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■ Let N ≥ 1 be an integer and let J0(N) be the Jacobian of the modular
curve X0(N).

■ Let f(z) =
∑

∞

n=1 ane
2πinz ∈ S2(Γ0(N)) be a newform such that all

an ∈ Q.

■ Let AnnT(f) be the annihilator of f in the Hecke algebra
T = Z[. . . , Tn, . . .] generated by the Hecke operators on J0(N).

■ Then Af = J0(N)/AnnT(f)J0(N) is an elliptic curve defined over Q.

■ Wiles et al. have shown: Every elliptic curve Af over Q arises in this
way.

■ Consequence: The L-function L(Af , s) = L(f, s) of Af can be
continued analytically to C.
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■ f(z) =
∑

∞

n=1 ane
2πinz ∈ S2(Γ0(N)): newform

■ Then Kf = Q(. . . , an, . . .) is totally real.

■ Af = J0(N)/AnnT(f)J0(N): abelian variety /Q associated to f ,

■ g = [Kf : Q]: dimension of Af ,

■ Gf = {σ : Kf →֒ R},

■ fσ(z) =
∑

∞

n=1 σ(an)e
2πinz for σ ∈ Gf ,

■ L(Af , s) =
∏

σ∈Gf
L(fσ, s): L-function of Af , can be continued

analytically to C,
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Let A denote the Néron model of Af over Spec(Z).
A Néron differential on Af is a generator of the global relative differential
g-forms on A, pulled back to Af .

Example. If Af is an elliptic curve in minimal Weierstraß form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

then dx
2y+a1x+a3

is a Néron differential.

We define the real period (resp. the minus period) of Af by

Ω±

Af
:=

∫

Af (C)±
|ωAf |,

where ωAf is a Néron differential and Af (C)
± is the set of elements of Af (C)

fixed by ± complex conjugation.
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■ Let v be a prime number,

■ Let Av be the special fiber of A above v and let A0
v denote its

connected component.

■ Then Φv = Av/A0
v is a finite group scheme defined over Fv.

■ The Tamagawa number cv(Af ) is the number of Fv-rational points on
Φv.

■ Let 〈 , 〉NT denote the Néron-Tate (or canonical) height pairing on Af .

■ The regulator Reg(Af/Q) is defined by

Reg(Af/Q) := det (〈Pi, Pj〉NT)i,j ,

where P1, . . . , Pr generate the free part of Af (Q).
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■ The Shafarevich-Tate groupX(Af/Q) is defined using Galois
cohomology We will assume that it is finite throughout this talk.

■ Let L∗(Af , 1) be the leading term of the series expansion of L(Af , s) in
s = 1.

■ Let Af (Q)tors denote the group of rational points on Af of finite order,
likewise for the dual abelian variety A∨

f of Af .

Conjecture (Birch-Swinnerton-Dyer, Tate)
We have rk(Af (Q)) = ords=1 L(Af , s) and

L∗(Af , 1)

Ω+
Af

=
Reg(Af/Q) · |X(Af/Q)| ·∏v cv(Af )

|Af (Q)tors| · |A∨
f (Q)tors|

.
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■ Let p > 2 be a prime such that Af has good ordinary reduction at p,
that is, p ∤ ap.

Question. Is there a p-adic analogue of the BSD conjecture?

Idea. Define a p-adic analytic L-function associated to Af which
interpolates L(Af , s) p-adically at special values (e.g. at s = 1).

Problem: Need to make L(Af , 1) algebraic.
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■ Let p > 2 be a prime such that Af has good ordinary reduction at p,
that is, p ∤ ap.

Question. Is there a p-adic analogue of the BSD conjecture?

Idea. Define a p-adic analytic L-function associated to f which
interpolates L(f, s) p-adically at special values (e.g. at s = 1).

Problem: Need to make L(f, 1) algebraic.

In fact, we need to look at L(fσ, 1) for all σ ∈ Gf .
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If ψ : Z → C is a Dirichlet character mod k, we use the following notation:

■ ψ̄ is the conjugate character to ψ.

■ fψ(z) =
∑

∞

n=1 ψ(n) · an · e2πinz,

■ Kψ is the field generated over Q by the values of ψ,

■ τ(ψ) is the Gauß sum of ψ.
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Theorem. (Shimura) For all σ ∈ Gf there exist Ω+
fσ ∈ R and Ω−

fσ ∈ i · R
such that the following properties are satisfied:

(i) We have
πi

Ω±

fσ

(
∫ i∞

r
fσ(z)dz ±

∫ i∞

−r
fσ(z)dz

)

∈ Kf

for all r ∈ Q.

