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Abstract. We explicitly construct the Kummer variety associated to the Jacobian of a hyperelliptic
curve of genus 3 that is defined over a field of characteristic not equal to 2 and has a rational Weierstraß
point defined over the same field. We also construct homogeneous quartic polynomials on the Kummer
variety and conjecture that they represent the duplication map.

1. Introduction

Let A be an abelian variety of dimension g ≥ 1, defined over a field k. The quotient of A by the map
taking a point on A to its inverse is a singular projective variety which can also be defined over k and
which can be embedded into P2g−1. It is called the Kummer variety K associated to A. The complex
case is discussed in [1, §4.8].

If A is an elliptic curve, then K is simply the projective line over k. If A is the Jacobian of a genus 2
curve C, then this construction yields the classical singular Kummer surface, which can be embedded
as a projective hypersurface into P3. In the case where char(k) 6= 2 and C is given by an equation of
the form y2 = f(x), an embedding and defining equation of the Kummer surface has been constructed
by Flynn [6], see also the exposition in Chapter 3 of the book [2] by Cassels-Flynn.

A particular useful feature of K is that parts of the group structure remain meaningful on K. For
instance, translation by a 2-torsion point and multiplication by an integer n on A commute with
negation and hence descend to well-defined maps on K. Moreover, one can define a pseudoaddition
on K using certain biquadratic forms Bij. Formulas for duplication, translation by a 2-torsion point
and pseudoaddition have also been found by Flynn [6] and can be downloaded from http://people.

maths.ox.ac.uk/flynn/genus2/kummer/. Analogues of these for the case char(k) = 2 have been
found by Duquesne [4] and, independently, a unified treatment for arbitrary k and arbitrary defining
equations y2 + h(x)y = f(x) of C has been presented by the author in [12].

In the present paper we discuss analogues of these objects for Jacobians of hyperelliptic curves of
genus 3 with a k-rational Weierstraß point. In this case an embedding of the Kummer variety into P7

has been constructed by Stubbs [19] and we recall his construction in Section 2. We find a complete
set of defining equations for the image of K under this embedding in Section 3; it turns out that K
can be defined as the intersection of one quadric and 34 quartics in P7.

In Section 4 we discuss traces of the group structure on the Jacobian that can be exhibited on the
Kummer variety. Duquesne has constructed a matrix WT representing translation by a 2-torsion
point T ∈ A on K. It turns out that biquadratic forms Bij as in genus 2 cannot exist in our
situation, see Proposition 4.1. However, building on work of Duquesne, we construct homogeneous
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quartic polynomials δi ∈ k[x1, . . . , x8] and conjecture, based on numerical evidence, that they represent
duplication on K.

The formulas described in this paper are mostly too long to be reproduced here. They can be obtained
from http://www.math.uni-hamburg.de/home/js.mueller/#code.

Stoll has recently announced the construction of a different embedding of K which is valid for ar-
bitrary hyperelliptic genus 3 curves [18], see also http://www.mathe2.uni-bayreuth.de/stoll/

talks/Luminy2012.pdf. Using this embedding, he has proved Conjecture 4.2 and Conjecture 4.5.

1.1. Applications. In genus 2, the Kummer surface has several arithmetic applications. The first
application is an addition algorithm on A that uses pseudoaddition on K, see [7]. Suppose that k
is a number field. Letting h denote the naive height on P3

k, we get an induced naive height on the
Jacobian which can be used to search for points in A(k) of bounded height. Stoll’s program j-points

which uses this approach is available from http://www.mathe2.uni-bayreuth.de/stoll/programs/

index.html. Furthermore, this naive height can be used to define and compute a canonical height ĥ
on A, which has numerous applications. See Flynn-Smart [7] for the construction and a first algorithm

for the computation of ĥ. Several refinements are presented by Stoll in [16] and [17] and by the author
in his thesis [13, Chapter 3].

