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Abstract. If C is a curve of genus 2 defined over a field k and J
is its Jacobian, then we can associate a hypersurface K in P3 to J ,
called the Kummer surface of J . Flynn has made this construction
explicit in the case that the characteristic of k is not 2 and C is
given by a simplified equation. He has also given explicit versions
of several maps defined on the Kummer surface and shown how
to perform arithmetic on J using these maps. In this paper we
generalize these results to the case of arbitrary characteristic.

1. Introduction

If C is a curve of genus 2 defined over a field k and J is its Jacobian
variety, then J can be regarded as a smooth projective variety em-
bedded into P15. However, in order to perform explicit arithmetic on
J , this construction is not suitable, since computations in P15 are too
cumbersome. To remedy this, one can associate a hypersurface K in
P3 to J , called the Kummer surface of J . It is the quotient of the Jaco-
bian by the negation map and, although not an abelian variety itself,
remnants of the group law on J can be exhibited on K and arithmetic
on J can be performed using its Kummer surface. The map from J to
K corresponds to the map from an elliptic curve to P1 that assigns to
an affine point its x-coordinate.

In [1] Cassels and Flynn construct the Kummer surface associated
to the Jacobian of a genus 2 curve C defined over a field k and several
maps on it only in the special case

(1) C : y2 = f(x)

and leave the general case

(2) C : y2 + h(x)y = f(x),

where deg(f) ≤ 6 and deg(h) ≤ 3, as “optional exercises for the reader”
(p.1). If char(k) 6= 2, then we can find a defining equation as in (1) for
any genus 2 curve over k, but this is not true in the case char(k) = 2.
In the present paper these exercises will be tackled; the aim is to find
expressions that work whenever the curve is given by a general equation
as in (2) over any field. For the special case char(k) = 2 and deg(h) = 2
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(which one can always reduce to if char(k) = 2) such expressions have
also been obtained independently by Duquesne (cf. [2]). However,
they do not work over fields of different characteristic. Nevertheless,
all expressions found in the present work specialize to those obtained
in [2] in the case investigated there. It has to be noted that Duquesne
also explicitly constructs the Jacobian, which has not been attempted
by the author in the general setting.

Flynn presents an explicit theory of Kummer surfaces in the case that
char(k) 6= 2 and C is given by an equation as in (1). In [6] he introduces
an explicit embedding of K into P3 and a defining equation for K.
He also computes explicit expressions for a map δ, corresponding to
duplication on J , and two matrices B (with entries certain biquadratic
forms) and W , which corresponds to translation by a point of order 2,
that help to use the Kummer surface to facilitate efficient arithmetic
on the Jacobian. The discussion in [1] is essentially an exposition of
his results.

It appears that so far no attempt has been made to construct such
an explicit theory in the more general case that k is any field and C
is a curve of genus 2 given by an equation as in (2). However, from
general theory, we know that all relevant objects constructed by Flynn
must have counterparts in this more general situation.

Concerning possible applications, the author’s original motivation
was to improve the algorithm for the computation of canonical heights
on Jacobians of curves of genus 2 defined over number fields or func-
tion fields introduced by Flynn and Smart in [7] and modified by Stoll
in [14]. Here one computes local heights on the Kummer coordinates
of a point on the Jacobian for each valuation of the base field of the
curve. The results of this work should help in two ways: On the one
hand, a curve may have a model as in (2) with much smaller coef-
ficients than those of its simplified models (1) (this is similar to the
elliptic curve situation). But it can be shown that the change in the
local height caused by a change of model is given by a simple formula.
Thus we may achieve a significant speed improvement, although it has
to be taken into account that the formulas for duplication that the
algorithm relies on might be more complicated. On the other hand,
the simplified models are often not minimal for residue characteristic 2
and always have bad reduction there. Accordingly, the largest portion
of the running time of the algorithm is usually spent on computing the
local height for residue characteristic 2.

Another application is in the field of cryptography. Here one can
use, more generally, the Jacobian of genus 2 curves defined over finite
fields whose order is either a large prime or a large power of 2. In the
former case the Kummer surface can be used to speed up arithmetic on
such Jacobians and hence to make cryptosystems based on them more
practical; see for instance the discussion in [3] and [8]. In the latter
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case, an explicit theory of the Kummer surface - as presented in this
paper - can also be used, see [4]. Recently, Gaudry and Lubicz ([9])
have also introduced formulas for the arithmetic of Kummer surfaces
in characteristic 2 based on the theory of algebraic theta functions
that are different from the results in the paper at hand and from those
in [2]. They also show that such formulas can indeed be useful for
cryptographic purposes.

In this paper we give explicit expressions for the abovementioned
objects that reduce to the expressions given in [6] and [2] whenever
those are valid. First, we briefly recall Flynn’s construction in section
2, before we give an explicit embedding and a defining equation for
the Kummer surface in general characteristic in section 3. We do not
attempt to copy Flynn’s or Duquesne’s approach (except for the com-
putation of the matrix W in characteristic 2 in section 6, see below),
but rather make use of the fact that if char(k) 6= 2, then K is isomor-
phic to the Kummer surface associated with the Jacobian of a genus 2
curve given by an equation as in (1). We find this isomorphism explic-
itly and use it to map our formulas to K. Next, we slightly modify
them and prove that these modified versions remain valid in character-
istic 2. The duplication map is discussed in section 4 and the matrix
B of biquadratic forms is computed in section 5. In fact the proofs are
only sketched, but full details are given later in sections 7 and 8. For
the matrix W we have to make a case distinction because the approach
introduced above, although successful when char(k) 6= 2, cannot be
easily modified so that it also works for fields of characteristic 2. In-
stead we compute W directly in that case, using the same approach
employed by Duquesne in the case deg(h) = 2.

Since the expressions are too complicated, we do not actually present
all of them in this paper, but rather discuss how to obtain them. For
the computations we have used a combination of the computer algebra
systems MAGMA ([12]) and Maple ([13]). The formulas obtained here
can be found in the electronic appendix.
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this work and for many valuable suggestions, in particular on exploiting
the isomorphism in sections 4,5 and 6. I would also like to thank Victor
Flynn for helpful discussions and Sylvain Duquesne for sending me a
copy of his preprint [2].

2. The classical case

In [6] Flynn explicitly constructs the Kummer surface K associated
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with the Jacobian of a genus 2 curve C given by a model of the form

C : y2 = f(x).

Our intention is to generalize this construction to models of the form

(3) C : y2 + h(x)y = f(x).

We begin by reviewing Flynn’s construction from [6]. Let

f(x) = f0 + f1x+ f2x
2 + f3x

3 + f4x
4 + f5x

5 + f6x
6

be a polynomial in k[x] without multiple factors, where k is a field of
characteristic char(k) 6= 2 and deg(f) = 6. Then the affine equation

y2 = f(x)

defines a hyperelliptic curve C of genus 2 defined over k. We denote
its Jacobian variety by J . If we form the quotient of J by the negation
map, then we get another variety K, the Kummer surface associated
with J . In [5] and [6] Flynn explicitly realizes these objects. The Ja-
cobian lives in P15, whereas the Kummer surface lives in P3, so explicit
calculations are much more efficient on the Kummer surface. Since
remnants of the group structure are preserved when one passes to the
Kummer surface, these remnants can be used to obtain a feasible way
of performing arithmetic on J .

