A *p*-adic Birch and Swinnerton-Dyer conjecture for modular abelian varieties

Steffen Müller Universität Hamburg

joint with Jennifer Balakrishnan (Harvard) and William Stein (U Washington)

Forschungsseminar Arithmetische Geometrie Humboldt-Universität zu Berlin

Tuesday, November 27, 2012

Elliptic Curves

The conjecture Algorithms Evidence

- Let $N \ge 1$ be an integer and let $J_0(N)$ be the Jacobian of the modular curve $X_0(N)$.
- Let $f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z} \in S_2(\Gamma_0(N))$ be a newform such that all $a_n \in \mathbb{Q}$.
- Let $\operatorname{Ann}_{\mathbb{T}}(f)$ be the annihilator of f in the Hecke algebra $\mathbb{T} = \mathbb{Z}[\dots, T_n, \dots]$ generated by the Hecke operators on $J_0(N)$.
- Then $A_f = J_0(N) / \operatorname{Ann}_{\mathbb{T}}(f) J_0(N)$ is an elliptic curve defined over \mathbb{Q} .
- Wiles et al. have shown: Every elliptic curve A_f over \mathbb{Q} arises in this way.
- Consequence: The *L*-function $L(A_f, s) = L(f, s)$ of A_f can be continued analytically to \mathbb{C} .

Modular abelian varieties

The conjecture Algorithms Evidence

If
$$f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z} \in S_2(\Gamma_0(N))$$
: newform
Then $K_f = \mathbb{Q}(\ldots, a_n, \ldots)$ is totally real.
 $A_f = J_0(N) / \operatorname{Ann}_{\mathbb{T}}(f) J_0(N)$: abelian variety $/\mathbb{Q}$ associated to f ,
 $g = [K_f : \mathbb{Q}]$: dimension of A_f ,
 $G_f = \{\sigma : K_f \hookrightarrow \mathbb{R}\},$
 $f^{\sigma}(z) = \sum_{n=1}^{\infty} \sigma(a_n) e^{2\pi i n z}$ for $\sigma \in G_f$,
 $L(A_f, s) = \prod_{\sigma \in G_f} L(f^{\sigma}, s)$: L-function of A_f , can be continued analytically to \mathbb{C} ,

Néron differentials and periods on A_f

The conjecture Algorithms Evidence

Let \mathcal{A} denote the Néron model of A_f over $\operatorname{Spec}(\mathbb{Z})$. A Néron differential on A_f is a generator of the global relative differential g-forms on \mathcal{A} , pulled back to A_f .

Example. If A_f is an elliptic curve in minimal Weierstraß form

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6,$$

then $\frac{dx}{2y+a_1x+a_3}$ is a Néron differential.

We define the real period (resp. the minus period) of A_f by

$$\Omega_{A_f}^{\pm} := \int_{A_f(\mathbb{C})^{\pm}} |\omega_{A_f}|,$$

where ω_{A_f} is a Néron differential and $A_f(\mathbb{C})^{\pm}$ is the set of elements of $A_f(\mathbb{C})$ fixed by \pm complex conjugation.

Tamagawa numbers and regulators

The conjecture Algorithms Evidence

- \blacksquare Let v be a prime number,
- Let \mathcal{A}_v be the special fiber of \mathcal{A} above v and let \mathcal{A}_v^0 denote its connected component.
- Then $\Phi_v = \mathcal{A}_v / \mathcal{A}_v^0$ is a finite group scheme defined over \mathbb{F}_v .
- The Tamagawa number $c_v(A_f)$ is the number of \mathbb{F}_v -rational points on Φ_v .

■ Let \langle , \rangle_{NT} denote the Néron-Tate (or canonical) height pairing on A_f .

■ The regulator $\operatorname{Reg}(A_f/\mathbb{Q})$ is defined by

$$\operatorname{Reg}(A_f/\mathbb{Q}) := \det\left(\langle P_i, P_j \rangle_{\operatorname{NT}}\right)_{i,j},$$

where P_1, \ldots, P_r generate the free part of $A_f(\mathbb{Q})$.

BSD conjecture

The conjecture Algorithms Evidence

- The Shafarevich-Tate group $III(A_f/\mathbb{Q})$ is defined using Galois cohomology We will assume that it is finite throughout this talk.
- Let $L^*(A_f, 1)$ be the leading term of the series expansion of $L(A_f, s)$ in s = 1.
- Let $A_f(\mathbb{Q})_{tors}$ denote the group of rational points on A_f of finite order, likewise for the dual abelian variety A_f^{\vee} of A_f .