(ii) If ψ is a Dirichlet character of sign ±, then

L(fψ̄, 1)

τ(ψ) · Ω±

f

∈ KfKψ.

In particular,
L(f, 1)

Ω+
f

∈ Kf .
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Theorem. (Shimura) For all σ ∈ Gf there exist Ω+
fσ ∈ R and Ω−

fσ ∈ i · R
such that the following properties are satisfied:

(iii) If ψ is a Dirichlet character of sign ±, then

σ

(

L(fψ̄, 1)

τ(ψ) · Ω±

f

)

=
L(fσ

ψ̄σ
, 1)

τ(ψσ) · Ω±

fσ
.

■ We call a set {Ω±

fσ}σ∈Gf as in the theorem a set of Shimura periods for
f .

■ Shimura periods are not uniquely determined by the theorem.

■ There is always a Dirichlet character ψ such that L(fψ̄, 1) 6= 0.
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■ Fix a set of Shimura periods {Ω±

fσ}σ∈Gf .

■ Fix a prime p of Kf such that p | p.

■ Let α be the unit root of x2 − apx+ p ∈ (Kf )p[x].

■ The plus (resp. minus) modular symbol map associated to f (and α)
maps r ∈ Q to

[r]±f := − πi

Ω+
f

(
∫ i∞

r
f(z)dz +

∫ i∞

−r
f(z)dz

)

∈ Kf .

■ In particular, we have [0]+f = L(f,1)

Ω+
f

.
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■ Define measures on Z×
p :

µ±f (a+ pnZp) =
1

αn

[

a

pn

]±

f

− 1

αn+1

[

a

pn−1

]±

f

■ We can integrate continuous characters χ : Z×
p → Cp against µ±f .

■ Write x ∈ Z×
p as ω(x) · 〈x〉 where ω(x)p−1 = 1 and 〈x〉 ∈ 1 + pZp.

■ This yields two continuous characters Z×
p → Cp.

■ Define

Lp(f, s) :=

∫

Z×
p

〈x〉s−1 dµ+f (x) for all s ∈ Zp,

where 〈x〉s−1 = expp((s− 1) · logp(〈x〉)).
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■ Fix a topological generator γ of 1 + pZp.

■ Convert Lp(f, s) into a p-adic power series Lp(f, T ) in terms of
T = γs−1 − 1.

■ Let ǫp(f) := (1− α−1)2 be the p-adic multiplier.

Then we have the following interpolation property (due to
Mazur-Tate-Teitelbaum):

Lp(f, 0)
ǫp(f)

=
Lp(f, 1)

ǫp(f)
= [0]+f =

L(f, 1)

Ω+
f

.
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■ All of this depends on the choice of Ω+
f !

■ If Af = E is an elliptic curve, then the real period Ω+
E satisfies the

assertions of Shimura’s theorem, so we can take Ω+
f = Ω+

E .

■ This gives a canonical p-adic L-function Lp(E, s) associated to E.

■ Let Lp(E, T ) be the corresponding p-adic power series.

■ By the interpolation property, the classical BSD conjecture in rank 0 is
equivalent to

Lp(E, 0)
ǫp(f)

=
|X(E/Q)| ·

∏

v cv(E)

|E(Q)tors|2
.
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Conjecture. (Mazur-Tate-Teitelbaum) If Af = E is an elliptic curve such
that rk(E/Q) = 0, then ordT=0(Lp(f, T )) = 0 and

L∗
p(E, 0)

ǫp(f)
=

|X(E/Q)| ·∏v cv(E)

|E(Q)tors|2
,

where L∗
p(E, 0) is the leading coefficient of Lp(E, T ).

Question. How can this be extended to higher rank?
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Conjecture. (Mazur-Tate-Teitelbaum) If Af = E is an elliptic curve, then
we have r := rk(E/Q) = ordT=0(Lp(f, T )) and

L∗
p(E, 0)

ǫp(f)
=

Reg(E/Q) · |X(E/Q)| ·∏v cv(E)

|E(Q)tors|2
,

where L∗
p(E, 0) is the leading coefficient of Lp(E, T ).