The explicit embeddings of both the Jacobian and the Kummer sur-
face can be found using a modified version of the classical theta-divisor
on the Jacobian. The classical theta-divisor Θ over an algebraically
closed field k is defined to be the divisor on J given by the image of C
under the embedding

ι : C ↪→ J

P1 7→ [P1 −∞],

where the assumption that k is algebraically closed means that we may
assume f6 = 0, and so ∞ is the unique point at infinity. On the other
hand, if k is not algebraically closed, then in the case f6 6= 0 there
are two branches ∞+ and ∞− over the singular point at infinity. In
this situation, we define Θ+ and Θ− to be the images of C under the
embeddings

ι+ : C ↪→ J

P1 7→ [P1 −∞+]

and

ι− : C ↪→ J

P1 7→ [P1 −∞−],
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respectively. It follows from a theorem of Lefshetz (see for example
[11]) that the P15 embedding of the Jacobian is given by a basis of the
space L(2(Θ+ + Θ−)) and the P3 embedding of the Kummer surface
is given by a basis of the space L(Θ+ + Θ−). If Θ is the theta-divisor
corresponding to any fixed k-rational Weierstrass point, where k is an
extension field of k, then L(Θ+ + Θ−) is isomorphic to L(2Θ) over k.

We do not give the P15 embedding of the Jacobian here; it can be
found, for example, in [1]. A k-rational point P on J can be represented
as an unordered pair {P1, P2} where P1 and P2 are points on the curve
C that are either both defined over k or are defined over a quadratic
extension of k and conjugate over k such that P1 + P2 −∞+ −∞− or
P1 + P2 − 2∞ is in P , viewed as a divisor class on C. If P 6= 0, then
this representation is unique.

Following the notation from [1], suppose P1 = (x, y) and P2 = (u, v)
are affine points on the curve. Then a projective embedding of the
Kummer surface is given by

κ1 = 1

κ2 = x+ u

κ3 = xu

κ4 =
F0(x, u)− 2yv

(x− u)2
,

where

F0(x, u) = 2f0 + f1(x+ u) + 2f2(xu) + f3(x+ u)xu+ 2f4(xu)2

+f5(x+ u)xu+ 2f6(xu)3.

The functions κ1, κ2, κ3, κ4 satisfy the quartic equation

K(κ1, κ2, κ3, κ4) = K2(κ1, κ2, κ3)κ
2
4+K1(κ1, κ2, κ3)κ4+K0(κ1, κ2, κ3) = 0,

where

K2(κ1, κ2, κ3) = κ22 − 4κ1κ3

K1(κ1, κ2, κ3) = −4κ31f0 − 2κ21κ2f1 − 4κ21κ3f2 − 2κ1κ2κ3f3 − 4κ1κ
2
3f4

−2κ2κ
2
3f5 − 4κ33f6

K0(κ1, κ2, κ3) = −4κ41f0f2 + κ41f
2
1 − 4κ31κ2f0f3 − 2κ31κ3f1f3 − 4κ21κ

2
2f0f4

+4κ21κ2κ3f0f5 − 4κ21κ2κ3f1f4 − 4κ21κ
2
3f0f6 + 2κ21κ

2
3f1f5

−4κ21κ
2
3f2f4 + κ21κ

2
3f

2
3 − 4κ1κ

3
2f0f5 + 8κ1κ

2
2κ3f0f6

−4κ1κ
2
2κ3f1f5 + 4κ1κ2κ

2
3f1f6 − 4κ1κ2κ

2
3f2f5

−2κ1κ
3
3f3f5 − 4κ42f0f6 − 4κ32κ3f1f6 − 4κ22κ

2
3f2f6

−4κ2κ
3
3f3f6 − 4κ43f4f6 + κ43f

2
5 .
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We let κ := (κ1, κ2, κ3, κ4) be the map from the Jacobian into P3.
Clearly it identifies inverses and is hence 2 : 1, except on points of or-
der 2, where it is injective, so its image is an explicit realization of the
Kummer surfaceK in P3 given by the defining equationK(κ1, κ2, κ3, κ4) =
0.

The question is how the group law is reflected on the Kummer sur-
face. Firstly, since a point Q ∈ J of order 2 is equal to its inverse and
K precisely identifies inverses, addition of κ(Q) is well-defined on the
Kummer surface K. Furthermore, addition of κ(Q) extends to a linear
map on P3, since it leaves [Θ+ + Θ−] invariant, and thus can be given
as multiplication by a matrix W .

Secondly, there is a matrix B = (Bij)i,j∈{1,2,3,4} of biquadratic forms
with the following property: Suppose x = (x1, x2, x3, x4) and y =
(y1, y2, y3, y4) are quadruples such that (x1 : x2 : x3 : x4) = κ(P )
and (y1 : y2 : y3 : y4) = κ(Q) for some P,Q ∈ J (which we will ab-
breviate by saying that x and y are sets of Kummer coordinates for
P,Q respectively), then we can choose Kummer coordinates w and z
for P +Q and P −Q respectively such that

Bij(x, y) = (wizj + wjzi) for i 6= j

Bii(x, y) = (wizi)

This is different from Flynn’s work. There B was defined by requiring

Bij(x, y) = (wizj + wjzi) for all i, j,

but of course this definition is not suitable for characteristic 2.
Finally, multiplication by 2 is well-defined on the Kummer surface,

because duplication commutes with negation. This duplication map is
given by quartic polynomials δ1, δ2, δ3, δ4 (unique modulo the defining
equation of the Kummer surface) such that for P ∈ J we have

κ(2P ) = δ(κ(P )),

where δ = (δ1, δ2, δ3, δ4). Explicit expressions for W,B and δ can be
found in [1].

The crucial point is that the existence of all of these objects can be
asserted using quite general arguments (cf. [6]) that do not involve
the model of C, so we know that in the general situation we want to
consider they can be found in principle. The question is how to actually
compute them.

3. Kummer coordinates for arbitrary characteristic

We want to generalize Flynn’s construction to the case of a genus 2
curve C defined over a field k of arbitrary characteristic, hence we
need to consider affine defining equations of the form

y2 + h(x)y = f(x),
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where

f(x) = f0 + f1x+ f2x
2 + f3x

3 + f4x
4 + f5x

5 + f6x
6

and

h(x) = h0 + h1x+ h2x
2 + h3x

3

are polynomials in k[x]. Let C be such a curve and let J denote its
Jacobian. The first obvious task is to find the map κ : J −→ P3 in the
general case.

