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Abstract. In this short note we show that the uniform abc-conjecture puts strong re-

strictions on the coordinates of rational points on elliptic curves. For the proof we use

a variant of Vojta’s height inequality formulated by Mochizuki. As an application, we

generalize a result of Silverman on elliptic non-Wieferich primes.

1. Introduction

If E/Q is an elliptic curve in Weierstrass form with point at infinity O and P ∈ E(Q)\{O},
then it is well known that we can write

P =

(
aP
d2P
,
bP
d3P

)
,

where aP , bP , dP ∈ Z satisfy gcd(dP , aP bP ) = 1 and dP > 0.

The structure of the denominators dP has been studied, for instance, by Everest-Reynolds-
Stevens [ERS07] and Stange [Sta11], and has recently received increasing attention in the
context of elliptic divisibility sequences first studied by Ward [War48]. See for instance
[EEW01] or [Rey12] and the references therein. In this paper we derive strong conditions on
the denominators dP from the uniform abc-conjecture over number fields (see Conjecture 2.2
or [GS00]).

If n is an integer, we let rad(n) denote the product of distinct prime divisors of n. We call
n powerful if ordp(n) 6= 1 for all prime numbers p. The powerful part of n is defined to be
the largest powerful integer dividing n.

Theorem 1.1. Let E/Q be an elliptic curve in Weierstrass form and suppose that the
uniform abc-conjecture holds. Then, for all ε > 0, there exists constants c and c′, only
depending on E and ε, such that for all P ∈ E(Q) \ {O} the following hold:

(i) We have

max

{
1

2
log |aP |, log dP

}
≤ (1 + ε) log rad(dP ) + c.
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(ii) Let vP be the powerful part of dP and write dP = uPvP ; then

log vP ≤ ε log |uP |+ c′.

Remark 1.2. A strong form of Siegel’s Theorem implies a weaker upper bound (and an
analogous lower bound) on log |aP |: There is a constant c = c(E, ε) such that

(1− ε) log dP − c ≤
1

2
log |aP | ≤ (1 + ε) log dP + c,

see [Sil86, Example IX.3.3].

Remark 1.3. Mochizuki [Moc12] has recently announced a proof of the uniform abc-conjecture
over number fields.

If, in the notation of Theorem 1.1, dP is powerful, then |uP | = 1. Hence the following
result is an immediate consequence of Theorem 1.1 (ii):

Corollary 1.4. Suppose that the uniform abc-conjecture holds and let E/Q be an elliptic
curve in Weierstrass form. Then the set of all P ∈ E(Q) \ {O} such that dP is powerful
is finite.

Remark 1.5. In particular, Corollary 1.4 implies that only finitely many P ∈ E(Q) \ {O}
have prime power denominator if the uniform abc-conjecture holds. The question of prime
power denominators was studied, for instance, in [ERS07]; there it is shown ([ERS07,
Theorem 1.1]) that for a fixed exponent n > 1, there are only finitely many P ∈ E(Q)\{O}
such that dP is an nth power. Moreover, it is claimed ([ERS07, Remark 1.2]) that the
uniform abc-conjecture over number fields implies that for n � 0, there are no P ∈
E(Q) \ {O} such that dP is an nth power. Together, these results would also imply that
the finiteness of the set of P ∈ E(Q)\{O} such that dP is a perfect power is a consequence of
the uniform abc-conjecture. However, no proof of [ERS07, Remark 1.2] has been published
so far.

Another application of Theorem 1.1 concerns elliptic non-Wieferich primes. For a prime
p of good reduction for an elliptic curve E/Q, we define Np := #E(Fp). If P ∈ E(Q) is
non-torsion, let

WE,P :=
{
p good prime for E : NpP 6≡ O mod p2

}
be the set of elliptic non-Wieferich primes to base P .

Corollary 1.6. Suppose that the uniform abc-conjecture holds and let E/Q be an elliptic
curve in Weierstrass form. If P ∈ E(Q) is non-torsion, then

(1) |{p ∈ WE,P : p ≤ X}| ≥
√

log(X) +OE,P (1) as X →∞.

Remark 1.7. Assuming the abc-conjecture over Q, Silverman has already proved that (1)
holds for all non-torsion P ∈ E(Q) if j(E) ∈ {0, 1728}, cf. [Sil88, Theorem 2].
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Proof: The only place in Silverman’s proof of (1) where the abc-conjecture and the
assumption j(E) ∈ {0, 1728} are invoked is in the proof of [Sil88, Lemma 13]. In order to
deduce the statement of [Sil88, Lemma 13] for arbitrary E, it suffices to show that for all
ε > 0 there exists a constant c = c(E, ε) such that

log vnP ≤ ε log(dnP ) + c

for all n ≥ 1, where vnP is the powerful part of dnP . But this follows at once from part (ii)
of Theorem 1.1. �

Corollary 1.6 is the analogue of [Sil88, Theorem 1], giving an asymptotic lower bound
(dependent on the abc-conjecture over Q) for the number of classical non-Wieferich primes
up to a given bound. See [Vol00] for further results concerning elliptic non-Wieferich
primes.

In Section 2 we recall work of Mochizuki from [Moc10], which we use in Section 3 for the
proof of Theorem 1.1.
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2. The uniform abc-conjecture and Vojta’s height inequality

In this section, we discuss the uniform abc-conjecture and a variant of Vojta’s height
conjecture.

