A *p*-adic Birch and Swinnerton-Dyer conjecture for modular abelian varieties

Steffen Müller Universität Hamburg

joint with Jennifer Balakrishnan (Harvard) and William Stein (U Washington)

Arithmetic of L-functions of curves University of Bristol

Wednesday, October 3, 2012

Notation

- lacksquare $A_f = J_1(N)/\mathrm{Ann}_{\mathbb{T}}(f)J_1(N)$ abelian variety $/\mathbb{Q}$ associated to f,
- $\blacksquare g = [K_f : \mathbb{Q}]$ dimension of A_f ,
- $\blacksquare \ G_f = \{\sigma : K_f \hookrightarrow \mathbb{R}\},\$
- $\blacksquare f^{\sigma}(z) = \sum_{n=1}^{\infty} \sigma(a_n) e^{2\pi i n z}$ for $\sigma \in G_f$,
- $L(A_f, s) = \prod_{\sigma \in G_f} L(f^{\sigma}, s)$: L-function of A_f , can be analytically continued to \mathbb{C} ,
- $L^*(A_f, 1)$ leading term of series expansion of $L(A_f, s)$ in s = 1.

BSD conjecture

The conjecture Algorithms Evidence

Conjecture (Birch-Swinnerton-Dyer, Tate)

and

$$\frac{L^*(A_f, 1)}{\Omega_{A_f}^+} = \frac{\operatorname{Reg}(A_f/\mathbb{Q}) \cdot |\operatorname{III}(A_f/\mathbb{Q})| \cdot \prod_v c_v}{|A_f(\mathbb{Q})_{\mathsf{tors}}| \cdot |A_f^{\vee}(\mathbb{Q})_{\mathsf{tors}}|}.$$

- lacksquare $\Omega_{A_f}^+$: real period $\int_{A_f(\mathbb{R})} |\eta|$, η Néron differential,
- $\operatorname{Reg}(A_f/\mathbb{Q})$: Néron-Tate regulator,
- \blacksquare c_v : Tamagawa number at v, v finite prime,
- $\coprod (A_f/\mathbb{Q})$: Shafarevich-Tate group, assumed finite.

p-adic analogues?

The conjecture Algorithms Evidence

- Let p > 2 be a prime such that A_f has good ordinary reduction at p.
- We want to find a p-adic analogue of the BSD conjecture.

Idea: Interpolate $L(A_f,s)$ p-adically at the special value s=1 using an analytic p-adic L-function associated to A_f .

Problem: Need to make $L(A_f, 1)$ algebraic.

■ First look at $L(f^{\sigma}, 1)$.

p-adic analogues?

The conjecture Algorithms Evidence

- Let p > 2 be a prime such that A_f has good ordinary reduction at p.
- We want to find a p-adic analogue of the BSD conjecture.

Idea: Interpolate $L(A_f, s)$ p-adically at the special value s = 1 using an analytic p-adic L-function associated to f.

Problem: Need to make $L(A_f, 1)$ algebraic.

■ First look at $L(f^{\sigma}, 1)$.

Shimura periods

The conjecture Algorithms Evidence

Theorem. (Shimura) For all $\sigma \in G_f$ there exists $\Omega_{f^{\sigma}}^+ \in \mathbb{C}^{\times}$ such that we have

(i)
$$\frac{L(f^{\sigma},1)}{\Omega_{f^{\sigma}}^{+}} \in K_f$$
,

(ii)
$$\sigma\left(\frac{L(f,1)}{\Omega_f^+}\right) = \frac{L(f^{\sigma},1)}{\Omega_{f^{\sigma}}^+}$$
,

(iii) analogues of (i) and (ii) for twists of f by even Dirichlet characters.

- We call the numbers $\Omega_{f^{\sigma}}^+$ Shimura periods.
- Shimura periods are not uniquely determined by the Theorem.
- \blacksquare Can define $\Omega_{f^{\sigma}}^{-}$ similarly.