As in [6] we are required to find a basis for the 4-dimensional vector
space

L(Θ+ + Θ−),

since such a basis will give the desired map κ : J −→ P3. Suppose we
have a generic point P ∈ J represented by an unordered pair {P1, P2},
where P1 = (x, y) and P2 = (u, v). A basis may be found by looking for
four linearly independent functions on J which are symmetric in P,Q,
have a pole of order at most 1 at infinity and may have a pole of any
order at 0 ∈ J , but are regular elsewhere. Now, as in [6], 3 members
of such a basis are easily found, namely the symmetric polynomials in
x and u given by κ1 = 1, κ2 = x+ u and κ3 = xu.

Looking for a suitable fourth coordinate, the following basis can be
found:

κ1 = 1, κ2 = x+ u, κ3 = xu, κ4 =
F0(x, u)− 2yv − h(x)v − h(u)y

(x− u)2
.

This obviously specializes to the basis given in section 2 in the case h =
0 and it also specializes to the basis introduced in [2] when char(k) =
2 and h3 = 0. All of these are elements of L(Θ+ + Θ−), because
they are even, symmetric, have no pole except at infinity, and grow at
worst like xu at infinity. We have a basis, because these 4 elements
of the 4-dimensional vector space L(Θ+ + Θ−) are obviously linearly
independent.

Similar to the classical case, these κ1, κ2, κ3, κ4 satisfy the quartic
equation

K(κ1, κ2, κ3, κ4) = K2(κ1, κ2, κ3)κ
2
4+K1(κ1, κ2, κ3)κ4+K0(κ1, κ2, κ3) = 0,
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where

K2(κ1, κ2, κ3) = κ22 − 4κ1κ3,

K1(κ1, κ2, κ3) = −4f2κ
2
1κ3 − 4f6κ

3
3 − 4f0κ

3
1 − h1h3(κ22κ3 − 2κ1κ

2
3)

−h2h3κ2κ23 − h1h2κ1κ2κ3 − h21κ21κ3 − 2f3κ1κ2κ3 − h20κ31
−h22κ1κ23 − 2f5κ2κ

2
3 − h23κ33 − 4f4κ1κ

2
3 − 2f1κ

2
1κ2

−h0h1κ21κ2 − h0h2(κ1κ22 − 2κ21κ3)− h0h3(κ32 − 3κ1κ2κ3),

K0(κ1, κ2, κ3) = (−4f0f2 − f0h21 + f 2
1 + f1h0h1 − f2h20)κ41

+(−4f0f3 − 2f0h1h2 + f1h0h2 − f3h20)κ31κ2
+(2f0h1h3 − 2f1f3 − f1h0h3 − f1h1h2 + 2f2h0h2

−f3h0h1)κ31κ3
+(−4f0f4 − 2f0h1h3 − f0h22 + f1h0h3 − f4h20)κ21κ22
+(4f0f5 + 2f0h2h3 − 4f1f4 − f1h1h3 − f1h22 + 2f2h0h3

+f3h0h2 − 2f4h0h1 + f5h
2
0)κ

2
1κ2κ3

+(−4f0f6 − f0h23 + 2f1f5 + f1h2h3 − 4f2f4 − f2h22 + f 2
3

+f3h0h3 + f3h1h2 − f4h21 + f5h0h1 − f6h20)κ21κ23
+(−4f0f5 − 2f0h2h3 − f5h20)κ1κ32
+(8f0f6 + 2f0h

2
3 − 4f1f5 − 2f1h2h3 + f3h0h3 − 2f5h0h1

+2f6h
2
0)κ1κ

2
2κ3

+(4f1f6 + f1h
2
3 − 4f2f5 − 2f2h2h3 + f3h1h3

+2f4h0h3 − f5h0h2 − f5h21 + 2f6h0h1)κ1κ2κ
2
3

+(−2f3f5 − f3h2h3 + 2f4h1h3 − f5h0h3 − f5h1h2
+2f6h0h2)κ1κ

3
3

+(−4f0f6 − f0h23 − f6h20)κ42
+(−4f1f6 − f1h23 − 2f6h0h1)κ

3
2κ3

+(−4f2f6 − f2h23 + f5h0h3 − 2f6h0h2 − f6h21)κ22κ23
+(−4f3f6 − f3h23 + f5h1h3 − 2f6h1h2)κ2κ

3
3

+(−4f4f6 − f4h23 + f 2
5 + f5h2h3 − f6h22)κ43.

The zero locus of K(κ1, κ2, κ3, κ4) gives an explicit realization of the
Kummer surface associated with J . Notice that this equation becomes
the classical one from [6] in the case C : y2 = f(x) and it reduces to
the equation satisfied by the Kummer surface obtained by Duquesne
in [2] if char(k) = 2 and h3 = 0.

Now our task is to compute the maps on the Kummer surface which
make it so useful, namely the duplication map δ, the matrix of bi-
quadratic forms B and the matrix W that corresponds to translation
by a point of order 2.
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4. Duplication

We start by calculating the duplication map δ = (δ1, δ2, δ3, δ4) on
the Kummer surface K. Here δ1, δ2, δ3, δ4 are quartic polynomials in
κ1, κ2, κ3, κ4 and δ makes the following diagram commute:

J

κ

��

[2]
// J

κ
��

K
δ // K,

where [2] denotes the multiplication-by-2 map on the Jacobian.
In the classical case, Flynn uses the biquadratic forms described in

the next section to obtain the duplication map. This is possible in the
present situation (and gives the same result), but we can also use a
different approach that does not depend on the biquadratic forms. We
temporarily assume that k is a field of characteristic not equal to 2, so
that we can find a simpler model C ′ for our curve C given by

y2 = 4f(x) + h(x)2.

Let J ′ denote its Jacobian and let K ′ denote its Kummer surface. Then
clearly J and J ′ are isomorphic, as are K and K ′, so if we can explicitly
determine the isomorphism

τ : K ∼= K ′

induced by the isomorphism C ∼= C ′, we can make use of the following
commutative diagram, where δ′ denotes the duplication map on K ′:

K

τ

��

δ // K

τ

��
K ′

δ′ // K ′

It is easy to find the isomorphism τ , in fact a short calculation shows
that it is given by

τ : K −→ K ′

(κ1, κ2, κ3, κ4) 7→ (κ1, κ2, κ3, 4κ4 − 2(h0h2κ1 + h0h3κ2 + h1h2κ3)) .

Thus we can find δ as
δ := τ ◦ δ′ ◦ τ−1.

Notice that this construction is only valid for characteristic 6= 2, so
in order to remain valid in the remaining case, we want the polynomials
δi to be defined and remain non-trivial modulo 2. Unfortunately this is
not the case, but we can use the fact that the duplication map is only
defined modulo the defining polynomial K(κ1, κ2, κ3, κ4) and hence we
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can add multiples of this polynomial to the δi. We do not change
δ1 and δ3, but we add −(32h0h3 + 32h1h2) × K(κ1, κ2, κ3, κ4) to δ2
and (48h0h1h2h3 + 48h20h

2
3 + 32h0h3f3)×K(κ1, κ2, κ3, κ4) to δ4. After

dividing all the δi by 64 we obtain polynomials, also called δ1, δ2, δ3, δ4,
that are defined and remain non-trivial modulo 2.

