Übungsaufgaben 32-35 zur Abgabe zu Beginn der Vorlesung am 07.01.2011.

Sie können die Lösungen in Zweiergruppen erstellen. Alle Personen müssen dann aber der gleichen Übungsgruppe angehören.

Aufgabe 32:(6+6+6 Punkte)

a) Bestimmen Sie die Stammfunktionen der folgenden Funktionen mit Hilfe der Partialbruchzerlegung:

$$\frac{x^3 + 3x}{x^2 + 1}, \quad \frac{1}{x^2 - 3x + 2}$$

b) Bestimmen Sie die Stammfunktionen der folgenden Funktionen mit Hilfe von partieller Integration:

$$\frac{\cos(x)}{\exp(x)}$$
, $(\ln(x))^2$

c) Berechnen Sie die folgenden Integrale mit Hilfe von Substitution:

$$\int_{-1}^{1} \frac{x}{(3+x^2)^3} dx, \quad \int_{6}^{21} \sqrt{2+\frac{x}{3}} dx$$

Aufgabe 33:(8 Punkte)

Sei $f:[a,b]\to\mathbb{R}$ eine integrierbare Funktion. Ferner seien $f_{\pm}:[a,b]\to\mathbb{R}$ definiert durch

$$f_{+}(x) = \max(f(x), 0)$$
 und $f_{-}(x) = -\min(f(x), 0)$.

Beweisen Sie, dass f_{-} und f_{+} dann ebenfalls integrierbar sind.

Aufgabe 34:(4 Punkte)

Bestimmen Sie eine Rekursionsformel der Form

$$I_{n+2} = c_n I_n + d_n$$

mit $c_n, d_n \in \mathbb{R}$ zur Berechnung des folgenden Integrals für $n \in \mathbb{N}$ und a < b:

$$I_n = \int_a^b x^n \sin(x) dx$$

Aufgabe 35:(10 Punkte)

Sei $y: \mathbb{R} \to \mathbb{R}$ differenzierbar und es gelte

$$2y(t) = t + \exp(-t) \int_{0}^{t} \exp(u)\dot{y}(u)du.$$

Beweisen Sie:

$$\dot{y}(t) = 1 - 2y(t) + t$$