Modular symbols

The conjecture Algorithms Evidence

- \blacksquare Fix a Shimura period Ω_f^+ .
- Fix a prime \mathfrak{p} of K_f such that $\mathfrak{p} \mid p$.
- Let α be the unit root of $x^2 a_p x + p \in (K_f)_{\mathfrak{p}}[x]$.
- \blacksquare For $r \in \mathbb{Q}$, the plus modular symbol is

$$[r]_f^+ := -\frac{\pi i}{\Omega_f^+} \left(\int_r^{i\infty} f(z) dz + \int_{-r}^{i\infty} f(z) dz \right) \in K_f.$$

 \blacksquare Define a measure on \mathbb{Z}_p^{\times} :

$$\mu_{f,\alpha}^+(a+p^n\mathbb{Z}_p) = \frac{1}{\alpha^n} \left[\frac{a}{p^n} \right]_f^+ - \frac{1}{\alpha^{n+1}} \left[\frac{a}{p^{n-1}} \right]_f^+$$

Mazur-Swinnerton-Dyer p-adic L-function

The conjecture Algorithms Evidence

- Write $x \in \mathbb{Z}_p^{\times}$ as $\omega(x) \cdot \langle x \rangle$ where $\omega(x)^{p-1} = 1$ and $\langle x \rangle \in 1 + p\mathbb{Z}_p$.
- Define $L_p(f,s) := \int_{\mathbb{Z}_p^{\times}} \langle x \rangle^{s-1} d\mu_{f,\alpha}^+(x)$ for all $s \in \mathbb{Z}_p$.
- Fix a topological generator γ of $1 + p\mathbb{Z}_p$.
- Convert $L_p(f,s)$ into a p-adic power series $\mathcal{L}_p(f,T)$ in terms of $T = \gamma^{s-1} 1$.
- Let $\epsilon_p(f) := (1 \alpha^{-1})^2$ be the *p*-adic multiplier.

Then we have the following interpolation property (due to Mazur-Tate-Teitelbaum):

$$\mathcal{L}_p(f,0) = L_p(f,1) = \epsilon_p(f) \cdot [0]_f^+ = \epsilon_p(f) \cdot \frac{L(f,1)}{\Omega_f^+}.$$

Mazur-Tate-Teitelbaum conjecture

The conjecture Algorithms Evidence

- \blacksquare All of this depends on the choice of $\Omega_f^+!$
- If $A_f = E$ is an elliptic curve, a canonical choice is given by $\Omega_f^+ = \Omega_E^+$.

Conjecture. (Mazur-Tate-Teitelbaum) If $A_f = E$ is an elliptic curve, then we have $r := \operatorname{rk}(E/\mathbb{Q}) = \operatorname{ord}_{T=0}(\mathcal{L}_p(f,T))$ and

$$\frac{\mathcal{L}_p^*(f,0)}{\epsilon_p(f)} = \frac{\operatorname{Reg}_{\gamma}(E/\mathbb{Q}) \cdot |\operatorname{III}(E/\mathbb{Q})| \cdot \prod_v c_v}{|E(\mathbb{Q})_{\mathsf{tors}}|^2}.$$

- $\mathcal{L}_p^*(f,0)$: leading term of $\mathcal{L}_p(f,T)$, where the latter is defined with respect to the choice $\Omega_f^+ = \Omega_E^+$.
- $\operatorname{Reg}_{\gamma}(E/\mathbb{Q}) = \operatorname{Reg}_{p}(E/\mathbb{Q})/\log(\gamma)^{r}$, where $\operatorname{Reg}_{p}(E/\mathbb{Q})$ is the p-adic regulator.

Extending Mazur-Tate-Teitelbaum

The conjecture Algorithms Evidence

An extension of the Mazur-Tate-Teitelbaum conjecture to arbitrary dimension g>1 should

- be equivalent to BSD in rank 0,
- \blacksquare reduce to Mazur-Tate-Teitelbaum if g=1,
- be consistent with the main conjecture of Iwasawa theory for abelian varieties.

Problem. Need to construct a p-adic L-function for A_f !

