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Notation

The conjecture Algorithms Evidence -

m f(2) =100 ap,e*™* € S5(T'1(N)) newform such that
Kr=Q(...,ap,...) is totally real,

m Ay = Ji(N)/Annt(f)J1(N) abelian variety /Q associated to f,
m g = [Ks: Q] dimension of Ay,

m Gy ={0: Ky — R},

m [7(2) =Y. o(a,)e*™ for o € Gy,

m L(Af,s) = Haer L(f?,s): L-function of A, can be analytically
continued to C,

m L*(Af,1) leading term of series expansion of L(Af,s) in s = 1.
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- BSD conjecture
The conjecture Algorithms Evidence
Conjecture (Birch-Swinnerton-Dyer, Tate)

and
” L*(As1) _ Reg(A/Q) - [II(Ar/Q)| - T], 0
ij ‘Af(@)torS‘ ‘ ‘A}/ (Q)tors‘

n QL: real period fAf(R) In|, n Néron differential,

m Reg(Ar/Q): Néron-Tate regulator,
m ¢,: Tamagawa number at v, v finite prime,

m [TI(A;/Q): Shafarevich-Tate group, assumed finite.
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- p-adic analogues? -
The conjecture Algorithms Evidence

m Let p > 2 be a prime such that A; has good ordinary reduction at p.

m We want to find a p-adic analogue of the BSD conjecture.

Idea: Interpolate L(Ay, s) p-adically at the special value s = 1 using an

analytic p-adic L-function associated to Ay .

Problem: Need to make L(A¢, 1) algebraic.

m First look at L(f?,1).
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- Shimura periods -
The conjecture Algorithms Evidence

Theorem. (Shimura) For all o € G there exists Q € C* such that we have

(i) L(f;l) c Ky,

0o (45) =5

(iii) analogues of (i) and (ii) for twists of f by even Dirichlet characters.

m We call the numbers Q}C, Shimura periods.
m Shimura periods are not uniquely determined by the Theorem.

m Can define Q;C, similarly.
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- Modular symbols '
The conjecture Algorithms Evidence

m Fix a Shimura period Qj{

m Fix a prime p of K¢ such that p | p.
m Let o be the unit root of 22 — apz + p € (Ky)p[z].

m For r € QQ, the plus modular symbol is

200

]t = oy ( :OO (2)dz + f(z)dz) € Ky,

—T

m Define a measure on Z;;:

1 [a]l" 1 a 1°
+ _
:uf,a(af —|—an19) — J [_] ; T an—l—l [pn_1] ;
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- Mazur-Swinnerton-Dyer p-adic L-function -
The conjecture Algorithms Evidence

m Write z € Z;j as w(z) - (z) where w(z)?~! =1 and (z) € 1 + pZ,.
m Define L,( fo ys—1 d,u}La(x) for all s € Z,,.
m Fix a topological generator v of 1 + pZ,.

m Convert {/p(f, s) into a p-adic power series L,(f,7) in terms of
T'=~""—1.

m Let ¢,(f) := (1 — a~1)? be the p-adic multiplier.

Then we have the following interpolation property (due to
Mazur-Tate-Teitelbaum):

Lp(f,0) = Lp(f,1) = €p(f) - [O]}_ = ep(f) -
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- Mazur-Tate-Teitelbaum conjecture -

The conjecture Algorithms Evidence

m All of this depends on the choice of Q}F!
m If Ay = F is an elliptic curve, a canonical choice is given by OF = QE

Conjecture. (Mazur-Tate-Teitelbaum) If A¢ = E is an elliptic curve, then
we have r :=rk(E/Q) = ordr—o(Ly(f,T)) and

£5(£.0)  Reg,(B/Q) - [I(E/Q)-TI, e
ep(f) |E(Q)tors|? |

m L7(f,0): leading term of L,(f,T), where the latter is defined with
respect to the choice Q7 = QE

= Reg,(E/Q) = Reg,(£/Q)/log(v)", where Reg,(E/Q) is the p-adic
regulator.
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- Extending Mazur-Tate-Teitelbaum -
The conjecture Algorithms Evidence

An extension of the Mazur-Tate-Teitelbaum conjecture to arbitrary dimension
g > 1 should

m be equivalent to BSD in rank O,
m reduce to Mazur-Tate-Teitelbaum if g =1,

m be consistent with the main conjecture of lwasawa theory for abelian
varieties.