Conjecture (Birch-Swinnerton-Dyer, Tate) We have $\operatorname{rk}(A_f(\mathbb{Q})) = \operatorname{ord}_{s=1} L(A_f, s)$ and

$$\frac{L^*(A_f, 1)}{\Omega^+_{A_f}} = \frac{\operatorname{Reg}(A_f/\mathbb{Q}) \cdot |\operatorname{III}(A_f/\mathbb{Q})| \cdot \prod_v c_v(A_f)}{|A_f(\mathbb{Q})_{\operatorname{tors}}| \cdot |A_f^{\vee}(\mathbb{Q})_{\operatorname{tors}}|}$$

The conjecture Algorithms Evidence

■ Let p > 2 be a prime such that A_f has good ordinary reduction at p, that is, $p \nmid a_p$.

Question. Is there a *p*-adic analogue of the BSD conjecture?

Idea. Define a *p*-adic analytic *L*-function associated to A_f which interpolates $L(A_f, s)$ *p*-adically at special values (e.g. at s = 1).

Problem: Need to make $L(A_f, 1)$ algebraic.

The conjecture Algorithms Evidence

■ Let p > 2 be a prime such that A_f has good ordinary reduction at p, that is, $p \nmid a_p$.

Question. Is there a *p*-adic analogue of the BSD conjecture?

Idea. Define a *p*-adic analytic *L*-function associated to A_f which interpolates $L(A_f, s)$ *p*-adically at special values (e.g. at s = 1).

Problem: Need to make $L(A_f, 1)$ algebraic.

The conjecture Algorithms Evidence

■ Let p > 2 be a prime such that A_f has good ordinary reduction at p, that is, $p \nmid a_p$.

Question. Is there a *p*-adic analogue of the BSD conjecture?

Idea. Define a *p*-adic analytic *L*-function associated to A_f which interpolates $L(A_f, s)$ *p*-adically at special values (e.g. at s = 1).

Problem: Need to make $L(A_f, 1)$ algebraic.

The conjecture Algorithms Evidence

■ Let p > 2 be a prime such that A_f has good ordinary reduction at p, that is, $p \nmid a_p$.

Question. Is there a *p*-adic analogue of the BSD conjecture?

Idea. Define a *p*-adic analytic *L*-function associated to *f* which interpolates L(f, s) *p*-adically at special values (e.g. at s = 1).

Problem: Need to make L(f, 1) algebraic.

The conjecture Algorithms Evidence

■ Let p > 2 be a prime such that A_f has good ordinary reduction at p, that is, $p \nmid a_p$.

Question. Is there a *p*-adic analogue of the BSD conjecture?

Idea. Define a *p*-adic analytic *L*-function associated to *f* which interpolates L(f, s) *p*-adically at special values (e.g. at s = 1).

Problem: Need to make L(f, 1) algebraic.

In fact, we need to look at $L(f^{\sigma}, 1)$ for all $\sigma \in G_f$.

Dirichlet characters

The conjecture Algorithms Evidence

If $\psi : \mathbb{Z} \to \mathbb{C}$ is a Dirichlet character mod k, we use the following notation:

 $\blacksquare \ \bar{\psi}$ is the conjugate character to ψ .

$$f_{\psi}(z) = \sum_{n=1}^{\infty} \psi(n) \cdot a_n \cdot e^{2\pi i n z},$$

- \blacksquare K_{ψ} is the field generated over \mathbb{Q} by the values of ψ ,
- $\blacksquare \ \tau(\psi) \text{ is the Gauß sum of } \psi.$

Shimura periods

The conjecture Algorithms Evidence

Theorem. (Shimura) For all $\sigma \in G_f$ there exist $\Omega_{f^{\sigma}}^+ \in \mathbb{R}$ and $\Omega_{f^{\sigma}}^- \in i \cdot \mathbb{R}$ such that the following properties are satisfied:

(i) We have

$$\frac{\pi i}{\Omega_{f^{\sigma}}^{\pm}} \left(\int_{r}^{i\infty} f^{\sigma}(z) dz \pm \int_{-r}^{i\infty} f^{\sigma}(z) dz \right) \in K_{f}$$

for all $r \in \mathbb{Q}$.

(ii) If ψ is a Dirichlet character of sign \pm , then

$$\frac{L(f_{\bar{\psi}},1)}{\tau(\psi)\cdot\Omega_f^{\pm}} \in K_f K_{\psi}.$$

In particular,

$$\frac{L(f,1)}{\Omega_f^+} \in K_f.$$

Shimura periods cont'd

The conjecture Algorithms Evidence

Theorem. (Shimura) For all $\sigma \in G_f$ there exist $\Omega_{f^{\sigma}}^+ \in \mathbb{R}$ and $\Omega_{f^{\sigma}}^- \in i \cdot \mathbb{R}$ such that the following properties are satisfied:

(iii) If ψ is a Dirichlet character of sign \pm , then

$$\sigma\left(\frac{L(f_{\bar{\psi}},1)}{\tau(\psi)\cdot\Omega_f^{\pm}}\right) = \frac{L(f_{\bar{\psi}^{\sigma}},1)}{\tau(\psi^{\sigma})\cdot\Omega_{f^{\sigma}}^{\pm}}.$$

- We call a set $\{\Omega_{f^{\sigma}}^{\pm}\}_{\sigma \in G_{f}}$ as in the theorem a set of Shimura periods for f.
- Shimura periods are not uniquely determined by the theorem.