- Idea: Define $L_p(A_f,s) := \prod_{\sigma \in G_f} L_p(f^{\sigma},s)$.
- But to pin down $L_p(f^{\sigma}, s)$, first need to fix a set $\{\Omega_{f^{\sigma}}^+\}_{\sigma \in G_f}$ of Shimura periods.

p-adic L-function associated to A_f

The conjecture Algorithms Evidence

Theorem. (Balakrishnan, Stein, M.) If $\{\Omega_{f^{\sigma}}^+\}_{\sigma \in G_f}$ are Shimura periods, then there exists $c \in \mathbb{Q}^{\times}$ such that

$$\Omega_{A_f}^+ = c \cdot \prod_{\sigma \in G_f} \Omega_{f^\sigma}^+.$$

- For the proof, we compare volumes of related complex tori.
- So we can fix Shimura periods $\{\Omega_{f^{\sigma}}^+\}_{\sigma \in G_f}$ such that

$$\Omega_{A_f}^+ = \prod_{\sigma \in G_f} \Omega_{f^\sigma}^+. \tag{1}$$

- lacksquare With this choice, define $L_p(A_f,s):=\prod_{\sigma\in G_f}L_p(f^\sigma,s)$.
- Then $L_p(A_f, s)$ does not depend on the choice of Shimura periods, as long as (1) holds.

Interpolation

- Convert $L_p(A_f, s)$ into a p-adic power series $\mathcal{L}_p(A_f, T)$ in terms of $T = \gamma^{s-1} 1$.
- Let $\epsilon_p(A_f) := \prod_{\sigma} \epsilon_p(f^{\sigma})$ be the p-adic multiplier.
- Then we have the following interpolation property

$$\mathcal{L}_p(A_f, 0) = \epsilon_p(A_f) \cdot \frac{L(A_f, 1)}{\Omega_{A_f}^+}.$$

p-adic heights

The conjecture Algorithms Evidence

Let A_f^{\vee} be the dual abelian variety of A_f . The *p*-adic height pairing

$$h: A_f(\mathbb{Q}) \times A_f^{\vee}(\mathbb{Q}) \to \mathbb{Q}_p$$

is a bilinear pairing (more on this later).

Conjecture. (Schneider) The p-adic height pairing is nondegenerate.

- There are several different constructions of h, due to Néron, Bernardi, Schneider, Mazur-Tate, Nekovář.
- Can define h for arbitrary abelian varieties over number fields and other types of reduction at p.
- For p good ordinary, the constructions are all known to be equivalent (due to Mazur-Tate, Nekovář, Besser).
- If A_f is principally polarized, get a pairing $h: A_f(\mathbb{Q}) \times A_f(\mathbb{Q}) \to \mathbb{Q}_p$.

p-adic regulator

The conjecture Algorithms Evidence

- $\blacksquare \varphi: A_f \to A_f^{\lor}$: polarization.
- $\blacksquare P_1, \ldots, P_r$: generators for the free part of $A_f(\mathbb{Q})$.

We define

$$\operatorname{Reg}_{p}(A_{f}/\mathbb{Q}) := \frac{1}{[A_{f}^{\vee}(\mathbb{Q}) : \varphi(A_{f}(\mathbb{Q}))]} \left(\det \left(h(P_{i}, \varphi(P_{j})) \right)_{i,j} \right).$$

- This is independent of the choice of φ .
- Also define $\operatorname{Reg}_{\gamma}(A_f/\mathbb{Q}) := \operatorname{Reg}_{p}(A_f/\mathbb{Q})/\log(\gamma)^r$.

The conjecture

The conjecture Algorithms Evidence

We make the following p-adic BSD conjecture:

Conjecture. The Mordell-Weil rank r of A_f/\mathbb{Q} equals $\operatorname{ord}_{T=0}(\mathcal{L}_p(A_f,T))$ and

$$\frac{\mathcal{L}_p^*(A_f, 0)}{\epsilon_p(A_f)} = \frac{\operatorname{Reg}_{\gamma}(A_f/\mathbb{Q}) \cdot |\operatorname{III}(A_f/\mathbb{Q})| \cdot \prod_v c_v}{|A_f(\mathbb{Q})_{\operatorname{tors}}| \cdot |A_f^{\vee}(\mathbb{Q})_{\operatorname{tors}}|}.$$

This conjecture

- is equivalent to BSD in rank 0,
- lacktriangle reduces to Mazur-Tate-Teitelbaum if g=1,
- is consistent with the main conjecture of Iwasawa theory for abelian varieties, via work of Perrin-Riou and Schneider.