Proposition 4.1. The map δ constructed above represents duplication
on the Kummer surface in any characteristic.

Proof. We only need to show that the map δ = (δ1, δ2, δ3, δ4) represents
duplication in characteristic 2. Since this is a geometric statement, we
may as well assume that we have a field k of characteristic 2 that is
algebraically closed. Let W (k) be its ring of Witt vectors with field of
fractions k. Let

C̃ : y2 + h̃(x)y = f̃(x)

be a genus 2 curve defined over k, with Jacobian J̃ and Kummer surface

K̃ then C̃ lifts to a genus 2 curve C over k; J̃ and K̃ lift to the Jacobian
J and Kummer surface K of C, repsectively. Then a Kummer surface

K̃ of a Jacobian J̃ lifts to a Kummer surface K of a Jacobian J over
k. Let δ denote the duplication map on K that we have just found,

reducing to the well-defined, non-trivial map δ̃ on K̃. Let P̃ ∈ J̃ , lifting
to P ∈ J . Then

δ(κ(P )) = κ(2P )

and so if we normalize κ(P ) such that the entries lie in W (k) with one
of them having valuation zero, then either

δ̃(κ̃(P̃ )) = κ̃(2P̃ )

or δ̃1(κ̃(P̃ )) = . . . = δ̃4(κ̃(P̃ )) = 0. This can be seen by viewing δ and

δ̃ as maps on the respective P3’s. We need to show that the latter case
cannot occur.

For this we first reduce to a few simple cases. We use a transfor-
mation of the curve so that, depending on the number of roots of the
homogenization H(X,Z) of homogenous degree 3 of the polynomial
h(x), we are in one of the following three situations:

(a) h = 1
(b) h = x
(c) h = x2 + x

Next, we can use another suitable transformation y 7→ y + u(x) where
u(x) is a polynomial of degree at most 3. It is not difficult to see that
we can reduce to the case that

f = f1x+ f3x
3 + f5x

5

where the condition that C is nonsingular means in the respective cases:

(a) f5 6= 0
(b) f1f5 6= 0
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(c) f1f5(f1 + f3 + f5 + f 2
1 + f 2

3 + f 2
5 ) 6= 0

For each of these cases let x = (x1, x2, x3, x4) ∈ k4 be a quadruple

that satisfies the defining equation K̃(x) = 0 of the Kummer surface
associated to the Jacobian of C. We can use elementary methods,
quite similar to those used to prove proposition 3.1 in [14], to show the
following.

Lemma 4.2. If δ̃i(x) = 0 for all i ∈ {1, 2, 3, 4}, then we must already
have xi = 0 for all i ∈ {1, 2, 3, 4}.

This means that the quadruple does not define a point on the Kum-

mer surface and so the map δ̃ represents the duplication map on K.
Since the proofs are not very enlightening but rather lengthy, they are
not given here but may be found in section 7. �

In the special case char(k) = 2 and h3 = 0, the map δ specializes to
the map given for duplication in [2] and in the case that the curve is
given by an affine equation y2 = f(x), it coincides with the duplication
map given in [6].

5. Biquadratic forms

Let P,Q ∈ J and let x, y be Kummer coordinates for P and Q re-
spectively. The addition on the Jacobian does not descend to give a
well-defined addition map on the Kummer surface. Indeed, given x
and y, we can find Kummer coordinates of κ(P + Q) and κ(P − Q),
but in general we cannot tell them apart. Instead we can deduce from
classical identities of theta-functions (see [10]) that projectively for
any i, j ∈ {1, 2, 3, 4} κi(P + Q)κj(P − Q) + κj(P + Q)κi(P − Q) is
biquadratic in the (x1, x2, x3, x4), (y1, y2, y3, y4) and therefore there is
a matrix B := (Bij)i,j∈{1,2,3,4} of biquadratic forms in x, y having the
property that there are Kummer coordinates w and z for P + Q and
P −Q respectively such that

Bij(x, y) = (wizj + wjzi) for i 6= j

Bii(x, y) = (wizi)

For its computation, we will again use the fact that the Kummer sur-
face K is isomorphic to K ′ defined in the last section. The isomorphism
τ : K −→ K ′ was also given there.

Let B′ denote the corresponding matrix of biquadratic forms on K ′

and let x′ = τ(x), y′ = τ(y), z′ = τ(z), w′ = τ(w), so that we have

(4) B′ij(x
′, y′) = w′iz

′
j + w′jz

′
i for i 6= j

and

(5) B′ij(x
′, y′) = w′iz

′
i.
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Notice that for i ∈ {1, 2, 3}, we have x′i = xi, y
′
i = yi, z

′
i = zi, w

′
i = wi.

We use this fact, our explicit expression of the isomorphism τ and the
identities (4) and (5) to find the matrix B in terms of the entries of B′.
We write b′ij for B′ij(x

′, y′).
For i, j ∈ {1, 2, 3} distinct we have

Bij(x, y) = wizj + wjzi = w′iz
′
j + w′jz

′
i = b′ij.

and for i ∈ {1, 2, 3} we have

Bii(x, y) = wizi = w′iz
′
i = b′ii.

To find an entry of the fourth column (or row) of B not equal to b′4,4
we have to do some algebra. We get, for example,

B14(x, y) =
1

4
b′1,4 +

1

2

(
2h0h2b

′
1,1 + h0h3b

′
1,2 + h1h3b

′
1,3

)
and analogous formulas for B24(x, y) and B34(x, y). Finally we compute

B44(x, y) =
1

4

(
h0h2b

′
1,4 + h0h3b

′
2,4 + h1h3b

′
3,4 + h20h

2
2b
′
1,1 + h20h

2
3b
′
2,2 + h21h

2
3b
′
3,3

)
+

1

8

(
h20h2h3b

′
1,2 + h0h1h2h3b

′
1,3 + h0h1h

2
3b
′
2,3

)
+

1

16
b′4,4.

Dividing all 16 entries of the matrix thus computed by 16, we obtain a
matrix whose entries are all defined and remain non-trivial modulo 2.

Proposition 5.1. We have

Bij(x, y) = (wizj + wjzi) for i 6= j

Bii(x, y) = (wizi)

in any characteristic.

Proof. As in the last section, we are required to verify that this matrix
actually contains the biquadratic forms we were looking for in charac-

teristic 2. Keeping the notation from section 4, we let B̃ij denote the
reduction of the biquadratic form Bij on a Kummer surface K over the

fraction field of the ring of Witt vectors reducing to K̃. Viewing the

Bij and the B̃ij as maps on P3
k × P3

k and P3
k × P3

k respectively, we see

that for a given point ((x1 : x2 : x3 : x4), (y1 : y2 : y3 : y4)) ∈ K̃3 × K̃3

either all B̃ij(x1, x2, x3, x4; y1, y2, y3, y4) vanish or they give the correct
biquadratic forms.