• There is always a Dirichlet character ψ such that $L(f_{\bar{\psi}}, 1) \neq 0$.

Modular symbols

The conjecture Algorithms Evidence

- Fix a set of Shimura periods $\{\Omega_{f^{\sigma}}^{\pm}\}_{\sigma \in G_f}$.
- **\blacksquare** Fix a prime \mathfrak{p} of K_f such that $\mathfrak{p} \mid p$.
- Let α be the unit root of $x^2 a_p x + p \in (K_f)_{\mathfrak{p}}[x]$.
- The plus (resp. minus) modular symbol map associated to f (and α) maps $r \in \mathbb{Q}$ to

$$[r]_{f}^{\pm} := -\frac{\pi i}{\Omega_{f}^{+}} \left(\int_{r}^{i\infty} f(z)dz + \int_{-r}^{i\infty} f(z)dz \right) \in \underline{K_{f}}.$$

In particular, we have $[0]_f^+ = \frac{L(f,1)}{\Omega_f^+}$.

Mazur-Swinnerton-Dyer *p*-adic *L*-function

The conjecture Algorithms Evidence

■ Define measures on \mathbb{Z}_p^{\times} :

$$\mu_f^{\pm}(a+p^n\mathbb{Z}_p) = \frac{1}{\alpha^n} \left[\frac{a}{p^n}\right]_f^{\pm} - \frac{1}{\alpha^{n+1}} \left[\frac{a}{p^{n-1}}\right]_f^{\pm}$$

• We can integrate continuous characters $\chi: \mathbb{Z}_p^{\times} \to \mathbb{C}_p$ against μ_f^{\pm} .

- Write $x \in \mathbb{Z}_p^{\times}$ as $\omega(x) \cdot \langle x \rangle$ where $\omega(x)^{p-1} = 1$ and $\langle x \rangle \in 1 + p\mathbb{Z}_p$.
- This yields two continuous characters $\mathbb{Z}_p^{\times} \to \mathbb{C}_p$.

I Define

$$L_p(f,s) := \int_{\mathbb{Z}_p^{\times}} \langle x \rangle^{s-1} \, d\mu_f^+(x) \quad \text{for all } s \in \mathbb{Z}_p,$$

where $\langle x \rangle^{s-1} = \exp_p((s-1) \cdot \log_p(\langle x \rangle)).$

Interpolation

The conjecture Algorithms Evidence

- Fix a topological generator γ of $1 + p\mathbb{Z}_p$.
- Convert $L_p(f, s)$ into a *p*-adic power series $\mathcal{L}_p(f, T)$ in terms of $T = \gamma^{s-1} 1$.
- Let $\epsilon_p(f) := (1 \alpha^{-1})^2$ be the *p*-adic multiplier.

Then we have the following interpolation property (due to Mazur-Tate-Teitelbaum):

$$\frac{\mathcal{L}_p(f,0)}{\epsilon_p(f)} = \frac{L_p(f,1)}{\epsilon_p(f)} = [0]_f^+ = \frac{L(f,1)}{\Omega_f^+}$$

The case of elliptic curves

The conjecture Algorithms Evidence

- All of this depends on the choice of Ω_f^+ !
- If $A_f = E$ is an elliptic curve, then the real period Ω_E^+ satisfies the assertions of Shimura's theorem, so we can take $\Omega_f^+ = \Omega_E^+$.
- This gives a canonical p-adic L-function $L_p(E,s)$ associated to E.
- Let $\mathcal{L}_p(E,T)$ be the corresponding *p*-adic power series.
- By the interpolation property, the classical BSD conjecture in rank 0 is equivalent to

$$\frac{\mathcal{L}_p(E,0)}{\epsilon_p(f)} = \frac{|\mathrm{III}(E/\mathbb{Q})| \cdot \prod_v c_v(E)}{|E(\mathbb{Q})_{\mathsf{tors}}|^2}.$$

The conjecture Algorithms Evidence

Conjecture. (Mazur-Tate-Teitelbaum) If $A_f = E$ is an elliptic curve such that $\operatorname{rk}(E/\mathbb{Q}) = 0$, then $\operatorname{ord}_{T=0}(\mathcal{L}_p(f,T)) = 0$ and

$$\frac{\mathcal{L}_p^*(E,0)}{\epsilon_p(f)} = \frac{|\mathrm{III}(E/\mathbb{Q})| \cdot \prod_v c_v(E)}{|E(\mathbb{Q})_{\mathsf{tors}}|^2},$$

where $\mathcal{L}_{p}^{*}(E,0)$ is the leading coefficient of $\mathcal{L}_{p}(E,T)$.