Let K be a number field with ring of integers OK , let X be a smooth, proper, geometrically
connected curve over K and let D be an effective divisor on X. Extend X to a proper
regular model X over Spec(OK) and D to an effective horizontal divisor D ∈ Div(X ).

Suppose that P ∈ X(F ), where F is some finite extension of K. We can define the con-
ductor condX ,D(P ) of P as follows: Let π : X ′ → X × Spec(OF ) be the minimal desingu-
larization and let P ∈ Div(X ′) be the Zariski closure of P . Then we define

condX ,D(P ) :=
∏
p∈S

Nm(p)
1

[F :Q] ∈ R,

where S is the set of finite primes p of F such that the intersection multiplicity (P . π∗D)p 6=
0.

Remark 2.1. For different constructions of the (logarithmic) conductor, see [Moc10, §1] or
[BG06, §14.4]. It is easy to see that, up to a bounded function, these constructions are all
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equivalent. By [Moc10, Remark 1.5.1] changing the model X only changes log-condX ,D by
a bounded function. Hence, up to a bounded function, condX ,D only depends on D.

If P ∈ X(K), then we write k(P ) for the minimal field of definition of P . Mochizuki [Moc10,
§2] has rewritten the uniform abc-conjecture over number fields ([GS00]) as follows:

Conjecture 2.2. (Uniform abc-conjecture) Let D = (0) + (1) + (∞) ∈ Div(P1) and let
h denote a Weil height on P1 with respect to the divisor (∞). Extend D to an effective
horizontal divisor D on X = P1

Z.

If ε > 0 and d ∈ N, then there exists a constant c = c(ε, d) such that

h(P ) ≤ (1 + ε) (log disc(k(P )) + log condX ,D(P )) + c

for all P ∈ X(Q) satisfying [k(P ) : Q] ≤ d.

Remark 2.3. The abc-conjecture over Q (see for instance [BG06, Conjecture 12.2.2]) is
a special case of Conjecture 2.2. Indeed, let a and b be positive coprime integers, let
c = a + b and consider the point P = [a : c] ∈ P1. Then, up to a bounded function, we
have h(P ) = log max{|a|, |c|} = log c. Moreover, disc(k(P )) = 1 and

condX ,D(P ) =
∏
p∈S

p = rad(abc),

where S is the set of prime numbers p such that ordp(a) > 0, ordp(b) > 0 or ordp(c) > 0.

The following version of Vojta’s conjectured height inequality was stated by Mochizuki
[Moc10, §2]

Conjecture 2.4. (Vojta’s height inequality) Let X be a smooth, proper, geometrically
connected curve over a number field K. Let D ⊂ X be an effective reduced divisor, and ωX

the canonical sheaf on X. Fix a proper regular model X of X over Spec(OK) and extend
D to an effective horizontal divisor D on X . Suppose that ωX(D) is ample and let hωX(D)

be a Weil height function on X with respect to ωX(D).

If ε > 0 and d ∈ N, then there exists a constant c = c(ε, d,X ,D) such that

hωX(D)(P ) ≤ (1 + ε) (log disc(k(P )) + log condX ,D(P )) + c

for all P ∈ X(K) \ supp(D) satisfying [k(P ) : Q] ≤ d.

Obviously Conjecture 2.4 contains Conjecture 2.2 as a special case. In fact, the converse
also holds:

Theorem 2.5. Conjecture 2.2 and Conjecture 2.4 are equivalent.

Proof: See [Moc10, Theorem 2.1]), [BG06, Theorem 14.4.16] or [VF02, Theorem 5.1]. �
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3. Proof of Theorem 1.1

Proof: We specialize Conjecture 2.4 to the case K = Q, X = E, d = 1 and D = (O). Let
P ∈ E(Q) \ {O}; then we have ωE(D) = D and hence

hωE(D)(P ) = max

{
1

2
log |aP |, log dP

}
+O(1),

since the function P 7→ max
{

1
2

log |aP |, log dP
}

is a Weil height on E with respect to D.

In order to compute the logarithmic conductor of P we consider the minimal desingular-
ization X of the normal model over Spec(Z) determined by the given Weierstrass equation
of E and extend D to D ∈ Div(X ) by taking the Zariski closure. Then a prime number p
of good reduction satisfies (P .D)p 6= 0 if and only if p | dP ; therefore we have

|log condX ,D(P )− log rad(dP )| ≤
∑
p bad

log p.

Hence the functions P 7→ log condX ,D(P ) and P 7→ log rad(dP ) coincide up to a bounded
function and Conjecture 2.4 implies

max

{
1

2
log |aP |, log dP

}
≤ (1 + ε) log rad(dP ) + c.

By Theorem 2.5, this finishes the proof of (i).

To prove part (ii), let ε > 0, let c = c(E, ε) be the corresponding constant from part (i) of
the theorem and fix some ε′ > 0 such that 2ε′

1−ε′ < ε.

Let P ∈ E(Q) \ {O}. Then (i) implies

log |uP |+ log vP ≤ (1 + ε′) (log rad(uP ) + log rad(vP )) + c

≤ (1 + ε′)

(
log |uP |+

1

2
log vP

)
+ c

and hence we conclude

log vP ≤
2ε′

1− ε′
log |uP |+

2c

1− ε′
,

which proves (ii). �
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