The proof of the proposition is finished by the following lemma:

Lemma 5.2. If x = (x1, x2, x3, x4) ∈ k4 and y = (y1, y2, y3, y4) ∈ k4

satisfy K̃(x) = K̃(y) = 0 and if B̃ij(x, y) all vanish, then xi = 0 for all
i or yi = 0 for all i.
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By the discussion in section 4 we can reduce to the cases (a), (b)
and (c) introduced there. The proofs for these cases can be found in
section 8. Note that the methods are again similar to those employed
in the proof of proposition 2.1 of [14]; they consist of straightforward,
but quite lengthy, algebraic manipulations. �

In fact, in the case of characteristic 2 the matrix B reduces to the
corresponding matrix found in [2] when h3 = 0 and in the case h(x) = 0
it reduces to the matrix worked out by Flynn in [6] upon multiplying
the diagonal entries by 2.

6. Translation by a point of order 2

Let Q ∈ J be a point of order 2, so P + Q = P − Q for all P ∈ J
and translation by κ(Q) is defined on the Kummer surface. In fact,
it is a linear map on P3, so it can be given as a matrix in terms of
the coefficients of the curve. This matrix was found in the special case
C : y2 = f(x) by Flynn in [6] and is given in terms of the coefficients of
polynomials s and t, where f(x) = s(x)t(x), deg(s) = 2, deg(t) = 4 and
the roots of s are the x-coordinates of the points Q1, Q2 on the curve
C such that Q can be represented by the unordered pair {Q1, Q2}.
Furthermore, the map is an involution and hence the square of the
matrix representing it is a scalar multiple of the identity matrix.

As before, we proceed by making use of the isomorphism τ : K −→
K ′ in the case char(k) 6= 2. Let W ′ denote the matrix corresponding
to translation by τ(κ(Q)) on K ′. We want to find the matrix W that
makes the following diagram commute

K

τ

��

W // K

τ
��

K ′
W ′

// K ′,

where the horizontal maps are multiplication by the respective matrix.
This means that we will express the resulting matrix in terms of the
coefficients of polynomials s, t such that 4f(x)+h(x)2 = s(x)t(x). First
we compute

W := T−1W ′T,

where T is the matrix corresponding to τ . Then W has the desired
properties for char(k) 6= 2. In order to generalize it to arbitrary char-
acteristic, one could try to manipulate the entries directly, or one could
first express them in terms of the Kummer coordinates of Q, as opposed
to the coefficients of s and t. Unfortunately, neither of these approaches
has proved successful, see the discussion below. Therefore, we subse-
quently use a different method to compute the matrix corresponding
to translation by a point of order 2 when char(k) = 2. Our method is
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analogous to the one used by Flynn in the case that char(k) 6= 2 and
h = 0. In addition, it is identical with the method used independently
by Duquesne in the case that char(k) = 2 and h has degree 2. However,
the matrix computed there only works when Q does not involve a point
at infinity.

Suppose that C is a curve of genus 2 given by an affine equation
C : y2 + h(x)y = f(x) and defined over a field k of characteristic
equal to 2. Let Q be a k-rational point of order 2 on its Jacobian J .
In order to find the matrix W corresponding to translation by Q, we
directly compute the image of P +Q on the Kummer surface using the
geometric group law on the Jacobian, where P ∈ J(k) is generic, and
then simplify to make it linear in the Kummer coordinates of P . The
point Q can be represented as {Q1, Q2} with points Qi ∈ C. First we
assume that Q1 and Q2 are affine points, so Qi = (xi, yi) satisfying

h(x) = (x− x1)(x− x2)t(x),

where t(x) = t0 + t1x.
We will keep the discussion of this case brief (see [2] or [6] for a more

detailed discussion). We start by finding the first 3 rows of the matrix
W such that Wκ(P ) = κ(P + Q); the last row is computed using
the fact that W 2 must be a scalar multiple of the identity matrix.
After a little simplification the matrix can be expressed in terms of
the Kummer coordinates k1, k2, k3, k4 of Q and the coefficients of the
polynomials f, t and b, where y = b(x) = b1 + b0x is the line joining the
points Q1 and Q2, so

b0 =
y1 − y2
x1 − x2

, b1 =
x2y1 − x1y2
x1 − x2

.

Recall that a point on the Jacobian can be given in Mumford represen-
tation as (a(x), b(x)), where a(x) = (x− x1)(x− x2) = x2 − k2

k1
x+ k3

k1
.

To complete the picture, we have to find the matrix W in the case
that Q1 = (x1, y1) is affine and Q2 is at infinity. Then b(x) is a cubic
polynomial. Its leading coefficient r6 plays the role of the y-coordinate
of Q2 and we distinguish between the cases Q2 = ∞+ and Q2 = ∞−
according to the value of r6. By going through the same steps as before,
we find W in terms of r6, y1, the coefficients of f and t and the Kummer
coordinates of Q.
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In order to unify the two matrices, the following notation is conve-
nient: We set k′i := ki/k2 in both cases. If Q2 is affine we set

b′0 :=
y1 − y2

(x1 − x2)2
=

b0
x1 − x2

,

b′1 :=
y1x2 − y2x1
(x1 − x2)2

=
b1

x1 − x2
,

b′2 :=
y1x

2
2 − y2x21

(x1 − x2)2
= b′1

k′2
k′1

+ b′0
k′3
k′1
,

b′3 :=
y1x

3
2 − y2x31

(x1 − x2)2
= b′2

k′2
k′1

+ b′1
k′3
k′1

= b′1

(
k′2
k′1

)2

+ b′1
k′3
k′1

+ b′0
k′2k

′
3

k′21
,

c :=
y1y2

x1 − x2
= b′0b

′
1

(
k′2
k′1

)3

+
f(x1)x2 + f(x2)x1

x1 − x2
.

Now suppose that Q2 is at infinity. In this situation we set

b′i := r6k
′i
3 for i = 0, 1, 2,

b′3 := r6k
′3
3 + y1,

c := y1r6.

Here y1 satisfies y21 = f(x1), hence it can be computed using the coef-
ficients of f and the k′i, or by y1 = b(x1).

Then the unified matrix is given by

W =


t1b
′
2 + k′4 t1b

′
1 + f5k

′
3 t1b

′
0 + f5k

′
2 k′1

t0b
′
2 + t1b

′
3 + f3k

′
3 t0b

′
1 + t1b

′
2 + k′4 t0b

′
0 + t1b

′
1 + f3k

′
1 k′2

t0b
′
3 + f1k

′
2 t0b

′
2 + f1k

′
1 t0b

′
1 + k′4 k′3

W4,1 W4,2 W4,3 k′4

 ,

where

W4,1 = t0f1b
′
0 + t0f3b

′
2 + t20c+ t1f1b

′
1 + f3f1k

′
1,

W4,2 = t0f5b
′
3 + t0t1c+ t1f1b

′
0 + f1f5k

′
2,

W4,3 = t0f5b
′
2 + t1f3b

′
1 + t1f5b

′
3 + t21c+ f3f5k

′
3.