Question. How can this be extended to higher rank?

The conjecture Algorithms Evidence

Conjecture. (Mazur-Tate-Teitelbaum) If $A_f = E$ is an elliptic curve, then we have $r := \operatorname{rk}(E/\mathbb{Q}) = \operatorname{ord}_{T=0}(\mathcal{L}_p(f,T))$ and

$$\frac{\mathcal{L}_p^*(E,0)}{\epsilon_p(f)} = \frac{\operatorname{Reg}(E/\mathbb{Q}) \cdot |\operatorname{III}(E/\mathbb{Q})| \cdot \prod_v c_v(E)}{|E(\mathbb{Q})_{\operatorname{tors}}|^2},$$

where $\mathcal{L}_p^*(E,0)$ is the leading coefficient of $\mathcal{L}_p(E,T)$.

Can this be correct?

The conjecture Algorithms Evidence

Conjecture. (Mazur-Tate-Teitelbaum) If $A_f = E$ is an elliptic curve, then we have $r := \operatorname{rk}(E/\mathbb{Q}) = \operatorname{ord}_{T=0}(\mathcal{L}_p(f,T))$ and

$$\frac{\mathcal{L}_p^*(E,0)}{\epsilon_p(f)} = \frac{\operatorname{Reg}(E/\mathbb{Q}) \cdot |\operatorname{III}(E/\mathbb{Q})| \cdot \prod_v c_v(E)}{|E(\mathbb{Q})_{\operatorname{tors}}|^2},$$

where $\mathcal{L}_p^*(E,0)$ is the leading coefficient of $\mathcal{L}_p(E,T)$.

Problem: The left hand side is *p*-adic, the right hand side is real!. We will modify the right hand side.

The conjecture Algorithms Evidence

Conjecture. (Mazur-Tate-Teitelbaum) If $A_f = E$ is an elliptic curve, then we have $r := \operatorname{rk}(E/\mathbb{Q}) = \operatorname{ord}_{T=0}(\mathcal{L}_p(f,T))$ and

$$\frac{\mathcal{L}_p^*(E,0)}{\epsilon_p(f)} = \frac{\operatorname{Reg}_{\gamma}(E/\mathbb{Q}) \cdot |\operatorname{III}(E/\mathbb{Q})| \cdot \prod_v c_v(E)}{|E(\mathbb{Q})_{\operatorname{tors}}|^2},$$

where $\mathcal{L}_p^*(E,0)$ is the leading coefficient of $\mathcal{L}_p(E,T)$.

Here

$$\operatorname{Reg}_{\gamma}(E/\mathbb{Q}) = \operatorname{Reg}_{p}(E/\mathbb{Q})/\log_{p}(\gamma)^{r},$$

where $\operatorname{Reg}_p(E/\mathbb{Q})$ is the *p*-adic regulator, defined using the *p*-adic height pairing (more on this later), a *p*-adic analogue of the real-valued Néron-Tate height pairing.

Extending Mazur-Tate-Teitelbaum

The conjecture Algorithms Evidence

An extension of the Mazur-Tate-Teitelbaum conjecture to arbitrary dimension g>1 should

- be equivalent to BSD in rank 0,
- reduce to Mazur-Tate-Teitelbaum if g = 1,
- be consistent with the main conjecture of Iwasawa theory for abelian varieties.

Problem. Need to construct a *p*-adic *L*-function for A_f !

- Idea: Define $L_p(A_f, s) := \prod_{\sigma \in G_f} L_p(f^{\sigma}, s)$ (similar to $L(A_f, s)$).
- But to pin down $L_p(f^{\sigma}, s)$, first need to fix a set $\{\Omega_{f^{\sigma}}^{\pm}\}_{\sigma \in G_f}$ of Shimura periods.

p-adic L-function associated to A_f

The conjecture Algorithms Evidence

Theorem. (Balakrishnan, Stein, M.) If $\{\Omega_{f^{\sigma}}^{\pm}\}_{\sigma \in G_{f}}$ are Shimura periods, then there exist $c \in \mathbb{Q}^{\times}$ such that

$$\Omega_{A_f}^{\pm} = c \cdot \prod_{\sigma \in G_f} \Omega_{f^{\sigma}}^{\pm}.$$

For the proof, we compare volumes of certain related complex tori.

• By the theorem, we can fix Shimura periods $\{\Omega_{f^{\sigma}}^{\pm}\}_{\sigma\in G_{f}}$ such that

$$\Omega_{A_f}^{\pm} = \prod_{\sigma \in G_f} \Omega_{f^{\sigma}}^{\pm}.$$
 (1)

• With this choice, define $L_p(A_f, s) := \prod_{\sigma \in G_f} L_p(f^{\sigma}, s)$.