Can this be correct?
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Conjecture. (Mazur-Tate-Teitelbaum) If Af = E is an elliptic curve, then
we have r := rk(E/Q) = ordT=0(Lp(f, T )) and

L∗
p(E, 0)

ǫp(f)
=

Reg(E/Q) · |X(E/Q)| ·∏v cv(E)

|E(Q)tors|2
,

where L∗
p(E, 0) is the leading coefficient of Lp(E, T ).

Problem: The left hand side is p-adic, the right hand side is real!.
We will modify the right hand side.
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Conjecture. (Mazur-Tate-Teitelbaum) If Af = E is an elliptic curve, then
we have r := rk(E/Q) = ordT=0(Lp(f, T )) and

L∗
p(E, 0)

ǫp(f)
=

Regγ(E/Q) · |X(E/Q)| ·∏v cv(E)

|E(Q)tors|2
,

where L∗
p(E, 0) is the leading coefficient of Lp(E, T ).

Here
Regγ(E/Q) = Regp(E/Q)/ logp(γ)

r,

where Regp(E/Q) is the p-adic regulator, defined using the p-adic height
pairing (more on this later), a p-adic analogue of the real-valued Néron-Tate
height pairing.
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An extension of the Mazur-Tate-Teitelbaum conjecture to arbitrary dimension
g > 1 should

■ be equivalent to BSD in rank 0,

■ reduce to Mazur-Tate-Teitelbaum if g = 1,

■ be consistent with the main conjecture of Iwasawa theory for abelian
varieties.

Problem. Need to construct a p-adic L-function for Af !

■ Idea: Define Lp(Af , s) :=
∏

σ∈Gf
Lp(f

σ, s) (similar to L(Af , s)).

■ But to pin down Lp(f
σ, s), first need to fix a set {Ω±

fσ}σ∈Gf of Shimura
periods.
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Theorem. (Balakrishnan, Stein, M.) If {Ω±

fσ}σ∈Gf are Shimura periods, then

there exist c ∈ Q× such that

Ω±

Af
= c ·

∏

σ∈Gf

Ω±

fσ .

■ For the proof, we compare volumes of certain related complex tori.

■ By the theorem, we can fix Shimura periods {Ω±

fσ}σ∈Gf such that

Ω±

Af
=
∏

σ∈Gf

Ω±

fσ . (1)

■ With this choice, define Lp(Af , s) :=
∏

σ∈Gf
Lp(f

σ, s).

■ Then Lp(Af , s) does not depend on the choice of Shimura periods, as
long as (1) holds.



Interpolation
The conjecture Algorithms Evidence

Steffen Müller (Universität Hamburg) p-adic BSD for modular abelian varieties – 18 / 39

■ Convert Lp(Af , s) into a p-adic power series Lp(Af , T ) in terms of
T = γs−1 − 1.

■ Let ǫp(Af ) :=
∏

σ ǫp(f
σ) be the p-adic multiplier.

■ Then we have the following interpolation property

Lp(Af , 0)
ǫp(Af )

=
L(Af , 1)

Ω+
Af

.
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Let A∨
f be the dual abelian variety of Af . The p-adic height pairing

h : Af (Q)×A∨
f (Q) → Qp

is a bilinear pairing with some additional properties (more on this later).

Conjecture. (Schneider) The p-adic height pairing is nondegenerate.

■ There are several different constructions of h, due to Néron, Bernardi,
Perrin-Riou, Schneider, Mazur-Tate, Neková̌r.

■ Can define h for arbitrary abelian varieties over number fields and other
types of reduction at p.

■ For p good ordinary, the constructions are all known to be equivalent
(due to Mazur-Tate, Neková̌r, Besser).

■ If Af is principally polarized, get a pairing h : Af (Q)×Af (Q) → Qp.
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■ ϕ : Af → A∨
f : polarization.

■ P1, . . . , Pr: generators of the free part of Af (Q).

We define

Regp(Af/Q) :=
1

[A∨
f (Q) : ϕ(Af (Q))]

(

det (h(Pi, ϕ(Pj)))i,j

)

.

■ This is independent of the choice of ϕ.

■ Using this, define Regγ(Af/Q) := Regp(Af/Q)/ logp (γ)
r.
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We make the following p-adic BSD conjecture:

Conjecture. (Balakrishnan, Stein, M.) The Mordell-Weil rank r of Af/Q
equals ordT=0(Lp(Af , T )) and

L∗
p(Af , 0)

ǫp(Af )
=

Regγ(Af/Q) · |X(Af/Q)| ·∏v cv(Af )

|Af (Q)tors| · |A∨
f (Q)tors|

.