It seems curious that our results in this section apparently cannot
be combined to form a matrix that works in arbitrary characteristic.
One possible reason for this is the fact that if char(k) = 2, then an
affine point (x, y) invariant under the hyperelliptic involution satisfies
h(x) = 0 and if char(k) 6= 2, then such a point satisfies y = 0. In
general, we can only assume that 2y + h(x) = 0 and this is not a suf-
ficient simplification to make the method used above work. Moreover,
if char(k) = 2, then, depending on the number of distinct roots of h,
we have #J [2] ∈ {1, 2, 4}, whereas otherwise #J [2] = 16. It would
be interesting to find out whether there is a matrix W representing
translation by a point of order 2 in arbitrary characteristic, either by
finding such a matrix or by proving that it cannot exist.
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7. Proof of lemma 4.2

In this section we prove lemma 4.2 using case distinctions and ele-
mentary algebraic manipulations. It would be interesting to find a more
conceptual proof. In all cases f is of the form f = f1x+ f3x

3 + f5x
5.

7.1. Case (a): h = 1, f5 6= 0. δ̃i(x) = K̃(x) = 0 implies that

0 = δ̃2(x) + f3K̃(x) = f5x
4
1,

so x1 = 0. We find 0 = δ̃1(x) = f5x
4
2 and hence x2 = 0. Then we also

obtain x3 = 0 from 0 = K̃(x) = f5x
4
3 and thus 0 = δ̃4(x) = x44 means

that indeed xi = 0 for all i ∈ {1, 2, 3, 4}.

7.2. Case (b): h = x, f1f5 6= 0. Similar to case (a) we have

0 = δ̃2(x) + δ̃3(x)K̃(x) = f5x
2
1x

2
3,

hence x1 = 0 or x3 = 0.
If x1 = 0, then 0 = δ3(x) = f5x

4
3, thus x3 = 0. The Kummer

surface equation then reads 0 = K(x) = x22x
2
4, whence x2 = 0 or

x4 = 0. However, if x2 = 0, then 0 = δ4(x) = x44 and if x4 = 0, then
0 = δ4(x) = f 2

1 f
2
5x

4
2. Therefore we can deduce that xi = 0 follows for

all i ∈ {1, 2, 3, 4} in both subcases.
In the other case x3 = 0 implies 0 = δ3(x) = f 2

1x
4
1, so x1 = 0 and we

are again in the situation already considered above.

7.3. Case (c): h = x2 + x, f1f5(f1 + f3 + f5 + f 2
1 + f 2

3 + f 2
5 ) 6= 0.

For this case, which is slightly more complicated than the two previous
cases, we employ a case distinction on x1. First we assume that x1 = 0
and show that necessarily the other xi must be equal to zero as well.
Then we suppose that x1 6= 0 and derive a contradiction. Furthermore,
we abbreviate β = f1 + f3 + f5 + f 2

1 + f 2
3 + f 2

5 .
So let x1 = 0. Then

0 = δ3(x) = x23(x4 + f5x3)

which means that we must have x3 = 0 or x4 = f5x3.
If x3 = 0, then 0 = K(x) = x22x

2
4 implies that x2 = 0 or x4 = 0. But

from
0 = δ4(x) = x44 + f 2

1 f
2
5x

4
2

the result follows.
If we have x4 = f5x3 6= 0 instead, then

0 = K(x) = f 2
5x

2
3(x2 + x3),

so that we get x2 = x3 6= 0 and hence

0 = δ4(x) = f 2
5βx

4
3,

a contradiction. This means that x1 = 0 = δi(x) is only possible if
xi = 0 for all i.
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Now we consider the case x1 6= 0, so we may assume that x1 = 1.
Here

0 = δ2(x) + f3K(x) = (1 + x2 + x3)x3(x4 + f1 + f5x3).

If x3 = 0, we find that

0 = δ1(x) = f 2
1 + x24 ⇒ x4 = f1 ⇒ K(x) = f 2

1 (1 + x2)
2 ⇒ x2 = 1

and so

(6) 0 = δ4(x) = f 2
1β,

a contradiction.
Next we suppose that x4 = f1+f5x3, leading to 0 = δ1(x) = f 2

5x
2
3(1+

x2 + x3)
2, so that either x3 = 0 which leads to a contradiction by (6)

or 1 + x2 + x3 = 0 must hold. However, in that case we deduce that
0 = K(x) = x23β, so we get a contradiction anyway.

Finally, we assume that 1 + x2 + x3 = 0 and see that

0 = δ1(x) = (x4 + f1 + f5x3)
2 = 0⇒ x4 + f1 + f5x3 = 0,

proving the lemma.

8. Proof of lemma 5.2

The following section consists of a proof of lemma 5.2. In all cases
our method is to first assume that x1 = 0 and then show that either
xi = 0 for all i or yi = 0 for all i follows. To finish the claim, we
assume that x1 6= 0, so without loss of generality x1 = 1, and then
show that all yi must be zero. We abbreviate x = (x1, x2, x3, x4) and
y = (y1, y2, y3, y4). There are a lot of nested case distinctions, so in
order to follow the proof, the main difficulty is to remember at each
step which assumptions were made. As in the case of lemma 4.2 a
conceptual proof would be of interest.

8.1. Case (a): h = 1. First we assume that x1 = 0. Then

0 = B12(x, y) = f5x
2
2y

2
1 ⇒ x2 = 0 or y1 = 0

If x2 = 0, but y1 6= 0, then

0 = B14(x, y) = f5x
2
3y

2
1 ⇒ x3 = 0

⇒ 0 = B11(x, y) = x24y
2
1 ⇒ x4 = 0.

If we have y1 = 0 6= x2 instead, then

0 = B14(x, y) = f 2
5x

2
2y

2
2 ⇒ y2 = 0

⇒ 0 = B22(x, y) = x22y
2
4 ⇒ y4 = 0 and

0 = B11(x, y) = f 2
5x

2
2y

2
3 ⇒ y3 = 0.