Then $L_p(A_f, s)$ does not depend on the choice of Shimura periods, as long as (1) holds.

Interpolation

The conjecture Algorithms Evidence

- Convert $L_p(A_f, s)$ into a *p*-adic power series $\mathcal{L}_p(A_f, T)$ in terms of $T = \gamma^{s-1} 1$.
- Let $\epsilon_p(A_f) := \prod_{\sigma} \epsilon_p(f^{\sigma})$ be the *p*-adic multiplier.
- Then we have the following interpolation property

$$\frac{\mathcal{L}_p(A_f,0)}{\epsilon_p(A_f)} = \frac{L(A_f,1)}{\Omega_{A_f}^+}.$$

p-adic heights

The conjecture Algorithms Evidence

Let A_f^{\vee} be the dual abelian variety of A_f . The *p*-adic height pairing

 $h: A_f(\mathbb{Q}) \times A_f^{\vee}(\mathbb{Q}) \to \mathbb{Q}_p$

is a bilinear pairing with some additional properties (more on this later).

Conjecture. (Schneider) The *p*-adic height pairing is nondegenerate.

- There are several different constructions of h, due to Néron, Bernardi, Perrin-Riou, Schneider, Mazur-Tate, Nekovář.
- Can define h for arbitrary abelian varieties over number fields and other types of reduction at p.
- For p good ordinary, the constructions are all known to be equivalent (due to Mazur-Tate, Nekovář, Besser).

If A_f is principally polarized, get a pairing $h: A_f(\mathbb{Q}) \times A_f(\mathbb{Q}) \to \mathbb{Q}_p$.

p-adic regulator

The conjecture Algorithms Evidence

$$\blacksquare \varphi: A_f \to A_f^{\vee}: \text{ polarization}.$$

 \blacksquare P_1, \ldots, P_r : generators of the free part of $A_f(\mathbb{Q})$.

We define

$$\operatorname{Reg}_{p}(A_{f}/\mathbb{Q}) := \frac{1}{[A_{f}^{\vee}(\mathbb{Q}) : \varphi(A_{f}(\mathbb{Q}))]} \left(\det \left(h(P_{i}, \varphi(P_{j})) \right)_{i,j} \right).$$

■ Using this, define $\operatorname{Reg}_{\gamma}(A_f/\mathbb{Q}) := \operatorname{Reg}_p(A_f/\mathbb{Q})/\log_p(\gamma)^r$.

The conjecture

The conjecture Algorithms Evidence

We make the following p-adic BSD conjecture:

Conjecture. (Balakrishnan, Stein, M.) The Mordell-Weil rank r of A_f/\mathbb{Q} equals $\operatorname{ord}_{T=0}(\mathcal{L}_p(A_f, T))$ and

$$\frac{\mathcal{L}_p^*(A_f, 0)}{\epsilon_p(A_f)} = \frac{\operatorname{Reg}_{\gamma}(A_f/\mathbb{Q}) \cdot |\operatorname{III}(A_f/\mathbb{Q})| \cdot \prod_v c_v(A_f)}{|A_f(\mathbb{Q})_{\operatorname{tors}}| \cdot |A_f^{\vee}(\mathbb{Q})_{\operatorname{tors}}|}.$$

This conjecture

- \blacksquare is equivalent to BSD in rank 0,
- reduces to Mazur-Tate-Teitelbaum if g = 1,
- is consistent with the main conjecture of Iwasawa theory for abelian varieties, via work of Perrin-Riou and Schneider.

Computing the *p***-adic** *L***-function**

The conjecture Algorithms Evidence

To test our conjecture in examples, we need an algorithm to compute $\mathcal{L}_p(A_f, T)$.

- The modular symbols $[r]_{f^{\sigma}}^+$ can be computed efficiently in a purely algebraic way up to a rational factor (Cremona, Stein),
- \blacksquare To compute $\mathcal{L}_p(A_f,T)$ to n digits of accuracy, can use
 - (i) approximation using Riemann sums (similar to Stein-Wuthrich) exponential in n or
 - (ii) overconvergent modular symbols (due to Pollack-Stevens) polynomial in n.
- Both methods are now implemented in Sage.

Normalization

The conjecture Algorithms Evidence

To find the correct normalization of the modular symbols, can use the interpolation property $\prod_{\sigma} [0]_{f^{\sigma}}^{+} = \frac{L(A,1)}{\Omega_{A}^{+}}$.

Find a Dirichlet character ψ associated to a quadratic number field $\mathbb{Q}(\sqrt{D})$ such that D > 0 and

•
$$L(B, 1) \neq 0$$
, where B is A_f twisted by ψ ,
• $gcd(N, D) = 1$.