In our genus 3 situation, we do not have an explicit description of pseudoaddition and hence we
do not get an addition algorithm on A. We do get a height function on K by restriction of the
standard height function on P7 and an an induced naive height h(P ) = h(κ(P )) on the Jacobian,
where κ : A → K ↪→ P7 is discussed in Section 2. Using the defining equations of K presented in
Section 3, we get an algorithm that lists all k-rational points on K or on A up to a given height
bound. We can also define a canonical height function

ĥ(P ) = lim
n→∞

4−nh(κ(2nP )).

If we assume Conjecture 4.5 which states that we know how to represent duplication on K, then one
can prove analogs of several results from [17] and obtains an algorithm for the computation of ĥ as
in [17]. Further details are given in §4.4 of [13]. Algorithms which computes the canonical height on
Jacobians of hyperelliptic curves of any genus have recently been introduced by Holmes [8] and the
author [14]. However, these are not easily related to a naive height suitable for point searching, as is
required by standard algorithms for saturation of finite index subgroups of the Mordell-Weil group,
such as in [17]. A solution to this problem has recently been proposed by Holmes [9].

Acknowledgements. This work forms part of my PhD thesis [13] at the University of Bayreuth.
I would like to thank my supervisor Michael Stoll for his constant help and encouragement and I
would like to thank Sylvain Duquesne, Victor Flynn, Damiano Testa and Tzanko Matev for helpful
conversations. Part of this work was done while I was visiting the Université Rennes I and the
University of Oxford and I thank both institutions for their hospitality. Finally, I would like to
acknowledge support from DFG through DFG grants STO 299/5-1 and KU 2359/2-1.

2. Embedding the Kummer variety

In his PhD thesis, Stubbs [19] has found an explicit embedding of the Kummer variety associated
to the Jacobian of a hyperelliptic curve of genus 3 with a rational Weierstraß point into P7. In this
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section we recall this embedding, also providing formulas for the image on K of non-generic points on
the Jacobian.

We first fix some notation that we will use throughout this paper. Let k denote a field of characteristic
char(k) 6= 2. We consider a smooth projective hyperelliptic genus 3 curve C over k, given by an
equation

(1) Y 2 = F (X,Z),

in the weighted projective plane over k with respective weights 1, 4 and 1 assigned to the variables
X, Y and Z, where

F (X,Z) = f0Z
8 + f1XZ

7 + f2X
2Z6 + f3X

3Z5 + f4X
4Z4 + f5X

5Z3 + f6X
6Z2 + f7X

7Z

is a binary octic form in k[X,Z] without multiple factors such that degX(F (X, 1)) = 7. Then there
is a unique point ∞ ∈ C whose Z-coordinate is 0. Every hyperelliptic genus 3 curve over k with a
k-rational Weierstraß point has an equation of the form (1) over k. Let A denote the Jacobian of C
and let K denote its Kummer variety.

Every point P ∈ A has a representative of the form

(2) (P1) + (P2) + (P3)− 3(∞),

where P1, P2, P3 ∈ C and this representation is unique unless two of the Pi are swapped or fixed by
the hyperelliptic involution. We call a point P ∈ A generic if P can be represented by an unordered
triple of points (x1, y1, 1), (x2, y2, 1), (x3, y3, 1) ∈ C, where all xi are pairwise distinct.

Let Θ denote the theta-divisor on A with respect to the point ∞. It is well-known that Θ is ample
(cf. [?]) and that 2Θ is base point free (cf. [15, §II.6]). Hence a basis of L(2Θ) gives an embedding of
K. Note that L(2Θ) is equivalent to a certain space of symmetric functions on C3 with restrictions
on the poles as in [5] or [19]. Using this approach, Stubbs [19, Chapter 3] has found the following
basis κ1, . . . , κ8 of the space L(2Θ):