This conjecture

■ is equivalent to BSD in rank 0,

■ reduces to Mazur-Tate-Teitelbaum if g = 1,

■ is consistent with the main conjecture of Iwasawa theory for abelian
varieties, via work of Perrin-Riou and Schneider.
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To test our conjecture in examples, we need an algorithm to compute
Lp(Af , T ).

■ The modular symbols [r]+fσ can be computed efficiently in a purely
algebraic way – up to a rational factor (Cremona, Stein),

■ To compute Lp(Af , T ) to n digits of accuracy, can use

(i) approximation using Riemann sums (similar to Stein-Wuthrich) –
exponential in n or

(ii) overconvergent modular symbols (due to Pollack-Stevens) –
polynomial in n.

■ Both methods are now implemented in Sage.
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To find the correct normalization of the modular symbols, can use the
interpolation property

∏

σ[0]
+
fσ = L(A,1)

Ω+
A

.

■ Find a Dirichlet character ψ associated to a quadratic number field
Q(

√
D) such that D > 0 and

◆ L(B, 1) 6= 0, where B is Af twisted by ψ,

◆ gcd(N,D) = 1.

■ Can express [r]+B :=
∏

σ[r]
+
fσψ

in terms of modular symbols [r]+fσ .

■ We have Ω+
B · ηψ = Dg/2 · Ω+

Af
for some ηψ ∈ Q×.

⇒ The correct normalization factor is

L(B, 1)

Ω+
B · [0]+B

=
ηψ · L(B, 1)

Dg/2 · Ω+
Af

· [0]+B
.
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Question. How can we compute p-adic heights?

■ The construction of Mazur-Tate relies on the p-adic σ-function.

■ If g = 1, then this leads to a practical algorithm (Mazur-Stein-Tate),
which was heavily optimized in the PhD thesis of Harvey.

Problem. It’s not clear how to generalize this algorithm to g > 1.

■ Instead, we use a different, but equivalent construction of p-adic heights
due to Coleman-Gross.

■ From now on, suppose that Af = Jac(C), where C/Q is a curve of
genus g.
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The Coleman-Gross height pairing is a symmetric bilinear pairing

h : Div0(C)× Div0(C) → Qp, where

■ h can be written as a sum of local height pairings h =
∑

v hv over all
finite places v of Q.

■ We have h(D, div(β)) = 0 for β ∈ k(C)×, so h is well-defined on
Af ×Af .

■ The construction of hv depends on whether v = p or v 6= p.

■ All hv are invariant under changes of models of C ×Qv.
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■ Let D,E ∈ Div0(C) with disjoint support.

■ Suppose v 6= p,

■ X /Spec(Zv): proper regular model of C,

■ ( . )v: intersection pairing on X ,

■ D, E ∈ Div(X ): extensions of D,E to X such that
(D . F )v = (E . F )v = 0 for all vertical divisors F ∈ Div(X ).

Then we have
hv(D,E) = −(D . E)v · logp(v).

■ This is completely analogous to the decomposition of the Néron-Tate
height on Af in terms of arithmetic intersection theory on X due to
Faltings and Hriljac.
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■ Proper regular models can be computed in practice in many cases using
Magma.

■ If C is hyperelliptic, divisors on C and extensions to X can be
represented using Mumford representation.

■ Intersection multiplicities of divisors on X can be computed
algorithmically using linear algebra and Gröbner bases (M.) or resultants
(Holmes).

■ All of this is implemented in Magma.
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■ hp(D,E) is defined in terms of Coleman integration on X := C ×Qp.

■ Suppose X is hyperelliptic, given by a model y2 = g(x), where deg(g) is
odd.

■ Let ωD denote a differential of the third kind on X such that

◆ Res(ωD) = D,

◆ ωD is normalized with respect to a certain splitting
H1

dR(X) = H1,0
dR (X)⊕W , where H1,0

dR (X) is the set of
holomorphic 1-forms on X.

The local height pairing at p is given by the Coleman integral

hp(D,E) =

∫

E
ωD.
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■ If P, Q ∈ X(Qp) such that P ≡ Q (mod p) and ω is a

holomorphic 1-form, then it is easy to define and compute
∫ Q
P ω.

■ Coleman extended this to the rigid analytic space Xan
Cp
.

■ We get a well-defined integral
∫ Q
P ω whenever P,Q ∈ X(Qp) and ω is a

meromorphic 1-form which is holomorphic in P and Q.