Problem. Need to construct a p-adic L-function for Al
m |dea: Define L,(Ay,s) := Haer L,(f%,s).

m But to pin down L,(f7,s), first need to fix a set {Q}‘G}aegf of Shimura
periods.
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- p-adic L-function associated to Af -
The conjecture Algorithms Evidence

Theorem. (Balakrishnan, Stein, M.) If {Q}ﬁ,}gegf are Shimura periods, then
there exists ¢ € Q™ such that

— +
O =c ][ -
UEGf
m For the proof, we compare volumes of related complex tori.
m So we can fix Shimura periods {Q}C, }oea, such that

of = 1] 9 (1)
OEGf

m With this choice, define L,(A¢,s) := Haer L,(f%,s).

m Then L,(Ay,s) does not depend on the choice of Shimura periods, as
long as (1) holds.
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- Interpolation -
The conjecture Algorithms Evidence

m Convert flp(Af, s) into a p-adic power series L, (A¢,T') in terms of
T =~""—1.

m Lete,(Ar) =[], € (f7) be the p-adic multiplier.

m Then we have the following interpolation property

Lp(Af,0) = ep(Ay) -
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- p-adic heights -
The conjecture Algorithms Evidence

Let A} be the dual abelian variety of Ay. The p-adic height pairing

h:Ar(Q) x A}/(@) — Qy

is a bilinear pairing (more on this later).

Conjecture. (Schneider) The p-adic height pairing is nondegenerate.

m [ here are several different constructions of h, due to Néron, Bernardi,
Schneider, Mazur-Tate, Nekovar.

m Can define h for arbitrary abelian varieties over number fields and other
types of reduction at p.

m For p good ordinary, the constructions are all known to be equivalent
(due to Mazur-Tate, Nekova¥, Besser).

m If Ar is principally polarized, get a pairing h : A¢(Q) x A¢(Q) — Q,.
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- p-adic regulator -
The conjecture Algorithms Evidence

m p: Ay — Aj: polarization.

m Py,..., P generators for the free part of A¢(Q).

We define

1
[A¥(Q) : p(Af(Q

Reg, (4/Q) := 7 (et (P (P )

m This is independent of the choice of .

m Also define Reg, (4;/Q) := Reg,(A47/Q)/log (7).
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- The conjecture -
The conjecture Algorithms Evidence

We make the following p-adic BSD conjecture:

Conjecture. The Mordell-Weil rank 7 of A¢/Q equals ordr—o(L,(A¢,T))

and
£5(A47,0)  Reg,(47/Q) - IW(A;/Q)] - [T, e,
ep(Ar) [Af(Q)tors] - \A¥ (Q)tors| |

This conjecture
m is equivalent to BSD in rank 0O,
m reduces to Mazur-Tate-Teitelbaum if g =1,

m is consistent with the main conjecture of lwasawa theory for abelian
varieties, via work of Perrin-Riou and Schneider.
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- Computing the p-adic L-function -
The conjecture Algorithms Evidence

To test our conjecture in examples, we need an algorithm to compute
[’p(Afv T)

m The modular symbols [r]}‘a can be computed efficiently in a purely

algebraic way — up to a rational factor (Cremona, Stein),
m To compute £,(A¢,T) to n digits of accuracy, can use

(i) approximation using Riemann sums (similar to Stein-Wuthrich) —
exponential in n or

(ii) overconvergent modular symbols (due to Pollack-Stevens) —
polynomial in n.

m Both methods are now implemented in Sage.
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- Normalization '
The conjecture Algorithms Evidence

To find the correct normalization of the modular symbols, can use the
interpolation property.

m Find a Dirichlet character 1) associated to a quadratic number field
Q(v/'D) such that D > 0 and

O L(B,1) # 0, where B is Ay twisted by 1,
0 ged(N,D) = 1.

m Can express [r]T = r]T, in terms of modular symbols [r]T,.
B o fw f

m We have QF; -1, = D9/%. ij for some n,, € Q.