κ1 = 1,

κ2 = x1 + x2 + x3,

κ3 = x1x2 + x1x3 + x2x3,

κ4 = x1x2x3,

κ5 = b20 − f7κ32 + f7κ3κ2 − f6κ22 + 3f7κ4 + 2f6κ3,

κ6 = κ2b
2
0 + 2b0b1 − f7κ42 + 3f7κ3κ

2
2 − f6κ32 − f7κ23 − f7κ4κ2 + 2f6κ3κ2 − f5κ22

+2f5κ3,

κ7 = b21 − κ3b20 + f7κ3κ
3
2 − 2f7κ

2
3κ2 + f6κ3κ

2
2 + f7κ4κ3 − f6κ23 + f5κ3κ2 − 3f5κ4,

κ8 = κ2b
2
1 + 2κ3b0b1 + κ4b

2
0 + f7κ

2
3κ

2
2 − f7κ32κ4 + f7κ2κ3κ4 − f7κ33 + f6κ

2
3κ2

−f6κ4κ22 + f5κ
2
3 − f5κ4κ2,

where

b0 = (x1y2 − x2y1 − x3y2 + x3y1 − x1y3 + x2y3)/d,

b1 = (x23y2 − x23y1 + x22y1 + y3x
2
1 − y2x21 − y3x22)/d,

d = (x1 − x2)(x1 − x3)(x2 − x3).
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We define a map κ : A→ P7 by
κ(P ) = (κ1(P ), . . . , κ8(P ));

then κ defines an embedding of the Kummer variety into P7. We also provide formulas for the values
of κ(P ) when P is not generic. Any P ∈ A(k) can be represented as a pair of homogeneous forms

(A(X,Z), B(X,Z)),

where A, B ∈ k[X,Z] have homogeneous degree 4 and 2, respectively. If P is generic, then b0 and b1
as defined above are simply the constant and linear coefficient of B(X, 1) ∈ k[X].

Suppose that P is generic, satisfying x1x2x3 6= 0, and write the κi(P ) in terms of zj = 1/xj and
wj = yj/xj, j ∈ {1, 2, 3}. We then multiply by the common denominator and set w3 = 0. This leads to
the following formulas for P having a unique representative of the form ((x1, y1, 1))+((x2, y2, 1))−2(∞)
and satisfying x1 6= x2:

κ1(P ) = 0,

κ2(P ) = 1,

κ3(P ) = x1 + x2,

κ4(P ) = x1x2,

κ5(P ) = f5 + 2f6κ3(P ) + f7κ3(P )2 + 2κ4(P )f7,

κ6(P ) = f4 + f5κ3(P )− f7κ4(P )κ3(P ),

κ7(P ) = −f4κ3(P )− 3f5κ4(P ) + f7κ4(P )2,

κ8(P ) =
(
f3κ3(P )3 + f1κ3(P ) + f2κ3(P )2 + 2f0 − 2y1y2 + f4κ4(P )κ3(P )2 − 3f3κ4(P )κ3(P )

−2f2κ4(P ) + f5κ4(P )2κ3(P )− 2f4κ4(P )2 + f7κ4(P )3κ3(P ) + 2f6κ4(P )3
)
/(x1 − x2)2.

For the case x1 = x2 it suffices to use the same κ1, . . . , κ7 and

κ8(P ) = b21 + (κ4(P )− κ3(P )2)(−2f7κ4(P )κ3(P )− f6κ4(P ) + f7κ3(P )3 + f6κ3(P )2 + f5κ3(P ) + f4),

where b1 is the linear coefficient of B(X, 1) ∈ k[X] if the Mumford representation of P is (A,B).

Now consider points represented by
((x1, y1))− (∞).

We first look at quotients of the form κi(P )/κ5(P ), where P is again assumed generic, and then take
the limit (x2, y2, 1)→ (x3,−y3, 1).The result is

κ(P ) = (0, 0, 0, 0, 1,−x1, x21, x31).
A similar argument shows that we have

κ(O) = (0, 0, 0, 0, 0, 0, 0, 1).

where O ∈ A is the identity element.

If P ∈ A, then we say that x = (x1, . . . , x8) ∈ A8 is a set of Kummer coordinates for P if κ(P ) = (x1 :
. . . : x8). We set

KA := {(x1, . . . , x8) ∈ A8 : ∃Q ∈ K such that Q = (x1 : . . . : x8)}.