• Can express $[r]_B^+ := \prod_{\sigma} [r]_{f_{\psi}^{\sigma}}^+$ in terms of modular symbols $[r]_{f^{\sigma}}^+$.

• We have $\Omega_B^+ \cdot \eta_{\psi} = D^{g/2} \cdot \Omega_{A_f}^+$ for some $\eta_{\psi} \in \mathbb{Q}^{\times}$.

 \Rightarrow The correct normalization factor is

$$\frac{L(B,1)}{\Omega_B^+ \cdot [0]_B^+} = \frac{\eta_{\psi} \cdot L(B,1)}{D^{g/2} \cdot \Omega_{A_f}^+ \cdot [0]_B^+}.$$

Computing the p-adic regulator if g = 1

The conjecture Algorithms Evidence

Question. How can we compute *p*-adic heights?

- **The construction of Mazur-Tate relies on the** *p*-adic σ -function.
- If g = 1, then this leads to a practical algorithm (Mazur-Stein-Tate), which was heavily optimized in the PhD thesis of Harvey.

Problem. It's not clear how to generalize this algorithm to g > 1.

- Instead, we use a different, but equivalent construction of *p*-adic heights due to Coleman-Gross.
- From now on, suppose that $A_f = \operatorname{Jac}(C)$, where C/\mathbb{Q} is a curve of genus g.

Coleman-Gross height pairing

The conjecture Algorithms Evidence

The Coleman-Gross height pairing is a symmetric bilinear pairing

$$h: \mathsf{Div}^0(C) \times \mathsf{Div}^0(C) \to \mathbb{Q}_p, \text{ where }$$

- *h* can be written as a sum of local height pairings $h = \sum_{v} h_{v}$ over all finite places *v* of \mathbb{Q} .
- We have $h(D, \operatorname{div}(\beta)) = 0$ for $\beta \in k(C)^{\times}$, so h is well-defined on $A_f \times A_f$.
- The construction of h_v depends on whether v = p or $v \neq p$.
- All h_v are invariant under changes of models of $C \times \mathbb{Q}_v$.

Local heights away from \boldsymbol{p}

The conjecture Algorithms Evidence

- Let $D, E \in \text{Div}^0(C)$ with disjoint support.
- Suppose $v \neq p$,
- $\blacksquare \mathcal{X} / \operatorname{Spec}(\mathbb{Z}_v)$: proper regular model of C,
- \blacksquare (.)_v: intersection pairing on \mathcal{X} ,
- $\mathcal{D}, \mathcal{E} \in \text{Div}(\mathcal{X})$: extensions of D, E to \mathcal{X} such that $(\mathcal{D}, F)_v = (\mathcal{E}, F)_v = 0$ for all vertical divisors $F \in \text{Div}(\mathcal{X})$.

Then we have

$$h_v(D, E) = -(\mathcal{D} \cdot \mathcal{E})_v \cdot \log_p(v).$$

This is completely analogous to the decomposition of the Néron-Tate height on A_f in terms of arithmetic intersection theory on X due to Faltings and Hriljac.

Computing local heights away from \boldsymbol{p}

The conjecture Algorithms Evidence

- Proper regular models can be computed in practice in many cases using Magma.
- If C is hyperelliptic, divisors on C and extensions to \mathcal{X} can be represented using Mumford representation.
- Intersection multiplicities of divisors on X can be computed algorithmically using linear algebra and Gröbner bases (M.) or resultants (Holmes).
- All of this is implemented in Magma.

Local heights at \boldsymbol{p}

The conjecture Algorithms Evidence

- $h_p(D, E)$ is defined in terms of Coleman integration on $X := C \times \mathbb{Q}_p$.
- Suppose X is hyperelliptic, given by a model $y^2 = g(x)$, where deg(g) is odd.
- Let ω_D denote a differential of the third kind on X such that

•
$$\operatorname{Res}(\omega_D) = D$$
,

• ω_D is normalized with respect to a certain splitting $H^1_{dR}(X) = H^{1,0}_{dR}(X) \oplus W$, where $H^{1,0}_{dR}(X)$ is the set of holomorphic 1-forms on X.

The local height pairing at p is given by the Coleman integral

$$h_p(D, E) = \int_E \omega_D.$$

Coleman integration

The conjecture Algorithms Evidence

- If $P, Q \in X(\mathbb{Q}_p)$ such that $P \equiv Q \pmod{p}$ and ω is a holomorphic 1-form, then it is easy to define and compute $\int_P^Q \omega$.
- Coleman extended this to the rigid analytic space $X_{\mathbb{C}_n}^{\mathrm{an}}$.
- We get a well-defined integral $\int_P^Q \omega$ whenever $P, Q \in X(\mathbb{Q}_p)$ and ω is a meromorphic 1-form which is holomorphic in P and Q.