The third case we have to look at is the case x2 = y1 = 0. In this
situation we get 0 = B22(x, y) = x24y

2
2, so x4 = 0 or y2 = 0. We also
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see that 0 = K(x) = f 2
5x

4
3 and hence x3 = 0. So we may assume that

y2 = 0 6= 0 which implies

0 = B33(x, y) = (y3x4)
2 and 0 = B44(x, y) = x4y4,

so y3 = y4 = 0.
Now that we have finished proving that x1 = 0 implies the lemma

in case (a), the remaining step is to deduce that all yi must be qual
to zero using the assumption that x1 = 1. It follows quickly from the
following observation

0 = B12(x, y) = f5(y2 + x2y1)
2 ⇒ y2 = x2y1,

since then

0 = B23(x, y) = f5(y3 + x3y1)
2 ⇒ y3 = x3y1

⇒ 0 = B11(x, y) = (y4 + x4y1)
2 ⇒ y4 = x4y1

⇒ 0 = B24(x, y) = f 2
5 y

2
1 ⇒ y1 = 0⇒ y2 = y3 = y4 = 0.

8.2. Case (b): h = x. Suppose that x1 = 0 and observe that 0 =
B12(x, y) = f5x

2
3y

2
1, implying either x3 = 0 or y1 = 0.

If x3 = 0, then we get

(7) 0 = K(x) = x22x
2
4, so x2 = 0 or x4 = 0.

If x2 = 0, then

0 = B11(x, y) = x24y
2
1 = B22(x, y) = x24y

2
2 = B33(x, y) = x24y

2
3

from which xi = 0 for all i or yi = 0 for all i follows.
If x4 = 0, then

0 = B11(x, y) = f 2
5x

2
2y

2
3 = B22(x, y) = x22y

2
4 = B33(x, y = f 2

1x
2
2y

2
1

= B44(x, y) = f 2
1 f

2
5x

2
2y

2
2

and so we find again that xi = 0 for all i or yi = 0 for all i.
Now we go back to (7) and suppose that y1 = 0 6= x3. However, this

has the following consequence:

0 = B34(x, y) = f 2
5x

2
3y

2
3 ⇒ y3 = 0

So we get 0 = B33(x, y) = x23y
2
4 ⇒ y4 = 0 and 0 = B11(x, y) = f 2

5x
2
3y

2
2,

therefore y2 = 0.
We now consider the case x1 = 1. Then

(8)
0 = B12(x, y) = f5(y3+x3y1)

2 ⇒ y3 = x3y1 ⇒ 0 = B34(x, y) = y21(f1+f5x
2
3)

2

and hence either y1 = 0 or we can express f1 as f1 = f5x
2
3.

The first case is y1 = 0, which implies y3 = 0 and 0 = B23(x, y) =
x3y2y4.

If x3 = 0, we get

0 = B11(x, y) = y24 and 0 = B33(x, y) = f 2
1 y

2
2,

thus y2 = y4 = 0.
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If we have y2 = 0 in (8), then again 0 = B11(x, y) = y24 ⇒ y4 = 0.
Finally, if we have y4 = 0 in (8), then y2 = 0 since 0 = B33(x, y) = f 2

1 y
2
2.

In order to prove the lemma in case (b), it remains to prove it in the
case x1 = 1, y3 = x3y1, f1 = f5x

2
3. This implies that x3 6= 0 and hence

y3 = 0. We also obtain

(9) 0 = B33(x, y) = x23(y4 + x4y1 + f5x3(y2 + y1x2))
2 = 0,

whence y4 = x4y1 + f5x3(y2 + y1x2).
Using this relation we find that

0 = B23(x, y) = f5x
2
3(y2 + x2y1)

2 ⇒ y2 = x2y1

and hence

0 = B24(x, y) = f5x
2
3y

2
1 ⇒ y1 = 0⇒ y2 = 0.

We also have y3 = 0 from (8) and y4 = 0 because of (9), which proves
part (b) of the lemma.

8.3. Case (c): h = x2 + x, f1f5(f1 + f3 + f5 + f 2
1 + f 2

3 + f 2
5 ) 6= 0. Let

β = f1 + f3 + f5 + f 2
1 + f 2

3 + f 2
5 . This is the trickiest case of the lemma,

although it is, like the other cases, completely elementary. Having said
that, we again start off by assuming that x1 = 0, which yields the
following Kummer surface equation

0 = K(x) = (f5x
2
3 + x2x4)

2 ⇒ f5x
2
3 = x2x4

which in turn implies
(10)
0 = B13(x, y) = x3y1y3(x4+f5x2)⇒ x3 = 0 or y1 = 0 or y3 = 0 or x4 = f5x2.

We first assume that y1 = 0 and get

0 = B34(x, y) = x4y3(y4 + f5y3)(x2 + x3)

and therefore

(11) x4 = 0 or y3 = 0 or y4 = f5y3 or x2 = x3.

We will actually go through all the cases in (11). This is a rather
tedious task, but we will be able to reuse several of the results in the
other cases appearing in (10).

Suppose y3 = 0. Then

(12) 0 = B33(x, y) = x23y
2
4 ⇒ x3 = 0 or y4 = 0.

If x3 = 0, then

0 = K(x) = x22x
2
4 ⇒ x2 = 0 or x4 = 0.

Now we get

x2 = 0⇒ 0 = B22(x, y) = x24y
2
2, 0 = B44(x, y) = x24y

2
4

and

x4 = 0⇒ 0 = B22(x, y) = x22y
2
4, 0 = B44(x, y) = f 2

1 f
2
5x

2
2y

2
2,



20 JAN STEFFEN MÜLLER

so we see that in both cases either xi = 0 for all i or yi = 0 for all i.
If y4 = 0 in (12), then

0 = B22(x, y) = x24y
2
2 = B44(x, y) = f 2

1 f
2
5x

2
2y

2
2

so either y2 = 0 or x2 = x4 = 0, in which case we have 0 = K(x) =
f 2
5x

4
3. This finishes the case y3 = 0 in (11).

If x4 = 0 in (11), then

0 = B22(x, y) = x22y
2
4 = B33(x, y) = x23y

2
4 ⇒ y4 = 0 or x2 = x3 = 0.

Now x2 = x3 = 0 means we are already done. If instead we have y4 = 0,
we get that

0 = B11(x, y) = f 2
5x

2
2y

2
3 ⇒ x2 = 0 or y3 = 0.

We have already dealt with the case y3 = 0, so we can assume x2 = 0.
But then we have 0 = K(x) = f 2

5x
4
3 again.

The next case in (11) that we consider is the case y4 = f5y3 which
implies K(y) = f 2

5 y
2
3(y2 + y3)

2. Since we know that y3 = 0 implies our
claim, we can assume that y2 = y3 6= 0. Then

0 = B33(x, y) = y23(x4 + f5x3)
2 ⇒ x4 = f5x3 and 0 = B22(x, y) = f 2

5 y
2
3(x2 + x3)

2

⇒ x2 = x3

and hence

0 = B44(x, y) = f 2
5βx

2
3y

2
3,

so that finally x2 = x3 = 0.
In order to finish off (11) we assume that x2 = x3, thus

K(x) = x23(f5x3 + x4)
2 ⇒ x3 = 0 or f5x3 = x4 6= 0

Assuming that x3 = 0, we deduce from x2 = x3 = 0 and

0 = B22(x, y) = x24y
2
2 = B33(x, y) = x24y

2
3 = B44(x, y) = x24y

2
4

that either xi = 0 for all i or yi = 0 for all i.
So we consider the case x4 = f5x3 6= 0 and see that

0 = B33(x, y) = x23(y4 + f5y3)
2 ⇒ y4 = f5y3

Hence we have

0 = B22(x, y) = f 2
5x

2
3(y2 + y3)

2 ⇒ y2 = y3.