Remark 2.1. In the general case where degX(F (X, 1)) = 8 Stubbs constructs functions analogous to
the functions κi. However, these do not give an embedding of the Kummer variety, since not all points
on A can be represented by unordered triples of points on C. See [19, §3.8] for a discussion.
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3. Defining equations for the Kummer variety

In this section we compute defining equations for the Kummer variety K, embedded into P7 as in the
previous section.

The following result is well-known to the experts in algebraic geometry, but no proof seems to exist
in the literature. The proof given here was suggested by Tzanko Matev.

Proposition 3.1. Let A be a Jacobian variety of dimension g ≥ 2 and let Θ be a theta-divisor on A.
If κ1, . . . , κ2g is a basis for L(2Θ) and if κ = (κ1, . . . , κ2g) : A → P2g−1, then the image κ(A) can be
described as an intersection of quartics.

Proof. Let Q = {q1, . . . , qm} denote the set of monic quadratic monomials in the κi, where m =
(
2g+1
2

)
and we assume, without loss of generality, that {q1, . . . , qd} is linearly independent in the space
Q(f0, . . . , f7)[q1, . . . , qm], where d ≤ m is the dimension of the space generated by the elements of Q.

Let ι denote the 2-uple embedding of P2g−1 into Pm−1 such that for P ∈ A we have

ιi(κ(P )) = qi(P ) for all i ∈ {1, . . . ,m}.

Then there are m− d linear relations on the image of K = κ(A) under ι. Now consider an embedding
β : A ↪→ P4g−1 given by a basis of L(4Θ) whose first d elements are equal to q1, . . . , qd. Then we have
a commutative diagram

A

κ

��

� � β // P4g−1

γ

��
P2g−1 � �

ι
// Pm−1

where γ is a rational map defined as follows: If z = (z1, . . . , z4g), then γ(z) = y, where yi = zi for
i = 1, . . . , d and the other yi are determined by the linear relations on Q. By construction, we have
that β(A) lies in the domain of γ and in fact

γ(β(A)) ∼= ι(κ(A)).

But it follows from the corollary on page 349 of [?] that the image of A under β is defined by an
intersection of quadrics, which then must hold for γ(β(A)) as well, since γ has degree 1. As the
pullback under ι of γ(β(A)) is isomorphic to K, the result follows. �

Hence it suffices to find a basis for the space of quartic relations on K to describe K. We first
compute a lower bound on the dimension of this space. For n ≥ 1 let m(n) denote the number of
monic monomials of degree n in κ1, . . . , κ2g and let d(n) denote the dimension of the space spanned
by them. Then we have m(n) =

(
2g+n−1

n

)
. Moreover, let e(n) denote the dimension of the space of

even functions in L(2nΘ). By [1, Corollary 4.7.7] this is equal to (2n)g/2 + 2g−1. Since a monomial
of degree n in the κi induces an even function in L(2nΘ), we always have d(n) ≤ e(n).

In genus 2, the dimension count is given in Table 1.
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n m(n) e(n) d(n)
1 4 4 4
2 10 10 10
3 20 20 20
4 35 34 34

Table 1. Dimensions in genus 2

n m(n) e(n) d(n)
1 8 8 8
2 36 36 35
3 120 112 112
4 330 260 260

Table 2. Dimensions in genus 3

We know that d(4) can be at most e(4) = 34, and indeed the space of quartic relations in the κi is
one-dimensional, spanned by the Kummer surface equation.

In genus 3, Stubbs has found the following quadratic relation between the κi and shown that it is
unique up to scalars.

(3) R1 : κ1κ8 − κ2κ7 − κ3κ6 − κ4κ5 − 2f5κ2κ4 + f5κ
2
3 + 2f6κ3κ4 + 3f7κ

2
4 = 0

The dimensions for genus 3 are presented in Table 2. The existence and uniqueness of R1 implies that
d(2) = 35, but since e(2) = 36, this means that there is an even function in L(4Θ) not coming from
a quadratic monomial in the κi, which does not happen in genus 2. Accordingly, we can at this point
only bound d(3) and d(4) from above. However, by finding a curve C for which the space of cubic
(resp. quartic) homogeneous polynomials has dimension exactly 112 (resp. 260), we can conclude that
d(3) = 112 and d(4) = 260. For this one can use, for instance, the curve given by Y 2 = Z8 +X7Z.