Properties of the Coleman-integral include

■
∫ Q
P (a1ω1 + a2ω2) = a1

∫ Q
P ω1 + a2

∫ Q
P ω2,

■
∫ R
P ω =

∫ Q
P ω =

∫ R
Q ω,

■
∫ Q
P φ∗ω =

∫ φ(Q)
φ(P ) ω if φ is a rigid analytic map,

■
∫ Q
P df = f(Q)− f(P ).
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■ The work of Balakrishnan-Besser makes Coleman integration on
hyperelliptic curves practical. Write ωD = η − ω, where η is
holomorphic. We only discuss the computation of

∫

E η.

◆ Suppose P 6≡ Q (mod p), but P and Q are fixed by Frobenius.

◆ Then we can compute
∫ Q
P η using a system of linear equations if we

know the action of Frobenius on basis differentials xidx
2y ,

i = 0, . . . , 2g − 1.

◆ The latter can be computed using Kedlaya’s algorithm.

◆ Using properties of Coleman integrals, can compute
∫ Q
P η for

arbitrary P,Q.

■ This has been implemented by Balakrishnan in Sage.

■ Further computational tricks (due to Balakrishnan-Besser) can be used
to compute

∫

E ω.
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■ Suppose P1, . . . , Pr ∈ Af (Q) are generators of Af (Q) mod torsion.

■ Suppose Pi = [Di], Di ∈ Div(C)0 pairwise relatively prime and with
pointwise Qp-rational support.

■ Recall that Regp(Af/Q) = det((mij)i,j), where mij = h(Di, Dj).

Problem. Given a subgroup H of Af (Q) mod torsion of finite index, need to
saturate it.

■ Currently only possible for g = 1, 2 (g = 3 work in progress due to
Stoll), so in general only get Regp(Af/Q) up to a Q-rational square.

■ See also recent work of Holmes.

■ For g = 2, can use generators of H and compute the index using
Néron-Tate regulators to get Regp(Af/Q) exactly.



Empirical evidence for g = r = 2
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■ From “Empirical evidence for the Birch and Swinnerton-Dyer conjectures
for modular Jacobians of genus 2 curves” (Flynn, Leprevost, Schaefer,
Stein, Stoll, Wetherell ’01), we considered 16 genus 2 curves CN whose
Jacobians AN are optimal quotients of J0(N).

■ Each AN has Mordell-Weil rank 2 over Q.

N Equation of CN

67 y2 + (x3 + x + 1)y = x5 − x

73 y2 + (x3 + x2 + 1)y = −x5 − 2x3 + x

85 y2 + (x3 + x2 + x)y = x4 + x3 + 3x2 − 2x + 1

93 y2 + (x3 + x2 + 1)y = −2x5 + x4 + x3

103 y2 + (x3 + x2 + 1)y = x5 + x4

107 y2 + (x3 + x2 + 1)y = x4 − x2 − x− 1

115 y2 + (x3 + x2 + 1)y = 2x3 + x2 + x

125 y2 + (x3 + x+ 1)y = x5 + 2x4 + 2x3 + x2 − x− 1

133 y2 + (x3 + x2 + 1)y = −x5 + x4 − 2x3 + 2x2 − 2x

147 y2 + (x3 + x2 + x)y = x5 + 2x4 + x3 + x2 + 1

161 y2 + (x3 + x + 1)y = x3 + 4x2 + 4x + 1

165 y2 + (x3 + x2 + x)y = x5 + 2x4 + 3x3 + x2 − 3x

167 y2 + (x3 + x + 1)y = −x5 − x3 − x2 − 1

177 y2 + (x3 + x2 + 1)y = x5 + x4 + x3

188 y2 = x5 − x4 + x3 + x2 − 2x + 1

191 y2 + (x3 + x + 1)y = −x3 + x2 + x
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■ Tamagawa numbers, |AN (Q)tors| and |X(AN/Q)[2]| were already
computed by Flynn et al.

■ To numerically verify p-adic BSD, need to compute p-adic regulators
Regp(AN/Q) and p-adic special values L∗

p(AN , 0).

■ We first used Riemann sums for the p-adic special values, leading to very
few digits of precision.

■ We recomputed the special values later using overconvergent modular
symbols.

■ All regulators were computed to precision at least p12.
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Theorem. (Balakrishnan, Stein, M.) Assume that for all AN the
Shafarevich-Tate group over Q is 2-torsion. Then our conjecture is satisfied
up to least 4 digits of precision at all good ordinary primes 5 < p < 100 such
that CN ×Qp has an odd degree model over Qp.

