0

■ J/Q: Jacobian of X

■ r = rank(J/Q)
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■ p: prime of good ordinary reduction for X

■ ωi =
xidx
2y

for i = 0, . . . , g − 1

■ fi(P ) =
∫ P

O
ωi for P ∈ X(Qp)

Theorem (Chabauty, 1941).
Suppose that g ≥ 2 and r < g. Then there exist α0, . . . , αg−1 ∈ Qp, not all
equal to 0, such that

ρ(P ) =

g−1∑

i=0

αifi(P )

satisfies

■ ρ(P ) = 0 for all P ∈ X(Q);

■ for every P̃0 ∈ X̃(Fp), the function ρ is given by a convergent power
series on the residue disk red−1(P̃0) ⊂ X(Qp).
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■ An explicit version of Chabauty’s Theorem due to Coleman can often be
used to find X(Q) in practice.

Question. Can we remove or weaken the condition r < g?

Theorem (Kim, 2010). Let X have genus 1 and rank 1 over Q such that
the given equation is minimal and all Tamagawa numbers are 1. Then there is
a function ρ : X(Qp) → Qp such that

■ ρ(P ) = 0 for all non-torsion P ∈ U(Z);

■ on each residue disk of X/Qp, ρ is given by a convergent power series.
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■ The following result generalizes Kim’s theorem.

Theorem I (Balakrishnan–Besser–M.)
Suppose that r = g and that the fi induce linearly independent Qp-valued
functionals on J(Q)⊗Q. Then we have:

(i) There exist a function ρ : X(Qp) → Qp which only takes values on
U(Z[1/p]) in an effectively computable finite set T .

(ii) If P ∈ U(Z[1/p]) reduces to a nonsingular point modulo every v 6= p,
then ρ(P ) = 0.

(iii) On each residue disk, ρ is given by a convergent power series.

For the proof, we use p-adic heights.
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For every finite place v of Q and D,E ∈ Div0(X ×Qv) with disjoint support,
one can define a symmetric bilinear Qp-valued pairing hv(D,E), the local
height pairing at v, such that if D,E ∈ Div0(X) have disjoint support, then

■ hv(D ×Qv, E ×Qv) 6= 0 for only finitely many v;

such that if D,E ∈ Div0(X) have disjoint support, then

■ hv(D ×Qv, E ×Qv) 6= 0 for only finitely many v;

■ we have
∑

v hv(D ×Qv, E ×Qv) = 0 if E = div(β) for some
β ∈ k(X)∗.

The Coleman-Gross p-adic height pairing is the symmetric bilinear pairing

h : Div0(X)× Div0(X) → Qp

(D,E) 7→
∑

v

hv(D ×Qv, E ×Qv).
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■ v 6= p finite place of Q,

■ D,E ∈ Div0(X ×Qv) with disjoint support,

■ X /Spec(Zv): proper regular model of X,

■ ( . )v: intersection pairing on X ,

■ D, E ∈ Div(X )⊗Q: extensions of D,E to X such that
(D . F )v = (E . F )v = 0 for all vertical divisors F ∈ Div(X ).

Then
hv(D,E) = −(D . E)v · logp(v),

where logp is a fixed branch of the p-adic logarithm.
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■ D,E ∈ Div0(X ×Qp) with disjoint support,

■ ωD: differential of the third kind on X ×Qp such that Res(ωD) = D
(+ a normalization condition).

Then hp(D,E) is defined as the Coleman integral

hp(D,E) =

∫

E

ωD.
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■ v 6= p: prime number

■ X /Spec(Zv): desingularization in the strong sense of X ×Qv
Zar

■ P ∈ X(Qv) with corresponding section P ∈ X (Zv)

■ tP : tangent vector at P

■ z: local parameter at P , normalized such that ∂tP z = 1

■ β ∈ k(X)∗ such that P − divX(β) ∩ P = ∅

Gross has defined

P2

v = (P − divX (β) .P)v − log

∣∣∣∣
β

zordP β
(P )

∣∣∣∣
v

.

Fact. This does not depend on the choice of β.
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■ v 6= p: prime number

■ Φv(P ): vertical Q-divisor on X such that (P −O +Φv(P ) . F )v = 0 for
all vertical F ∈ Div(X )

■ Depending on the choice of tP , we can define

hv(P −O) := −
(
(P −O)2v +Φv(P )2

)
logp(v).

■ Using Besser’s p-adic Arakelov theory, can also extend hp to divisors
with common support, depending on the choice of a tangent vector for
P ∈ X(Qp).

■ τ(P ) := hp(P −O) for P ∈ X(Qp)
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Proposition 1.
We can make a certain choice of tangent vectors for every point P ∈ X such
that

■ O2
v = 0 for all v 6= p,

■ P2
v = − (P . divX (ω0))v for all v 6= p and P ∈ X(Qv) \ {O},

■
∑

v hv(P −O) = h(P −O,P −O) =: h(P −O) for all P ∈ X(Q).

Proposition 2.
The function τ(P ) = hp(P −O) can be written as a convergent power series
on every residue disk of X ×Qp.

■ In fact, τ(P ) is an iterated Coleman integral.
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■ Recall that fi(P ) =
∫ P

O
ωi for i ∈ {0, . . . , g − 1}.