It follows that in genus 3 there must be 70 = 330− 260 quartic relations on the Kummer variety. But
36 of these are multiples of the quadratic relation R1. Moreover, there are only 8 cubic relations and
they are all multiples of R1. Hence there must be 34 independent irreducible quartic relations. In [19,
Chapter 5] Stubbs lists 26 quartic relations and conjectures that together with R1 these relations are
independent and form a basis of the space of all relations on the Kummer variety. His relations are at
most quadratic in κ5, . . . , κ8. Using current computing facilities we can verify the former conjecture
quite easily, but because of our dimension counting argument, we know that the latter conjecture
cannot hold.

To compute a complete set of defining equations for the Kummer variety we employ the technique
already used by Stubbs. Because of the enormous size of the algebra involved in these computations,
simply searching for relations among all monomials is not feasible. Instead we split the monomials
into parts of equal x-weight and y-weight. These are homogeneous weights discussed in [19, §3.5] that
were already used by Flynn in [5] in order to derive quadratic relations defining a Jacobian surface in
P15. See Table 3.
On monomials of equal x- and y-weight we can use linear algebra to find relations; we continue this
process with increasing weights until we have found enough quartic relations to generate a space of
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x y
xi 1 0
yi 0 1
fi −i 2

κi, i ≤ 4 i− 1 0
κi, i > 4 i− 9 2

Table 3. x- and y-weight

dimension 70. The difficulty of this process depends essentially on the y-weight. We used Magma [11]
to find 34 relations R2, . . . , R35 on K, of y-weight at most 8, such that the space

{R2, . . . , R35} ∪ {κiκjR1 : 1 ≤ i ≤ j ≤ 8}

has dimension equal to 70. These relations can be downloaded from http://www.math.uni-hamburg.

de/home/js.mueller/#code. Using Proposition 3.1 we have proved the following:

Theorem 3.2. The relations on the Kummer threefold are generated by the relations R1, . . . , R35.

4. Remnants of the group law

Here we investigate which remnants of the group law on A can be exhibited on K. Namely, we recall
results of Duquesne, show that analogues of the biquadratic form representing pseudoaddition on the
Kummer surface cannot exist in our situation and conjecture formulas for duplication on K.

Let T be a 2-torsion point on A. Duquesne [3, § III.2.1] has found a matrix WT such that projectively
the identity

κ(P + T ) = WT · κ(P )

holds for all P ∈ A if we view κ(P ) and κ(P + T ) as column vectors. Duquesne’s method of finding
WT is analogous to the method employed by Flynn [6] in the genus 2 case, although there are a few
additional technical difficulties. We also have that if T ∈ A(k)[2], then WT is defined over k.

Now let P,Q ∈ A. Then in general κ(P +Q) and κ(P −Q) cannot be found from κ(P ) and κ(Q), but
the unordered pair {κ(P + Q), κ(P − Q)} can be. In other words, the map from Sym2(K) to itself
that maps {κ(P ), κ(Q)} to {κ(P +Q), κ(P −Q)} is well-defined. In fact, in the analogous situation in
genus 2 there are biquadratic forms Bij ∈ k[x1, . . . , x4; y1, . . . , y4]2,2 such that if x and y are Kummer
coordinates for P and Q, respectively, then there are Kummer coordinates w, z for κ(P+Q), κ(P−Q),
respectively, such that

(4) w ∗ z = B(x, y)

holds. Here (4) is an abbreviation for

Bij(x, y) = wizj + wjzi for i 6= j

Bii(x, y) = wizi.

The following result says that in general such biquadratic forms cannot exist in genus 3.

http://www.math.uni-hamburg.de/home/js.mueller/#code
http://www.math.uni-hamburg.de/home/js.mueller/#code


8 J. STEFFEN MÜLLER

Proposition 4.1. Let A be the Jacobian of a smooth projective hyperelliptic curve C of genus 3, given
by an equation (1), and let K be the Kummer variety associated to A. There is no set of biquadratic
forms Bij(x, y), where 1 ≤ i, j ≤ 8, satisfying the following: If x and y are sets of Kummer coordinates
for P,Q ∈ A, respectively, then there are Kummer coordinates w, z for P + Q,P − Q, respectively,
such that (4) holds.