But if y2 = y3, then 0 = B44(x, y) = f 2
5βx

2
3y

2
3 and so y3 = 0, a case we

have finished already. Therefore we have proved the assertion of the
lemma for the case x1 = y1 = 0.

Now we go back to (10) and assume that x3 = 0. The Kummer
surface equation then tells us that either x2 = 0 or x4 = 0. But

x2 = 0⇒ 0 = B11(x, y) = x24y
2
1 = B22(x, y) = x24y

2
2 = B33(x, y) = x24y

2
3

= B44(x, y) = x24y
2
4
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and

x4 = 0⇒ 0 = B11(x, y) = f 2
5x

1
2y

2
3 = B22(x, y) = x22y

2
4 = B33(x, y) = f 2

1x
2
2y

2
1

= B44(x, y) = f 2
1 f

2
5x

2
2y

2
2,

thus we get that in both cases either xi = 0 for all i or yi = 0 for all i.
The next possible case from (10) is y3 = 0. Because of what we have

shown already, we can assume that y1x3 6= 0. We find that

0 = B23(x, y) = y1x3(x2 + x3)(f1y1 + y4),

so that either x2 = x3 6= 0 or y4 = f1y1 6= 0. In the former case we have
0 = B33(x, y) = x23(y4 + f1y1)

2, so we are in the latter case anyway.
Accordingly we suppose that y4 = f1y1 6= 0 which means

K(y) = f 2
1 y

2
1(y1 + y2)

2.

Thus y2 = y1 6= 0 and from 0 = B44(x, y) = f 2
1 y

2
1(x4 + f5x2)

2 we get
x4 = f5x2 which ultimately leads to

0 = B22(x, y) = βx23y
2
1,

a contradiction. This finishes case (c) of the lemma in the case x1 = 0.
Now we assume that x1 = 1. It turns out that it is a good idea to

further distinguish between the cases y3 = 0 and y3 6= 0.
We start with the case y3 = 0 which leads to

(13) 0 = B11(x, y) = (y4 + x4y1 + f5x3y2)
2 ⇒ y4 + x4y1 + f5x3y2 = 0

and thus

(14) 0 = B12(x, y) = f5x3(y1 + y2)
2 = 0

so that either x3 = 0 or y1 = y2.
The assumption x3 = 0 yields

0 = B14(x, y) = (y1(f1 + x4))
2 ⇒ y1 = 0 or x4 = y1.

If y1 = 0, then 0 = B33(x, y) = f 2
1 y

2
1, so we can see that y2 = y1 = 0 by

assumption and also y4 = 0 due to (13), so all yi equal 0.
On the other hand, if x4 = f1 and y1 6= 0, then we have

0 = B22(x, y) = f 2
1 (y2 + x2y1)

2;

therefore we get y2 = x2y1 and

0 = B24(x, y) = f 2
1 y

2
1(x2 + 1)2,

so that x2 = 1, which then implies 0 = B44(x, y) = f 2
1βy

2
1, contradicting

our assumptions.
At this point we return to the other possible case in (14), namely

the case y1 = y2. It leads to

0 = B14(x, y) = y22(x4 + f1 + f5x3),
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i.e. y2 = 0 or x4 = f1 + f5x3. But y1 = y2 and (13) already imply that
in the former case all yi vanish, whereas in the latter case we can hence
assume y2 6= 0 and 1 + x2 + x3 = 0 from

0 = B33(x, y) = f 2
1 y

2
2(1 + x2 + x3)

2 = 0.

The final step is then to look at B44(x, y), which is equal to f 2
1βy

2
2 and

thus gives the desired contradiction.
The only remaining case is x1 = 1 = y3. The first helpful observation

is
0 = B11(x, y) = y4 + y1x4 + f5x2 + f5x3y2,

hence we must have

(15) y4 = y1x4 + f5x2 + f5x3y2.

Using this consequence we obtain

x2 = 1 + x3(y1 + y2)

from
0 = B12(x, y) = f5(x2 + 1 + x3(y1 + y2))

2.

Thus we deduce that

(16) 0 = B34(x, y) = y1x3(x4 + f5x3 + f1y1 + f1y2)
2,

i.e. y1 = 0 or x3 = 0 or x4 = f5x3 + f1y1 + f1y2. We will handle these
cases separately.

Let us first suppose that y1 = 0, in which case

(17) 0 = B14(x, y) = f 2
5x

2
3(y2 + 1)2

and thus x3 = 0 or y2 = 1.
In case y2 = 1, we consider K(y) = (y4 + f5)

2, so that y4 = f5 and
moreover

0 = B33(x, y) = (x4 + f1 + f5x3)
2

implies 0 = B22(x, y) = β which cannot happen by assumption.
But if x3 = 0 and y2 6= 1, then we observe 0 = B33(x, y) = (x4 +

f1y2)
2, hence 0 = B23(x, y) = f1(1 + y2)

2 gives us a contradiction.
We proceed by assuming that x3 = 0 6= y1 in (16); here we observe

0 = B14(x, y) = y21(x4 + f1)
2, hence x4 = f1. We then have 0 =

B33(x, y) = f 2
1 (1 + y1 + y2)

2, so that we can deduce y1 + y2 + 1 = 0 and
thus 0 = B22(x, y) = β, a contradiction.

The upshot of this is that in order to finish the proof of the lemma
we can assume we are in the case x1 = 1 = y3, x3y1 6= 0 and x4 =
f5x3 + f1y1 + f1y2 (see (16)). We can see immediately that

0 = B23(x, y) = f1(1 + y1 + y2)
2(1 + x3y1)

2.

Upon noticing

1 + y1 + y2 = 0⇒ 0 = B24(x, y) = βx3y1

we may thus assume that x3y1 = 1 and y1 + y2 6= 1.
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We have

0 = B14(x, y) = (1 + y1 + y2)
2(f5x3 + f1y1)

2,

resulting in f5x3 = f1y1. This relation allows us to obtain

x4 = f1y2

from (16) and hence y4 = f1y1y2 from (15). We also have f5 = f5x3y1 =
f1y

2
1. Now we make these substitutions in K(y) and find

0 = K(y) = y21(f 2
1 y

4
2 + f1y

2
2 + f3 + f 2

3 )

so f 2
1 y

4
2 = f1y

2
2 + f3 + f 2

3 . But if we plug this into B24(x, y) we see that

0 = B24(x, y) = f1(y1 + y2 + 1)2,

contradicting the assumption y1 + y2 + 1 6= 0.
This finally completes the proof of the lemma.
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