
Scattered Data Coding in

Digital Image Compression

Laurent Demaret and Armin Iske

Abstract. This paper concerns digital image compression using
adaptive thinning algorithms. Adaptive thinning is a recursive point
removal scheme which works with decremental Delaunay triangula-
tions. When applied to digital images, adaptive thinning returns a
scattered set of most significant pixels. This requires efficient and
customized methods for coding these pixels (but not their connectivi-
ties). To this end, we propose a hierarchical coding scheme, which
works with recursive subdivisions of octtree cells, and which takes
advantage of the statistical data correlation. The good performance
of the resulting compression scheme is shown in comparison with the
well-established wavelet-based method SPIHT.

§1. Introduction

Digital image compression has recently gained enormous popularity in a
variety of applications. This is especially due to the rapid development of
multimedia technologies. Digital image compression is concerned with the
conversion of digital image data into a bitstream, which is e.g. transmitted
across the internet. In this case, for the sake of transmission speed, the
length of this bitstream message is required to be as short as possible,
while maintaining a reasonable quality of the image. In this process, the
following five tasks are to be performed, one after the other.

(1) Data reduction;
(2) Encoding of the reduced data at the sender;
(3) Transmission of the encoded data from the sender to the receiver;
(4) Decoding of the transmitted data at the receiver;
(5) Data reconstruction.

Curve and Surface Fitting: Saint-Malo 2002 1
XXX (eds.), pp. 1–11.

Copyright oc 2002 by Nashboro Press, Nashville, TN.

ISBN XXX.

All rights of reproduction in any form reserved.

2 L. Demaret and A. Iske

Many of the well-established methods in digital image compression,
including JPEG2000 [8] and SPIHT [7], are based on wavelets and related
techniques. For a comprehensive introduction to image compression by us-
ing wavelets, we refer to the survey [3]. Tensor product wavelets provide,
in combination with well-adapted compression methods, high compression
rates while maintaining most of the visual features of the image. At low
bit rates, however, such methods typically fail to capture certain charac-
teristic features of the image, such as sharp edges. This is mainly due to
high oscillations around discontinuities which leads to undesired visual ar-
tifacts. Therefore, current research is focussing on the modelling of sharp
edges. Recent work on this includes nonlinear decomposition techniques
[1,2,5].

This paper proposes an alternative concept for lossy compression of
digital image data, by using adaptive thinning methods in combination
with scattered data coding. Adaptive thinning [4], when applied on a
digital image, leads to a reduction of the original data, step (1). This is
accomplished by recursively deleting pixels of the image, so that adaptive
thinning returns a scattered subset of most significant pixels. These most
significant pixels are then used in step (5) for the reconstruction of the
given image. We remark that adaptive thinning provides a class of data-

dependent filtering operators. In contrast to data-independent filtering
methods, the data-dependent approach taken in this paper copes very
well with the visual perception of the image. This is supported by the
numerical results in Section 5. Further details concerning the application
of adaptive thinning on digital images, especially the relevant background
for the steps (1) and (5), are briefly explained in the following Section 2.

The performance of the intermediate steps (2)-(4) requires an effi-
cient scheme for scattered data coding. This is in order to encode and
decode the most significant pixels. To this end, we have designed a cus-
tomized scattered data coding scheme, which serves to convert the most
significant pixels into a bitstream message, to be transmitted in step (3).
This coding scheme is subject of the discussion in Section 3.

We remark that the resulting compression algorithm, proposed in this
paper, incorporates a flexible representation of the gridded image data by
using a scattered set of most significant pixels. This, in combination with
the customized scattered data coding scheme, allows us to capture sharp
edges and related image features reasonably well, at small coding costs
and at small computational costs. The latter is supported by the analysis
concerning the complexity of the compression and decompression, which
is done in Section 4. Finally, the good performance of the proposed com-
pression scheme is confirmed by numerical examples in Section 5, where
we compare our method with the well-established wavelet-based image
compression algorithm SPIHT.