= The correct normalization factor is

L(B,1)  my-L(B,1)
Qf -0 D92 (05
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- Computing the p-adic regulator if g =1 -
The conjecture Algorithms Evidence

Question. How can we compute p-adic heights?
m The construction of Mazur-Tate relies on the p-adic o-function.

m If g =1, then this leads to a practical algorithm (Mazur-Stein-Tate),
which was heavily optimized in the PhD thesis of Harvey.

Problem. It's not clear how to generalize this algorithm to g > 1.

m Instead, we use a different, but equivalent construction of p-adic heights
due to Coleman-Gross.
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- Coleman-Gross height pairing -
The conjecture Algorithms Evidence

m Suppose Ay = Jac(C), where C'/Q is a curve of genus g.

The Coleman-Gross height pairing is a symmetric bilinear pairing

h: Div'(C) x DiV’(C) — Q,, where

m ) can be written as a sum of local height pairings h = ) h, over all
finite places v of Q.

m We have h(D,div(8)) =0 for 8 € k(C)*, so h is well-defined on
Af X Af.

m The construction of h, depends on whether v = p or v # p.

m All A, are invariant under changes of models of C ® Q,.
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Local heights away from p -

The conjecture Algorithms Evidence

s Let D, E € Div’(C) with disjoint support.
m Suppose v # p,

m X /Spec(Z,): proper regular model of C,
m (.),: intersection pairing on X,

m D, £ € Div(X): extensions of D, E to X such that
(D.F), = (&.F), =0 for all vertical divisors F' € Div(X).

Then we have
ho(D,E) = —(D.E&), - log,(v).

m This is completely analogous to the decomposition of the Néron-Tate
height on A¢ in terms of arithmetic intersection theory on X due to
Faltings and Hriljac.
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Computing local heights away from p -

The conjecture Algorithms Evidence

m Proper regular models can be computed in practice in many cases using
Magma.

m If C' is hyperelliptic, divisors on C' and extensions to X can be
represented using Mumford representation.

m Intersection multiplicities of divisors on X’ can be computed
algorithmically using linear algebra and Grobner bases (M.) or resultants
(Holmes).

m All of this is implemented in Magma.

Steffen Miiller (Universitdt Hamburg) p-adic BSD for modular abelian varieties — 20 / 31



- Local heights at p '
The conjecture Algorithms Evidence

m h,(D, E) is defined in terms of p-adic integration on X := C ® Q,,.

m Suppose X hyperelliptic, given by a model y* = g(z), where deg(g) is
odd.

m Let wp denote a differential of the third kind on X such that

0 Res(wp) = D,
0 wp is normalized with respect to a certain canonical splitting of
Hp (X).

The local height pairing at p is given by the Coleman integral

(D, E) = [ wp.

E
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Computing local heights at p -

The conjecture Algorithms Evidence

m let P, Q € X(Q,).

m If P=Q (mod p), then it is easy to compute fg wp.

m Coleman extended this to the rigid analytic space %2 using Dwork's
theory of analytic continuation along Frobenius.

m The work of Balakrishnan-Besser makes this practical.

0 Suppose P # ) (mod p), but P and @ are fixed by Frobenius.

[0 Then can compute f]? wp using a system of linear equations if we

know the action of Frobenius on differentials ‘””’;‘;‘”’3

0 Using linearity of Coleman integrals, can compute h,(D, E).

m This has been implemented by Balakrishnan in Sage.
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- Computing the p-adic regulator -
The conjecture Algorithms Evidence

m Suppose Py,..., P, € A¢(Q) are generators of A¢(Q) mod torsion.

m Suppose P, = [D;], D; € Div(C)" pairwise relatively prime and with
pointwise (Q,-rational support.