■ Typically, we have at least 6 digits of precision.

■ The assertionX(AN/Q) =X(AN/Q)[2] is equivalent to classical BSD
(Flynn et al.).

■ For all N 6= 167 the differences of Q-rational points on CN generate
AN (Q).

■ For N = 167, the divisors we used generate finite index subgroups,
depending on p.



N = 188
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For example, for N = 188, we have:

p-adic regulator Regp(AN/Q) p-adic L-value p-adic multiplier ǫp(AN )

5623044 + O(78) 1259 + O(74) 507488 + O(78)

4478725 + O(117) 150222285 +O(118) 143254320 +O(118)

775568547 + O(138) 237088204 +O(138) 523887415 +O(138)

1129909080 + O(178) 6922098082 +O(178) 4494443586 +O(178)

14409374565 +O(198) 15793371104 +O(198) 4742010391 +O(198)

31414366115 +O(238) 210465118 +O(238) 45043095109 +O(238)

2114154456754 +O(378) 1652087821140 + O(378) 1881820314237 + O(378)

6279643012659 +O(418) 2066767021277 + O(418) 4367414685819 + O(418)

9585122287133 +O(438) 3309737400961 + O(438) 85925017348 +O(438)

3328142761956 +O(538) 5143002859 +O(536) 6112104707558 + O(538)

17411023818285 +O(598) 7961878705 +O(596) 98405729721193 + O(598)

102563258757138 + O(618) 216695090848 +O(617) 137187998566490 + O(618)

26014679325501 +O(678) 7767410995 +O(676) 38320151289262 + O(678)

490864897182147 + O(718) 16754252742 +O(716) 530974572239623 + O(718)

689452389265311 + O(738) 193236387 +O(735) 162807895476311 + O(738)

878760549863821 + O(798) 1745712500 +O(795) 1063642669147985 + O(798)

2070648686579466 + O(838) 2888081539 +O(835) 1103760059074178 + O(838)

3431343284115672 + O(898) 1591745960 +O(895) 1012791564080640 + O(898)

4259144286293285 + O(978) 21828881 +O(974) 6376229493766338 + O(978)
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The additional BSD quantities for N = 188 are

|X(AN )[2]| = 1, |AN (Q)tors|2 = 1, c2 = 9, c47 = 1.

We find that for the quadratic character ψ associated to Q(
√
233), the twist

B of AN by ψ has rank 0 over Q.

■ Algebraic computation yields [0]+B = 144,

■ ηψ = 1, computed by comparing bases for the integral 1-forms on the
curve CN and its twist by ψ.

■
ηψ·L(B,1)

233·Ω+
AN

= 36.

■ So the normalization factor for the modular symbol is 1/4.
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■ The Jacobian A of the twist C of X0(31) by the Dirichlet character
associated to Q(

√
−47) has rank 4 over Q.

■ We checked our conjecture for p = 29, 61, 79 to 8 digits of precision
under the assumption thatX(A/Q) is 2-torsion.

■ Since the twist is odd, we had to use the minus modular symbol
associated to J0(31).

■ For the normalization of the minus modular symbol, we used the twist of
X0(31) by the Dirichlet character associated to Q(

√
−19), whose

Jacobian has rank 0 over Q.

■ For the regulator computations, we needed to work with generators of
subgroups of finite index, depending on p.



Supersingular reduction
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Suppose Af has supersingular reduction at p.

■ For elliptic curves, an analogue of the conjecture of
Mazur-Tate-Teitelbaum is due to Bernardi-Perrin-Riou.

■ Computation of p-adic special values works analogously.

■ To extend Coleman-Gross, we would need a canonical splitting of
H1
dR(C ×Qp).

■ It’s not known how to do this!

■ Other constructions of the p-adic height don’t seem suitable for
computations.



Toric reduction
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Suppose Af has purely toric reduction at p.

■ If g = 1 and the reduction is nonsplit multiplicative,
Mazur-Tate-Teitelbaum is analogous to the good ordinary case.

■ If g = 1 and the reduction is split multiplicative, Mazur-Tate-Teitelbaum
becomes more interesting.

■ Computation of p-adic special values works similarly.

■ An extension of Coleman-Gross to this case is work in progress of
Besser.

■ Work of Werner provides formulas for the p-adic height pairing if the
rigid uniformisation of Af is known.
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