Scattered Data Coding 3

§2. Adaptive Thinning on Digital Images

Thinning algorithms are recursive point removal schemes for scattered
data. The purpose of adaptive thinning, as recently suggested in [4], is
to approximate a bivariate function from scattered data samples by a
piecewise linear function over the Delaunay triangulation of a subset of
most significant sample points. This is accomplished by working with
decremental Delaunay triangulations. At each removal step of the adaptive
thinning algorithm, one vertex of the current Delaunay triangulation is
deleted. This is done by using one specific (adaptive) criterion for the
vertex removal (see [4] for three different such removal criteria).

This section explains how we use adaptive thinning for the data reduc-
tion step (1) and the subsequent reconstruction in step (5). We remark
at this point that the focus of this paper is more on the scattered data
coding scheme, to be discussed in Section 3, rather than on adaptive thin-
ning, which is subject of the previous paper [4]. Therefore, we refrain
from expanding lengthy details on possible removal criteria for adaptive
thinning.

Be it sufficient for the purpose of this paper to say that adaptive
thinning is a greedy data-dependent removal scheme, which relies on a
specific local error indicator. This error indicator measures, for any current
vertex x, a local approximation error that would result from the removal
of x, termed the anticipated error of x. Now, at any step of the adaptive
thinning algorithm, a vertex x∗, which minimizes the anticipated error, is
removed from the current Delaunay triangulation. In this sense, x∗ is in
the current situation considered as a least significant vertex point, and so
adaptive thinning generates subsets of most significant points.

In view of the application of adaptive thinning on digital images, let
us be more specific about their representation, and fix some notations. A
digital image is a rectangular grid of pixels. Each pixel bears a color value
or greyscale luminance. For the sake of simplicity, we restrict ourselves in
the following discussion to greyscale images. In this case, the range of the
integer luminance values has usually the form [0..2r − 1]. Typically, one
works with 256 different greyscale values, in which case r = 8, i.e., the
range is [0..255].

The image can be viewed as a matrix Z = (z(i, j))i,j , whose entries
z(i, j) ∈ [0..2r − 1] are the luminance values at the pixels. Each pixel
position (i, j) is a pair of non-negative integers i and j. For the range of
the pixel positions (i, j), we assume the form [0..2p − 1] × [0..2p − 1], for
some positive integer p. Hence, the dimension of the square image matrix

Z is 2p-by-2p.

Adaptive thinning, when applied on digital images, recursively re-
moves pixels from a given digital image. Adaptive thinning returns af-
ter n removals, n ∈ [1..22p], an index set I ⊂ [0..2p − 1] × [0..2p − 1]

4 L. Demaret and A. Iske

of size |I| = 22p − n, corresponding to the most significant pixel posi-
tions. In addition, for every pixel position (i, j) ∈ I, an approximation
z̃(i, j) ∈ [0..2r − 1] of the luminance value z(i, j) is returned, so that
z̃(i, j) ≈ z(i, j) for every (i, j) ∈ I.

In order to explain the reconstruction of the image in step (5), let DI

denote the Delaunay triangulation over the planar set of most significant
pixel positions, given by I. Moreover, let L(Z,DI) denote the piecewise
linear function over DI satisfying L(Z,DI)(i, j) = z̃(i, j) for all (i, j) ∈ I.
This piecewise linear function is used at the receiver in step (5) in order
to reconstruct the entire image Z. To this end, an approximation Ẑ =
(ẑ(i, j))ij of the image matrix Z is computed, where we let

ẑ(i, j) = [L(Z,DI)(i, j)] ≈ z(i, j)

for every pixel position (i, j) ∈ [0..2p − 1] × [0..2p − 1], and where by [x]
we denote the nearest integer to x ∈ IR.

§3. Scattered Data Coding

In this section, we explain how the construction of the bitstream in step (2)
is done. This is concerning the coding of the most significant pixels. The
bitstream will contain the pixel positions in I and corresponding quantized

symbols for the luminance values. Since we work with Delaunay triangula-
tions, no connectivity coding is done. This helps us to keep the bitstream
short. Before we explain details on our coding scheme, let us make some
remarks.