Proof. We can work geometrically, so we assume k is algebraically closed. Let us fix Kummer coordi-
nates x(T ) = (x(T )1, . . . , x(T )8) for all T ∈ A[2].

For each T ∈ A[2] we get a map

πT : k[x1, . . . , x8; y1, . . . , y8] −→ k[y1, . . . , y8],

given by evaluating the tuple x = (x1, . . . , x8) at x(T ). This induces a map

πT :
k[x1, . . . , x8; y1, . . . , y8]2,2

(R1(x), R1(y))
−→ k[y1, . . . , y8]2

(R1(y))
.

Suppose a set of forms Bij(x, y), 1 ≤ i, j ≤ 8, as in the statement of the proposition does exist and
consider

(5) R1(B) := B18 −B27 −B36 −B45 − 2f5B24 + 2f5B33 + 2f6B34 + 6f7B44.

Denote by R1(B) the image of R1(B) in k[x1,...,x8;y1,...,y8]2,2
(R1(x),R1(y))

. For T ∈ A[2], an arbitrary P ∈ A and a

set of Kummer coordinates y for P , we have: If B(x(T ), y) = w ∗ z, then w and z are both Kummer
coordinates for P + T = P − T , and thus, if x(T ) and y are scaled suitably so that z = w, we must
have Bij(x(T ), y) = 2zizj for 1 ≤ i 6= j ≤ 8 and Bi,i(x(T ), y) = z2i for i ∈ {1, . . . , 8}. As an element
of KA, the tuple z must satisfy (3) and hence this implies

(6) πT (R1(B)) = R1(z) = 0 for all T ∈ A[2].

We claim that R1(B) itself vanishes. In order to show this, we fix T ∈ A[2] and let

S(T ) = {s1(T ), . . . , s36(T )} = {x(T )ix(T )j : 1 ≤ i ≤ j ≤ 8}.
We also fix a representative

8∑
j=1

8∑
l=1

λT,j,l · yj · yl

of πT (R1(B)), where

λT,j,l =
36∑
m=1

µT,j,l,m · sm(T )

is linear in the sm(T ) and we require that λT,1,8 = 0, which uniquely determines our representative.

From (6) we know that we must have

λT,j,l = 0

for all j, l and for all T ∈ A[2] and thus we get 64 linear equations

36∑
m

µT,j,l,m · sm(T ) = 0.
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For notational purposes, denote the elements of A[2] by {T1, . . . , T64}. It can be shown that the matrix
(si(Tj))1≤i≤36,1≤j≤64 has generic rank equal to 35, so any linear relation between the si(T ) satisfied by

all T ∈ A[2] must be a multiple of R1(x(T )1, . . . , x(T )8). Hence R1(B) must vanish.

The upshot of this is that if we require our Bij(x, y) to contain no multiples of, say, x1x8 or y1y8 as
summands (which we can always arrange by applying (3)), then R1(B) = 0 follows. But this cannot
hold in general: For example, take an arbitrary P ∈ A \ A[2] and x a set of Kummer coordinates
for P . We must have that Bij(x, x) lies in the ideal generated by the relations R1, . . . , R35 for all
1 ≤ i, j ≤ 7, but B18(x, x) does not. Clearly this cannot happen for all such P ; hence R1(B) cannot
vanish in general and so not all of the Bij can be correct. �

This result implies that the situation is much more complicated than in genus 2. Recall Flynn’s
strategy to compute the biquadratic forms in genus 2 (see [6] or [2]): If T ∈ A[2] and P ∈ A is
arbitrary, then we can compute