m Recall that Regp(Af/Q) — det((mij)i,j), where M = h(DZ, D])

Problem. Given a subgroup H of A¢(Q) mod torsion of finite index, need to
saturate It.

m Currently only possible for g = 1,2 (g = 3 work in progress due to
Stoll), so in general only get Reg,(A;/Q) up to a Q-rational square.

m See also recent work of Holmes.

m For g = 2, can use generators of H and compute the index using
Néron-Tate regulators to get Reg,(Af/Q) exactly.
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Empirical evidence for g =r =2

The conjecture Algorithms Evidence

m From “Empirical evidence for the Birch and Swinnerton-Dyer conjectures
for modular Jacobians of genus 2 curves” (Flynn, Leprevost, Schaefer,
Stein, Stoll, Wetherell '01), we considered 16 genus 2 curves C'y whose
Jacobians A are optimal quotients of Jy(IV).

m Each Ay has Mordell-Weil rank 2 over Q.

N Equation of C'

67 y2—|—(5133—|—:c—|—1)y:a:5—:13

73 y2—|—(m3—|—m2—|—1)y:—m5—2m3—|—m

85 y2—|—(a:3—|—a:2—|—a:)y:m4—l—x3—l—3m2—2:1:—|—1

93 y2—|—(ac3—|—x2—|—1)y:—2:135—|—:134—|—:133

103 y2—|—(:133—|—:132—|—1)y:x5—|—x4

107 y2—|—(ac3—|—x2—|—1)y::134—x2—:13—1

115 y2—|—(:133—|—:13+1)y:2:133—|—:132—|—:13

125 y2—|—(:133—|—:13—|—1)y::135—|—2x4—|—2:133—|—:132—:Jc—l
133 y2—|—(:133—|—:132—|—1)y:—:135+:134—2:Jc3+2:132—2:13
147 y2—|—(a:3—|—:I:2—|—:I:)y:m5—l—2:c4—l—:c3—|—:c2—|—1

161 y2—|—(m3—|—m—|—1)y::133—|—4:1:2—|—4:1:—|—1

165 y2—|—(:n3—|—:132—|—:c)y::c5—|—2:I:4—|—3:I:3—|—:c2—3:1:
167 y2—|—(5133—|—:c—|—1)y:—a:5—a:3—:c2—1

177 y? + (2% + 2% + 1)y = 2° + 2 + 23

188 y2:a:5—:c4—|—:1:3—|—:c2—2:c—|—1

191 y2—|—(ac3—|—ac—|—1)y:—x3—|—x2—|—x
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Empirical evidence for g = r = 2, cont’d -

The conjecture Algorithms Evidence

m Tamagawa numbers, # AN (Q)tors and #III(An/Q)|[2] were already
computed by Flynn et al.

m To numerically verify p-adic BSD, need to compute p-adic regulators
Reg,(An/Q) and p-adic special values L7 (An,0).

m We first used Riemann sums for the p-adic special values, leading to very
few digits of precision.

m We recomputed the special values later using OMS lifting.

m All regulators were computed to precision at least p'2.
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- Summary of evidence -
The conjecture Algorithms Evidence

Theorem. (Balakrishnan, Stein, M.) Assume that for all Ay the
Shafarevich-Tate group over Q is 2-torsion. Then our conjecture is satisfied
up to least 4 digits of precision at all good ordinary primes 5 < p < 100 such
that Cy ® Q, has an odd degree model over Q,,.

m Typically, we have at least 6 digits of precision.

m The assertion (AN /Q) = III(Axn/Q)[2] is equivalent to classical BSD

(Flynn et al.).

m For all N # 167 the differences of (Q-rational points on Cy generate
An(Q).

m For N = 167, the divisors we used generate finite index subgroups and
depend on p.
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N = 188

The conjecture Algorithms Evidence

For example, for N = 188, we have:

p-adic regulator Regp (An/Q)

p-adic L-value

p-adic multiplier €, (AN )

5623044 + O(7%)