First of all, note that the uncompressed code for these data would
consist of a header containing the dimension of the image matrix Z, fol-
lowed by the corresponding pixel positions (i, j) ∈ I and luminance values
z̃(i, j) ∈ [0..2r−1]. Thus, when sending uncompressed data, the total cod-
ing costs (without the costs for the header) are (2p + r) × |I| bits, where
|I| is the number of indices in I. This naive way of coding is too costly.
In order to reduce the coding costs, we take advantage of the statistical
data distribution.

We remark that classical wavelet methods usually consider the com-
plete set of coefficients and decide, according to some suitable threshold,
whether a value is significant or not. Then, sophisticated techniques take
advantage of the dependencies between the locations and the magnitudes
of significant coefficients. This is done by clustering the non-significant
coefficients (zerotrees [7]), or by using context-based arithmetic coding [8].

Our coding strategy exhibits some similarities to this. Indeed, the
selected pixel positions in I are classified as most significant, whereas
the remaining pixels are regarded as non-significant. On the other hand,
the values z̃(i, j) of the most significant pixels are not proportional to

Scattered Data Coding 5

Ω W Ω E
Ω NW Ω NE

Ω SW Ω SE

Ω ΩSW SE

+ +

Ω ΩSW SE

− −

Ω NW Ω NE

+ +

Fig. 1. Splitting of the cell Ω into eight subcells in three stages.

their significances. This requires taking into account the local correlations
between the most significant pixels (i, j, z̃(i, j)), (i, j) ∈ I.

Moreover, we apply a uniform quantization on the luminance values
z̃(i, j), yielding quantized symbols Q(z̃(i, j)) for all (i, j) ∈ I, where the
quantization step depends on a specific target rate. This reduces the range
of the luminance values, from previously [0..2r − 1] to [0..2s − 1] for the
quantized symbols, where s < r. Now the pixels (positions and quantized
symbols) can be viewed as a set of tridimensional points (i, j, k) ∈ Ω,
where we let

Ω = [0..2p − 1] × [0..2p − 1] × [0..2s − 1]

denote the bounding cell of the data, containing m = |I| pixels. For any
such data point (i, j, k) ∈ Ω, we have k = Q(z̃(i, j)) and (i, j) ∈ I. This
data representation can also be viewed as a binary tridimensional matrix
M = (mijk)i,j,k, of dimension 2p-by-2p-by-2s, whose entries are given by

mijk =

{

1, if (i, j) ∈ I and k = Q(z̃(i, j)),
0, otherwise.

In what follows, we propose an efficient coding scheme for the sparse

matrix M . Note that for coding M , it is sufficient to localize the nonzero
entries of M , the fill-ins of M . To this end, we work with a hierarchical
subdivision of cells. Initially, the bounding cell Ω is split into eight sub-
cells. When splitting Ω, the number of pixels in the resulting subcells are
progressively coded. Initially, we code m = |Ω|, the total number of pixels
in the bounding cell Ω. Since these are at most 2p × 2p pixels, the coding
of m requires 2p bits, yielding the first 2p bits in the bitstream. Then, the
splitting of Ω is done in three stages as follows, see Figure 1.

In the first stage, Ω is split into the two subcells

ΩW = [0..2p−1 − 1] × [0..2p − 1] × [0..2s − 1],

ΩE = [2p−1..2p − 1] × [0..2p − 1] × [0..2s − 1]

6 L. Demaret and A. Iske

of equal size across the i-axis (Figure 1, left). The number mW = |ΩW |
of pixels contained in the cell ΩW is coded. These are at most m = |Ω|
pixels. Therefore, for coding the number mW we need dlog2(m + 1)e bits.
Since the number mE = |ΩE | of pixels in ΩE is given by mE = m − mW ,
we do not code mE .

In the second stage, each of the two subcells ΩW and ΩE is split across
the opposite j-axis (see Figure 1, middle), yielding the four subcells

ΩSW = [0..2p−1 − 1] × [0..2p−1 − 1] × [0..2s − 1],

ΩNW = [0..2p−1 − 1] × [2p−1..2p − 1] × [0..2s − 1],

ΩSE = [2p−1..2p − 1] × [0..2p−1 − 1] × [0..2s − 1],

ΩNE = [2p−1..2p − 1] × [2p−1..2p − 1] × [0..2s − 1].