κi(P + T )κj(P − T ) + κj(P + T )κi(P − T ) = 2κi(P + T )κj(P + T )

projectively for all i and j by multiplying the matrix WT by the vector κ(P ) ∈ k4. Using some
algebraic manipulations, Flynn ensures that the resulting forms B′ij are biquadratic in the κi(P ) and
the κj(T ) and satisfy some additional normalization conditions. One can then check that the space
of all κi(T )κj(T ), where i ≤ j, is linearly independent of dimension 10. Hence for each pair (i, j) at
most one biquadratic form that satisfies the same normalization conditions can specialize to B′ij. The
crucial point is that from classical theory of theta functions we already know that biquadratic forms
Bij satisfying (4) must exist – at least in the complex case (see Hudson’s book [10]) and thus, using
the Lefshetz principle, for any algebraically closed field of characteristic 0. Therefore Flynn concludes
that Bij = B′ij for all i, j.

We can try to use the same strategy in the genus 3 case. Indeed, in [3, § III.2.2], Duquesne computes
the correct B′ij(x, y) in the special case that x is a set of Kummer coordinates for T ∈ A[2]. They can be
downloaded from ftp://megrez.math.u-bordeaux.fr/pub/duquesne. Because of the relation (3),
we know that the space of all κi(T )κj(T ), where i ≤ j, is not linearly independent. But we also know
that it has dimension 35, since R1 is the only quadratic relation up to a constant factor. Now we can
apply R1(x) and R1(y) to the B′ij(x, y) to make sure that no terms containing, say x1x8 or y1y8 appear
and this is done by Duquesne. Thus we can draw the same conclusion as in the genus 2 situation,
namely that for each pair (i, j) at most one biquadratic form that satisfies the same normalization
conditions can specialize to B′ij. By Proposition 4.1, we know that there is no set of biquadratic forms
on K satisfying (4) in general. But we can still make use of the B′ij, at least conjecturally, so we
analyze them further.

We define two index sets
I := {(i, j) : 1 ≤ i ≤ j ≤ 8},

and
E := {(1, 8), (2, 7), (3, 6), (4, 5), (5, 5), (5, 6), (5, 7), (6, 6)} ⊂ I.

We say that a pair of points (P,Q) ∈ A × A is good if there is a pair (i0, j0) ∈ I \ E such that if x
and y are Kummer coordinates for P and Q, respectively, and w and z denote Kummer coordinates
for P +Q and P −Q, respectively, then we have

(i) B′i0j0(x, y) 6= 0;

ftp://megrez.math.u-bordeaux.fr/pub/duquesne
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(ii) wi0 6= 0;
(iii) zj0 6= 0.

If (P,Q) is a good pair and x, y, w, z are as above, then we can normalize w and z such that wi0zj0 =
B′i0j0(x, y). For 1 ≤ i, j ≤ 8 we define αi,j(x, y) as follows:

(7) αij(x, y) := wizj + wjzi −B′ij(x, y).

Building on a large number of numerical experiments we state a list of conjectures regarding the
relations between B′ij(x, y) and wizj + wjzi:

Conjecture 4.2. Suppose that (P,Q) ∈ A× A is a good pair with respective Kummer coordinates x
and y. Then the following properties are satisfied:

(a) We have αij(x, y) = 0 for (i, j) ∈ I \ E.
(b) The identities

−α1,8(x, y) = α2,7(x, y) = α3,6(x, y) = α4,5(x, y)

and

α5,7(x, y) = −2α6,6(x, y)

hold.
(c) If αi1j1(x, y) = 0 for some (i1, j1) ∈ E, then all αij(x, y) vanish.
(d) If αi1j1(x, y) 6= 0 for some (i1, j1) ∈ E, then we have αij(x, y) 6= 0 for all (i, j) ∈ E. If this

holds and if (i, j), (i′j′) ∈ E, then the ratios

αi′j′(x, y)

αij(x, y)
,

only depend on C and on (i, j), (i′, j′), but not on x or y.

Remark 4.3. The values αij(x, y) depend on the choice of the pair (i0, j0) ∈ I \ E, but note that the
assertions of Conjecture 4.2 are independent of this choice.

Remark 4.4. Stoll has recently proved Conjecture 4.2 [18].