Properties of the Coleman-integral include

$$\int_{P}^{Q} (a_{1}\omega_{1} + a_{2}\omega_{2}) = a_{1} \int_{P}^{Q} \omega_{1} + a_{2} \int_{P}^{Q} \omega_{2},$$

$$\int_{P}^{R} \omega = \int_{P}^{Q} \omega = \int_{Q}^{R} \omega,$$

$$\int_{P}^{Q} \phi^{*} \omega = \int_{\phi(P)}^{\phi(Q)} \omega \text{ if } \phi \text{ is a rigid analytic map,}$$

$$\int_{P}^{Q} df = f(Q) - f(P).$$

Computing local heights at \boldsymbol{p}

The conjecture Algorithms Evidence

- The work of Balakrishnan-Besser makes Coleman integration on hyperelliptic curves practical. Write $\omega_D = \eta \omega$, where η is holomorphic. We only discuss the computation of $\int_E \eta$.
 - Suppose $P \not\equiv Q \pmod{p}$, but P and Q are fixed by Frobenius.
 - Then we can compute $\int_P^Q \eta$ using a system of linear equations if we know the action of Frobenius on basis differentials $\frac{x^i dx}{2y}$, $i = 0, \ldots, 2g 1$.

- Using properties of Coleman integrals, can compute $\int_P^Q \eta$ for arbitrary P, Q.
- This has been implemented by Balakrishnan in Sage.
- Further computational tricks (due to Balakrishnan-Besser) can be used to compute $\int_E \omega$.

Computing the *p***-adic regulator**

The conjecture Algorithms Evidence

- Suppose $P_1, \ldots, P_r \in A_f(\mathbb{Q})$ are generators of $A_f(\mathbb{Q})$ mod torsion.
- Suppose $P_i = [D_i]$, $D_i \in Div(C)^0$ pairwise relatively prime and with pointwise \mathbb{Q}_p -rational support.
- Recall that $\operatorname{Reg}_p(A_f/\mathbb{Q}) = \operatorname{det}((m_{ij})_{i,j})$, where $m_{ij} = h(D_i, D_j)$.

Problem. Given a subgroup H of $A_f(\mathbb{Q})$ mod torsion of finite index, need to saturate it.

- Currently only possible for g = 1, 2 (g = 3 work in progress due to Stoll), so in general only get $\operatorname{Reg}_p(A_f/\mathbb{Q})$ up to a \mathbb{Q} -rational square.
- See also recent work of Holmes.
- For g = 2, can use generators of H and compute the index using Néron-Tate regulators to get $\operatorname{Reg}_p(A_f/\mathbb{Q})$ exactly.

Empirical evidence for g = r = 2

The conjecture Algorithms Evidence

■ From "Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves" (Flynn, Leprevost, Schaefer, Stein, Stoll, Wetherell '01), we considered 16 genus 2 curves C_N whose Jacobians A_N are optimal quotients of J₀(N).

Each A_N has Mordell-Weil rank 2 over \mathbb{Q} .

Empirical evidence for g = r = 2, cont'd

The conjecture Algorithms Evidence

- Tamagawa numbers, $|A_N(\mathbb{Q})_{\text{tors}}|$ and $|\operatorname{III}(A_N/\mathbb{Q})[2]|$ were already computed by Flynn et al.
- To numerically verify *p*-adic BSD, need to compute *p*-adic regulators $\operatorname{Reg}_p(A_N/\mathbb{Q})$ and *p*-adic special values $\mathcal{L}_p^*(A_N, 0)$.
- We first used Riemann sums for the *p*-adic special values, leading to very few digits of precision.
- We recomputed the special values later using overconvergent modular symbols.
- All regulators were computed to precision at least p^{12} .

Summary of evidence

The conjecture Algorithms Evidence

Theorem. (Balakrishnan, Stein, M.) Assume that for all A_N the Shafarevich-Tate group over \mathbb{Q} is 2-torsion. Then our conjecture is satisfied up to least 4 digits of precision at all good ordinary primes 5 such $that <math>C_N \times \mathbb{Q}_p$ has an odd degree model over \mathbb{Q}_p .

- Typically, we have at least 6 digits of precision.
- The assertion $\operatorname{III}(A_N/\mathbb{Q}) = \operatorname{III}(A_N/\mathbb{Q})[2]$ is equivalent to classical BSD (Flynn et al.).
- For all $N \neq 167$ the differences of Q-rational points on C_N generate $A_N(\mathbb{Q})$.
- For N = 167, the divisors we used generate finite index subgroups, depending on p.