Theorem I (Balakrishnan–Besser–M.)
Suppose that the Mordell-Weil rank of J/Q is g and that the fi induce
linearly independent Qp-valued functionals on J(Q)⊗Q. Then we have:

(i) There exist constants αij ∈ Qp, 0 ≤ i ≤ j ≤ g − 1 such that

ρ := τ −
∑

i≤j

αijfifj

only takes values on U(Z[1/p]) in an effectively computable finite set T .

(ii) If P ∈ U(Z[1/p]) reduces to a nonsingular point modulo every v 6= p,
then ρ(P ) = 0.

(iii) On each residue disk, ρ is given by a convergent power series.
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Sketch of proof.
For P ∈ X(Q), we set ρ(P ) := −

∑
v 6=p hv(P −O), so we have

h(P −O) = hp(P −O) +
∑

v 6=p

hv(P −O) = τ(P )− ρ(P ).

If the fi induce linearly independent functionals on J(Q)⊗Q, then the set
{fifj}0≤i≤j≤g−1 is a basis of the space of Qp-valued quadratic forms on
J(Q)⊗Q.

Since h is also quadratic, we can write

h(P −O) =
∑

i≤j

αijfi(P )fj(P ) for some αij ∈ Qp

and conclude
ρ(P ) = τ(P )−

∑

i≤j

αijfi(P )fj(P ).
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Recall that for v 6= p, we have

hv(P −O) = −((P −O)2v +Φv(P )2) logp(v),

where Φv(P )2 is effectively computable and depends only on the component
of the special fiber of X that P intersects.
When P and O intersect the same component, we have Φv(P )2 = 0.

So we have to show that
∑

v 6=p(P −O)2v takes only a finite number of values
on U(Z[1/p]).
But for v 6= p and P ∈ U(Z[1/p]) we have

(P −O)2v = P2

v − 2(P .O)v +O2

v = P2

v = −(P . divX (ω0))v

by Proposition 1.

Note that divX (ω0) = (2g − 2)O + F , where F is vertical, proving (i).
Moreover, we have (O . F )v = 0, so P2

v = 0 if P reduces to a nonsingular
point modulo v. This proves (ii).
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We have Sage-code for the computation of:

■ single and double Coleman-integrals

■ hp(D,E)

The main tool is Kedlaya’s algorithm for the matrix of Frobenius.

We also have Magma-code for the computation of:

■ hv(D,E) for v 6= p

■ the set T

The algorithms rely on Gröbner bases and linear algebra.
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Example 1.

■ X : y2 = x3(x− 1)2 + 1

■ J(Q) has rank 2 and trivial torsion.

■ Q1 = (2,−3), Q2 = (1,−1), Q3 = (0, 1) ∈ X(Q) are the only integral
points on X up to involution (computed by M. Stoll).

■ Set D1 = Q1 −O, D2 = Q2 −Q3, then

■ [D1] and [D2] are independent.

■ p = 11 is a good, ordinary prime.

■ Goal: Recover the integral points and prove that there are no others up
to a prescribed height bound.
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■ Compute
T = {0, 1/2 · log11(2), 2/3 · log11(2)}.

■ Compute the height pairings h(Di, Dj) and the Coleman integrals∫
Di

ωk

∫
Dj

ωl and deduce the αij from (α00, α01, α11)
t =




∫
D1

ω0

∫
D1

ω0

∫
D1

ω0

∫
D1

ω1

∫
D1

ω1

∫
D1

ω1∫
D1

ω0

∫
D2

ω0

∫
D1

ω0

∫
D2

ω1

∫
D1

ω1

∫
D2

ω1∫
D2

ω0

∫
D2

ω0

∫
D2

ω0

∫
D2

ω1

∫
D2

ω1

∫
D2

ω1




−1

·




h(D1, D1)
h(D1, D2)
h(D2, D2)




■ Use power series expansions of τ and of the Coleman integrals fi to give
a power series describing ρ in each residue disk.
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For example, on the residue disk containing (0, 1), the only solutions to
ρ(P ) ∈ T modulo 1111 have x-coordinate 0 or

4 · 11 + 7 · 112 + 9 · 113 + 7 · 114 + 9 · 116 + 8 · 117 + 118 + 4 · 119 + 10 · 1110

Here are the recovered integral points and their corresponding ρ values:

P ρ(P )

(2,±3) 2

3
log11(2)

(1,±1) 1

2
log11(2)

(0,±1) 2

3
log11(2)
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What next?

■ Further explore the connection with Kim’s nonabelian Chabauty.

■ Try to come up with an efficient algorithm to compute all integral points
on X.

■ Theorem I also yields a bound on the number of integral points on X,
but the bound needs computations of certain Coleman integrals. Improve
on this to get a bound which only depends on simpler numerical data.

■ Extend Theorem I to more general classes of curves, e. g. general
hyperelliptic curves or superelliptic curves.


	Introduction
	Notation
	Chabauty
	A result of Kim
	Theorem I

	p-adic heights
	Coleman-Gross p-adic height pairing
	Local heights away from p
	Local heights at p
	Improper intersections
	Extending hv
	Two propositions
	Quadratic Chabauty
	Proof of Theorem I
	Proof of Theorem I continued
	Algorithms

	Example
	Example 1
	Example 1 continued
	Example 1 continued

	Outlook
	Outlook