Computing the p-adic L-function

The conjecture Algorithms Evidence

To test our conjecture in examples, we need an algorithm to compute $\mathcal{L}_p(A_f,T)$.

- The modular symbols $[r]_{f^{\sigma}}^+$ can be computed efficiently in a purely algebraic way up to a rational factor (Cremona, Stein),
- To compute $\mathcal{L}_p(A_f,T)$ to n digits of accuracy, can use
 - (i) approximation using Riemann sums (similar to Stein-Wuthrich) exponential in \boldsymbol{n} or
 - (ii) overconvergent modular symbols (due to Pollack-Stevens) polynomial in n.
- Both methods are now implemented in Sage.

Normalization

The conjecture Algorithms Evidence

To find the correct normalization of the modular symbols, can use the interpolation property.

- \blacksquare Find a Dirichlet character ψ associated to a quadratic number field $\mathbb{Q}(\sqrt{D})$ such that D>0 and
 - lacktriangle $L(B,1) \neq 0$, where B is A_f twisted by ψ ,
 - $lack \gcd(N,D)=1.$
- \blacksquare Can express $[r]_B^+ := \prod_{\sigma} [r]_{f_\psi^\sigma}^+$ in terms of modular symbols $[r]_{f^\sigma}^+$.
- lacksquare We have $\Omega_B^+ \cdot \eta_\psi = D^{g/2} \cdot \Omega_{A_f}^+$ for some $\eta_\psi \in \mathbb{Q}^{ imes}$.
- ⇒ The correct normalization factor is

$$\frac{L(B,1)}{\Omega_B^+ \cdot [0]_B^+} = \frac{\eta_\psi \cdot L(B,1)}{D^{g/2} \cdot \Omega_{A_f}^+ \cdot [0]_B^+}.$$

Computing the *p*-adic regulator if g = 1

The conjecture Algorithms Evidence

Question. How can we compute p-adic heights?

- The construction of Mazur-Tate relies on the p-adic σ -function.
- If g = 1, then this leads to a practical algorithm (Mazur-Stein-Tate), which was heavily optimized in the PhD thesis of Harvey.

Problem. It's not clear how to generalize this algorithm to g > 1.

■ Instead, we use a different, but equivalent construction of p-adic heights due to Coleman-Gross.

Coleman-Gross height pairing

The conjecture Algorithms Evidence

■ Suppose $A_f = \operatorname{Jac}(C)$, where C/\mathbb{Q} is a curve of genus g.

The Coleman-Gross height pairing is a symmetric bilinear pairing

$$h: \mathsf{Div}^0(C) \times \mathsf{Div}^0(C) \to \mathbb{Q}_p, \quad \text{where}$$

- h can be written as a sum of local height pairings $h = \sum_{v} h_v$ over all finite places v of \mathbb{Q} .
- We have $h(D, \operatorname{div}(\beta)) = 0$ for $\beta \in k(C)^{\times}$, so h is well-defined on $A_f \times A_f$.
- lacktriangle The construction of h_v depends on whether v=p or v
 eq p.
- lacksquare All h_v are invariant under changes of models of $C\otimes \mathbb{Q}_v$.

Local heights away from p

The conjecture Algorithms Evidence

- Let $D, E \in \mathsf{Div}^0(C)$ with disjoint support.
- Suppose $v \neq p$,
- $\blacksquare \mathcal{X} / \operatorname{Spec}(\mathbb{Z}_v)$: proper regular model of C,
- \blacksquare (.)_v: intersection pairing on \mathcal{X} ,
- \mathcal{D} , $\mathcal{E} \in \mathsf{Div}(\mathcal{X})$: extensions of D, E to \mathcal{X} such that $(\mathcal{D} \cdot F)_v = (\mathcal{E} \cdot F)_v = 0$ for all vertical divisors $F \in \mathsf{Div}(\mathcal{X})$.