N = 188

For example, for N = 188, we have:

p -adic regulator $\operatorname{Reg}_p(A_N/\mathbb{Q})$	p-adic L -value	p -adic multiplier $\epsilon_p(A_N)$
$5623044 + O(7^8)$	$1259 + O(7^4)$	$507488 + O(7^8)$
$4478725 + O(11^7)$	$150222285 + O(11^8)$	$143254320 + O(11^8)$
$775568547 + O(13^8)$	$237088204 + O(13^8)$	$523887415 + O(13^8)$
$1129909080 + O(17^8)$	$6922098082 + O(17^8)$	$4494443586 + O(17^8)$
$14409374565 + O(19^8)$	$15793371104 + O(19^8)$	$4742010391 + O(19^8)$
$31414366115 + O(23^8)$	$210465118 + O(23^8)$	$45043095109 + O(23^8)$
$2114154456754 + O(37^8)$	$1652087821140 + O(37^8)$	$1881820314237 + O(37^8)$
$6279643012659 + O(41^8)$	$2066767021277 + O(41^8)$	$4367414685819 + O(41^8)$
$9585122287133 + O(43^8)$	$3309737400961 + O(43^8)$	$85925017348 + O(43^8)$
$3328142761956 + O(53^8)$	$5143002859 + O(53^6)$	$6112104707558 + O(53^8)$
$17411023818285 + O(59^8)$	$7961878705 + O(59^6)$	$98405729721193 + O(59^8)$
$102563258757138 + O(61^8)$	$216695090848 + O(61^7)$	$137187998566490 + O(61^8)$
$26014679325501 + O(67^8)$	$7767410995 + O(67^6)$	$38320151289262 + O(67^8)$
$490864897182147 + O(71^8)$	$16754252742 + O(71^6)$	$530974572239623 + O(71^8)$
$689452389265311 + O(73^8)$	$193236387 + O(73^5)$	$162807895476311 + O(73^8)$
$878760549863821 + O(79^8)$	$1745712500 + O(79^5)$	$1063642669147985 + O(79^8)$
$2070648686579466 + O(83^8)$	$2888081539 + O(83^5)$	$1103760059074178 + O(83^8)$
$3431343284115672 + O(89^8)$	$1591745960 + O(89^5)$	$1012791564080640 + O(89^8)$
$4259144286293285 + O(97^8)$	$21828881 + O(97^4)$	$6376229493766338 + O(97^8)$

N = 188 – normalization

The conjecture Algorithms Evidence

The additional BSD quantities for N = 188 are

$$|\operatorname{III}(A_N)[2]| = 1, |A_N(\mathbb{Q})_{\operatorname{tors}}|^2 = 1, c_2 = 9, c_{47} = 1.$$

We find that for the quadratic character ψ associated to $\mathbb{Q}(\sqrt{233})$, the twist B of A_N by ψ has rank 0 over \mathbb{Q} .

- Algebraic computation yields $[0]_B^+ = 144$,
- $\eta_{\psi} = 1$, computed by comparing bases for the integral 1-forms on the curve C_N and its twist by ψ .

$$\blacksquare \frac{\eta_{\psi} \cdot L(B,1)}{233 \cdot \Omega_{A_N}^+} = 36.$$

• So the normalization factor for the modular symbol is 1/4.

Rank 4 evidence

The conjecture Algorithms Evidence

- The Jacobian A of the twist C of $X_0(31)$ by the Dirichlet character associated to $\mathbb{Q}(\sqrt{-47})$ has rank 4 over \mathbb{Q} .
- We checked our conjecture for p = 29, 61, 79 to 8 digits of precision under the assumption that $\operatorname{III}(A/\mathbb{Q})$ is 2-torsion.
- Since the twist is odd, we had to use the minus modular symbol associated to $J_0(31)$.
- For the normalization of the minus modular symbol, we used the twist of $X_0(31)$ by the Dirichlet character associated to $\mathbb{Q}(\sqrt{-19})$, whose Jacobian has rank 0 over \mathbb{Q} .
- For the regulator computations, we needed to work with generators of subgroups of finite index, depending on *p*.

Supersingular reduction

The conjecture Algorithms Evidence

Suppose A_f has supersingular reduction at p.

- For elliptic curves, an analogue of the conjecture of Mazur-Tate-Teitelbaum is due to Bernardi-Perrin-Riou.
- Computation of p-adic special values works analogously.
- To extend Coleman-Gross, we would need a canonical splitting of $H^1_{dR}(C \times \mathbb{Q}_p)$.
- It's not known how to do this!
- Other constructions of the *p*-adic height don't seem suitable for computations.

٩.

Toric reduction

The conjecture Algorithms Evidence

Suppose A_f has purely toric reduction at p.

- If g = 1 and the reduction is nonsplit multiplicative, Mazur-Tate-Teitelbaum is analogous to the good ordinary case.
- If g = 1 and the reduction is split multiplicative, Mazur-Tate-Teitelbaum becomes more interesting.
- Computation of p-adic special values works similarly.
- An extension of Coleman-Gross to this case is work in progress of Besser.
- Work of Werner provides formulas for the *p*-adic height pairing if the rigid uniformisation of *A_f* is known.