4478725 + O(117)
775568547 + O(13%)
1129909080 + O(178)
14409374565 + O(19%)
31414366115 + O(23%)
2114154456754 + O(37%)
6279643012659 + O(418)
9585122287133 + O(43%)
3328142761956 + O(53%)
17411023818285 + O(59%)
102563258757138 + O(613)
26014679325501 + O(67%)
490864897182147 + O(71%)
689452389265311 4+ O(73%)
878760549863821 4+ O(79%)
2070648686579466 + O(83%)
3431343284115672 + O(89%)
4259144286293285 + O(97°)

1259 + O(7%)

150222285 + O(11%)
237088204 + O(13%)
6922098082 + O(17%)
15793371104 + O(19%)
210465118 + O(23%)
1652087821140 4+ O(37%)
2066767021277 + O(41%8)
3309737400961 + O(43%)
5143002859 + O(53°)
7961878705 + O(59%)
216695090848 + O(617)
7767410995 + O(67°)
16754252742 + O(719)
193236387 + O(73°)
1745712500 + O(79%)
2888081539 + O(83°)
1591745960 + O(89°)
21828881 + O(97%)

507488 + O(7%)

143254320 + O(11%)
523887415 + O(13%)
4494443586 + O(17%)
4742010391 4+ O(19%)
45043095109 + O(23%)
1881820314237 + O(373)
4367414685819 + O(418)
85925017348 + O(43%)
6112104707558 + O(53%)
98405729721193 + O(59%)
137187998566490 + O(613)
38320151289262 + O(67%)
530974572239623 4+ O(71%8)
162807895476311 + O(73%)
1063642669147985 + O(79%)
1103760059074178 + O(838)
1012791564080640 + O(89%)
6376229493766338 + O(97%)
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- N = 188 — normalization '
The conjecture Algorithms Evidence

The additional BSD quantities for N = 188 are

|m(AN)[2]| — 17 |AN(@)t0rS|2 — 17 C2 = 97 cq7 = 1.

We find that for the quadratic character v associated to Q(+/233), the twist
B of Ax by 9 has rank 0 over QQ.

m Algebraic computation yields [0]5 = 144,

m 7, = 1, computed by comparing bases for the integral 1-forms on the
curve C'ny and its twist by .

7’]¢L(B,1) _
233-Q% 30.
N

m So the normalization factor for the modular symbol is 1/4.
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Rank 4 evidence '
The conjecture Algorithms Evidence

m The Jacobian A of the twist C' of X((31) by the Dirichlet character
associated to Q(+/—47) has rank 4 over Q.

m We checked our conjecture for p = 29,61, 79 to 8 digits of precision
under the assumption that ITI(A/Q) is 2-torsion.

m Since the twist is odd, we had to use the minus modular symbol
associated to Jy(31).

m For the normalization of the minus modular symbol, we used the twist of
Xo(31) by the Dirichlet character associated to Q(1/—19), whose
Jacobian has rank 0 over Q.

m For the regulator computations, we needed to work with generators of
subgroups of finite index, depending on p.
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- Supersingular reduction

The conjecture Algorithms Evidence

Suppose Ay has supersingular reduction at p.

m For elliptic curves, an analogue of the conjecture of
Mazur-Tate-Teitelbaum is due to Bernardi-Perrin-Riou.

m Computation of p-adic special values works analogously.

m To extend Coleman-Gross, we would need a canonical splitting of
Hip(C® Q).

m It's not known how to do this!

m Other constructions of the p-adic height don't seem suitable for
computations.

Steffen Miiller (Universitdt Hamburg) p-adic BSD for modular abelian varieties — 30 / 31



- Toric reduction -
The conjecture Algorithms Evidence
Suppose A has purely toric reduction at p.

m If g = 1 and the reduction is nonsplit multiplicative,
Mazur-Tate-Teitelbaum is analogous to the good ordinary case.

m If g =1 and the reduction is split multiplicative, Mazur-Tate-Teitelbaum
becomes more interesting.

m Computation of p-adic special values works similarly.

m An extension of Coleman-Gross to this case is work in progress of Besser.
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