Then we have

$$h_v(D, E) = -(\mathcal{D} \cdot \mathcal{E})_v \cdot \log_p(v).$$

■ This is completely analogous to the decomposition of the Néron-Tate height on A_f in terms of arithmetic intersection theory on \mathcal{X} due to Faltings and Hriljac.

Computing local heights away from p

- Proper regular models can be computed in practice in many cases using Magma.
- If C is hyperelliptic, divisors on C and extensions to \mathcal{X} can be represented using Mumford representation.
- Intersection multiplicities of divisors on \mathcal{X} can be computed algorithmically using linear algebra and Gröbner bases (M.) or resultants (Holmes).
- All of this is implemented in Magma.

Local heights at p

The conjecture Algorithms Evidence

- $h_p(D,E)$ is defined in terms of p-adic integration on $X:=C\otimes \mathbb{Q}_p$.
- Suppose X hyperelliptic, given by a model $y^2 = g(x)$, where $\deg(g)$ is odd.
- \blacksquare Let ω_D denote a differential of the third kind on X such that
 - lacktriangle Res $(\omega_D) = D$,
 - ullet ω_D is normalized with respect to a certain canonical splitting of $H^1_{\mathrm{dR}}(X)$.

The local height pairing at p is given by the Coleman integral

$$h_p(D, E) = \int_E \omega_D.$$

Computing local heights at p

- \blacksquare Let $P, Q \in X(\mathbb{Q}_p)$.
- If $P \equiv Q \pmod{p}$, then it is easy to compute $\int_P^Q \omega_D$.
- Coleman extended this to the rigid analytic space $X_{\mathbb{C}_p}^{\mathrm{an}}$ using Dwork's theory of analytic continuation along Frobenius.
- The work of Balakrishnan-Besser makes this practical.
 - lacktriangle Suppose $P \not\equiv Q \pmod{p}$, but P and Q are fixed by Frobenius.
 - Then can compute $\int_P^Q \omega_D$ using a system of linear equations if we know the action of Frobenius on differentials $\frac{x^i dx}{2y}$.
 - lacktriangle Using linearity of Coleman integrals, can compute $h_p(D,E)$.
- This has been implemented by Balakrishnan in Sage.

Computing the *p*-adic regulator

The conjecture Algorithms Evidence

- Suppose $P_1, \ldots, P_r \in A_f(\mathbb{Q})$ are generators of $A_f(\mathbb{Q})$ mod torsion.
- Suppose $P_i = [D_i]$, $D_i \in Div(C)^0$ pairwise relatively prime and with pointwise \mathbb{Q}_p -rational support.
- Recall that $\operatorname{Reg}_p(A_f/\mathbb{Q}) = \det((m_{ij})_{i,j})$, where $m_{ij} = h(D_i, D_j)$.

Problem. Given a subgroup H of $A_f(\mathbb{Q})$ mod torsion of finite index, need to saturate it.

- Currently only possible for g=1,2 (g=3 work in progress due to Stoll), so in general only get $\mathrm{Reg}_p(A_f/\mathbb{Q})$ up to a \mathbb{Q} -rational square.
- See also recent work of Holmes.
- For g=2, can use generators of H and compute the index using Néron-Tate regulators to get $\mathrm{Reg}_p(A_f/\mathbb{Q})$ exactly.

Empirical evidence for g = r = 2

- From "Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves" (Flynn, Leprevost, Schaefer, Stein, Stoll, Wetherell '01), we considered 16 genus 2 curves C_N whose Jacobians A_N are optimal quotients of $J_0(N)$.
- Each A_N has Mordell-Weil rank 2 over \mathbb{Q} .