The naive height h on the Kummer surface associated to a Jacobian surface A can be used to define
and compute a canonical height ĥ on A, which has several applications. See Flynn-Smart [7] for

the construction and an algorithm for the computation of ĥ and [17] for improvements due to Stoll.
For this application, one does not have to work with the biquadratic forms Bij, but rather with the
quartic duplication polynomials δ which, however, were originally derived from the Bij. If we assume
the validity of the first two parts of Conjecture 4.2, then we can find analogs of these polynomials
which again turn out to be quartic, although the Bij are not all biquadratic.

More precisely, we define

δ′i(x) := B′i8(x, x) ∈ k[x] for i = 2, . . . , 8,

and

δ′1(x) :=
4B′18(x, x) +R(x)

3
∈ k[x],
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where R(x) is a certain quartic relation on K which we use to get rid of the denominators in 4
3
B18(x, x).

Let δ′(x) := (δ′1(x), . . . , δ′8(x)). We take the δ′i as our candidates for the duplication polynomials on
K.

As in the genus 2 situation, we want that the set (0, . . . , 0, 1) of Kummer coordinates of the origin is
mapped to itself by the duplication map. This is required by the canonical height algorithms in [7]
and [17]. In our situation we have

δ′(0, 0, 0, 0, 0, 0, 0, 1) = (0, 0, 0, 0, 0, 0, 0, f 2
7 ).

But this can be fixed easily by a simple change of models of K using the map

τ(x1, . . . , x8) = (x1, . . . , x7, f7x8).

Setting

δ :=
1

f 2
7

(τ ◦ δ′ ◦ τ−1)

we find

1) δi ∈ Z[f0, . . . , f7][x1, . . . , x8] for all i = 1, . . . , 8;
2) δ(0, 0, 0, 0, 0, 0, 0, 1) = (0, 0, 0, 0, 0, 0, 0, 1).

Based on extensive numerical evidence, we make the following conjecture.

Conjecture 4.5. If P ∈ A, then
δ′(κ(P )) = κ(2P )

and
δ(τ(κ(P ))) = τ(κ(2P )).

We can relate this conjecture to our earlier Conjecture 4.2.

Lemma 4.6. Suppose that char(k) 6= 3 and that parts (a) and (b) of Conjecture 4.2 are satisfied for
C. Then Conjecture 4.5 follows for all P ∈ A such that (P, P ) is a good pair.

Proof. Suppose that char(k) 6= 3 and let P ∈ A such that (P, P ) is a good pair and let x be a
set of Kummer coordinates for P . In this situation it obviously suffices to prove δ′(κ(P )) = κ(2P ).
Assuming part (a) of Conjecture 4.2, we can find a set z ∈ KA of Kummer coordinates for 2P such
that zi = δ′i(x) for i = 2, . . . , 8, because we have κ(O) = (0, 0, 0, 0, 0, 0, 0, 1). Therefore it suffices to
show that part (b) of Conjecture 4.2 implies that

(8) z1 =
4

3
B′18(x, x).

Let Q ∈ A such that (P,Q) is good, let y ∈ KA be a set of Kummer coordinates for Q. We normalize
Kummer coordinates z and w for P + Q and P − Q, respectively and define αij(x, y) as in (7). For
simplicity, let bij denote wizj + wjzi for distinct 1 ≤ i, j ≤ 8 and let bii denote wizi for 1 ≤ i ≤ 8.

By construction, the B′ij satisfy R1(B
′) = 0 (see (5)) and so we have

B′18 −B′27 −B′36 −B′45 = 2f5B
′
24 + 2f5B

′
33 + 2f6B

′
34 + 6f7B

′
44.

But applying the B′ij to the pair (x, y) and using Conjecture 4.2 (b), we get that the left hand side is
equal to

b18 − b27 − b36 − b45 − 4α1,8(x, y),
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and that the right hand side is equal to

2f5b24 + 2f5b33 + 2f6b34 + 6f7b44.

Setting y = x, we find that all bij must vanish unless i = 8 or j = 8 and so we obtain

b18 = 4α1,8(x, x), .

Hence we conclude
z1 = b18 = 4(b18 −B′18(x, x)),

which proves (8) and thus the Lemma. �
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