N	Equation of ${\cal C}_N$		
67	$y^2 + (x^3 + x + 1)y = x^5 - x$		
73	$y^2 + (x^3 + x^2 + 1)y = -x^5 - 2x^3 + x$		
85	$y^{2} + (x^{3} + x^{2} + x)y = x^{4} + x^{3} + 3x^{2} - 2x + 1$		
93	$y^2 + (x^3 + x^2 + 1)y = -2x^5 + x^4 + x^3$		
103	$y^2 + (x^3 + x^2 + 1)y = x^5 + x^4$		
107	$y^{2} + (x^{3} + x^{2} + 1)y = x^{4} - x^{2} - x - 1$		
115	$y^2 + (x^3 + x^+1)y = 2x^3 + x^2 + x$		
125	$y^{2} + (x^{3} + x + 1)y = x^{5} + 2x^{4} + 2x^{3} + x^{2} - x - 1$		
133	$ y^{2} + (x^{3} + x^{2} + 1)y = -x^{5} + x^{4} - 2x^{3} + 2x^{2} - 2x $		
147	$y^{2} + (x^{3} + x^{2} + x)y = x^{5} + 2x^{4} + x^{3} + x^{2} + 1$		
161	$y^2 + (x^3 + x + 1)y = x^3 + 4x^2 + 4x + 1$		
165	$y^{2} + (x^{3} + x + 1)y = x^{3} + 4x^{2} + 4x + 1$ $y^{2} + (x^{3} + x^{2} + x)y = x^{5} + 2x^{4} + 3x^{3} + x^{2} - 3x$ $y^{2} + (x^{3} + x + 1)y = -x^{5} - x^{3} - x^{2} - 1$		
167	$y^{2} + (x^{3} + x + 1)y = -x^{5} - x^{3} - x^{2} - 1$		
177	$y^2 + (x^3 + x^2 + 1)y = x^5 + x^4 + x^3$		
188	$y^2 = x^5 - x^4 + x^3 + x^2 - 2x + 1$		
191	$y^2 + (x^3 + x + 1)y = -x^3 + x^2 + x$		

Empirical evidence for g = r = 2, cont'd

- Tamagawa numbers, $\#A_N(\mathbb{Q})_{tors}$ and $\#\mathrm{III}(A_N/\mathbb{Q})[2]$ were already computed by Flynn et al.
- To numerically verify p-adic BSD, need to compute p-adic regulators $\operatorname{Reg}_p(A_N/\mathbb{Q})$ and p-adic special values $\mathcal{L}_p^*(A_N,0)$.
- We first used Riemann sums for the p-adic special values, leading to very few digits of precision.
- We recomputed the special values later using OMS lifting.
- \blacksquare All regulators were computed to precision at least p^{12} .

Summary of evidence

The conjecture Algorithms Evidence

Theorem. (Balakrishnan, Stein, M.) Assume that for all A_N the Shafarevich-Tate group over $\mathbb Q$ is 2-torsion. Then our conjecture is satisfied up to least 4 digits of precision at all good ordinary primes $5 such that <math>C_N \otimes \mathbb Q_p$ has an odd degree model over $\mathbb Q_p$.

- Typically, we have at least 6 digits of precision.
- The assertion $\mathrm{III}(A_N/\mathbb{Q}) = \mathrm{III}(A_N/\mathbb{Q})[2]$ is equivalent to classical BSD (Flynn et al.).
- For all $N \neq 167$ the differences of \mathbb{Q} -rational points on C_N generate $A_N(\mathbb{Q})$.
- For N=167, the divisors we used generate finite index subgroups and depend on p.

N = 188

The conjecture Algorithms Evidence

For example, for N=188, we have:

p -adic regulator $\operatorname{Reg}_{p}(A_{N}/\mathbb{Q})$	p-adic L -value	p -adic multiplier $\epsilon_p(A_N)$
$5623044 + O(7^8)$	$1259 + O(7^4)$	$507488 + O(7^8)$
$4478725 + O(11^7)$	$150222285 + O(11^8)$	$143254320 + O(11^8)$
$775568547 + O(13^8)$	$237088204 + O(13^8)$	$523887415 + O(13^8)$
$1129909080 + O(17^8)$	$6922098082 + O(17^8)$	$4494443586 + O(17^8)$
$14409374565 + O(19^8)$	$15793371104 + O(19^8)$	$4742010391 + O(19^8)$
$31414366115 + O(23^8)$	$210465118 + O(23^8)$	$45043095109 + O(23^8)$
$2114154456754 + O(37^8)$	$1652087821140 + O(37^8)$	$1881820314237 + O(37^8)$
$6279643012659 + O(41^8)$	$2066767021277 + O(41^8)$	$4367414685819 + O(41^8)$
$9585122287133 + O(43^8)$	$3309737400961 + O(43^8)$	$85925017348 + O(43^8)$
$3328142761956 + O(53^8)$	$5143002859 + O(53^6)$	$6112104707558 + O(53^8)$
$17411023818285 + O(59^8)$	$7961878705 + O(59^6)$	$98405729721193 + O(59^8)$
$102563258757138 + O(61^8)$	$216695090848 + O(61^7)$	$137187998566490 + O(61^8)$
$26014679325501 + O(67^8)$	$7767410995 + O(67^6)$	$38320151289262 + O(67^8)$
$490864897182147 + O(71^8)$	$16754252742 + O(71^6)$	$530974572239623 + O(71^8)$
$689452389265311 + O(73^8)$	$193236387 + O(73^5)$	$162807895476311 + O(73^8)$
$878760549863821 + O(79^8)$	$1745712500 + O(79^5)$	$1063642669147985 + O(79^8)$
$2070648686579466 + O(83^8)$	$2888081539 + O(83^{5})$	$1103760059074178 + O(83^{8})$
$3431343284115672 + O(89^8)$	$1591745960 + O(89^5)$	$1012791564080640 + O(89^8)$
$4259144286293285 + O(97^8)$	$21828881 + O(97^4)$	$6376229493766338 + O(97^8)$

N=188 – normalization

The conjecture Algorithms Evidence

The additional BSD quantities for N=188 are

$$|\mathrm{III}(A_N)[2]| = 1$$
, $|A_N(\mathbb{Q})_{\text{tors}}|^2 = 1$, $c_2 = 9$, $c_{47} = 1$.

We find that for the quadratic character ψ associated to $\mathbb{Q}(\sqrt{233})$, the twist B of A_N by ψ has rank 0 over \mathbb{Q} .

- Algebraic computation yields $[0]_B^+ = 144$,
- \blacksquare $\eta_{\psi}=1$, computed by comparing bases for the integral 1-forms on the curve C_N and its twist by ψ .

$$\blacksquare \frac{\eta_{\psi} \cdot L(B,1)}{233 \cdot \Omega_{A_N}^+} = 36.$$

■ So the normalization factor for the modular symbol is 1/4.

Rank 4 evidence

- The Jacobian A of the twist C of $X_0(31)$ by the Dirichlet character associated to $\mathbb{Q}(\sqrt{-47})$ has rank 4 over \mathbb{Q} .
- We checked our conjecture for p=29,61,79 to 8 digits of precision under the assumption that $\coprod (A/\mathbb{Q})$ is 2-torsion.
- Since the twist is odd, we had to use the minus modular symbol associated to $J_0(31)$.
- For the normalization of the minus modular symbol, we used the twist of $X_0(31)$ by the Dirichlet character associated to $\mathbb{Q}(\sqrt{-19})$, whose Jacobian has rank 0 over \mathbb{Q} .
- For the regulator computations, we needed to work with generators of subgroups of finite index, depending on p.

Supersingular reduction

The conjecture Algorithms Evidence

Suppose A_f has supersingular reduction at p.

- For elliptic curves, an analogue of the conjecture of Mazur-Tate-Teitelbaum is due to Bernardi-Perrin-Riou.
- \blacksquare Computation of p-adic special values works analogously.
- To extend Coleman-Gross, we would need a canonical splitting of $H^1_{dR}(C \otimes \mathbb{Q}_p)$.
- It's not known how to do this!
- Other constructions of the p-adic height don't seem suitable for computations.

Toric reduction

The conjecture Algorithms Evidence

Suppose A_f has purely toric reduction at p.

- If g = 1 and the reduction is nonsplit multiplicative, Mazur-Tate-Teitelbaum is analogous to the good ordinary case.
- If g = 1 and the reduction is split multiplicative, Mazur-Tate-Teitelbaum becomes more interesting.
- \blacksquare Computation of p-adic special values works similarly.
- An extension of Coleman-Gross to this case is work in progress of Besser.