The two numbers mSW = |ΩSW | and mSE = |ΩSE | are coded one after
the other. Since the cell ΩSW contains at most mW = |ΩW | pixels, we
need dlog2(mW + 1)e bits for coding mSW . Likewise, coding the number
mSE requires dlog2(mE + 1)e bits. The two numbers mNW and mNE do
not need to be coded. Indeed, this is because mNW = mW − mSW and
mNE = mE − mSE , i.e., the numbers mNW and mNE follow from the
previous information in the bitstream.

In the third stage, each of the four subcells ΩSW ,ΩNW ,ΩSE , and
ΩNE is split across the k-axis (see Figure 1, right), each into two halves
of equal size, which yields the eight subcells

Ω−

SW = [0..2p−1 − 1] × [0..2p−1 − 1] × [0..2s−1 − 1],

Ω−

NW = [0..2p−1 − 1] × [2p−1..2p − 1] × [0..2s−1 − 1],

Ω−

SE = [2p−1..2p − 1] × [0..2p−1 − 1] × [0..2s−1 − 1],

Ω−

NE = [2p−1..2p − 1] × [2p−1..2p − 1] × [0..2s−1 − 1],

Ω+

SW = [0..2p−1 − 1] × [0..2p−1 − 1] × [2s−1..2s − 1],

Ω+

NW = [0..2p−1 − 1] × [2p−1..2p − 1] × [2s−1..2s − 1],

Ω+

SE = [2p−1..2p − 1] × [0..2p−1 − 1] × [2s−1..2s − 1],

Ω+

NE = [2p−1..2p − 1] × [2p−1..2p − 1] × [2s−1..2s − 1],

whose union is Ω. The four numbers m−

SW = |Ω−

SW |, m−

NW = |Ω−

NW |,
m−

SE = |Ω−

SE |, and m−

NE = |Ω−

NE | are coded.
Altogether, by splitting the bounding cell Ω into eight subcells, the

sequence
mW |mSW |mSE |m−

SW |m−

NW |m−

SE |m−

NE

of seven numbers is coded. This requires

dlog2(m + 1)e + dlog2(mW + 1)e + dlog2(mE + 1)e

+ dlog2(mSW + 1)e + dlog2(mNW + 1)e

+ dlog2(mSE + 1)e + dlog2(mNE + 1)e

Scattered Data Coding 7

bits in total, to be appended to the bitstream.
This splitting (including the updates in the bitstream) is then re-

cursively applied to those subcells which are not empty. A cell ω ⊂ Ω
is said to be empty, iff it contains no pixel, and thus |ω| = 0. On
the most elementary recursion level, we encounter cells of the form ω =
[2i, 2i + 1] × [2j, 2j + 1] × [k], provided that s < p. Such atomic cells are
not split. This is in order to save additional costs in terms of bits. Instead
of this, the coding of the pixels in atomic cells is accomplished as follows.

We merely discuss the coding of the atomic cell ω = [0, 1]× [0, 1]× [0],
all the other atomic cases are treated in an analogous manner. Note that
the atom ω = [0, 1] × [0, 1] × [0] may contain zero, one, two, three or
four pixels. In case ω contains either four or zero pixels, no additional
information (in terms of coding costs) is required. If ω contains exactly
one pixel, then its position (i, j) ∈ {0, 1} × {0, 1} is coded by using two
bits, one for the index i and one for the index j. Likewise, if ω contains
three pixels, then the other position in ω (which contains no pixel) is coded
by using two bits. In the remaining case, where ω contains exactly two
pixels, there are six different possibilities for the distribution of the two
pixels in ω. These six different cases are coded according to the Huffman

code (1, 1), (1, 0), (0, 0, 1), (0, 0, 0), (0, 1, 1), (0, 1, 0).
This requires only 2/6 × 2 bits + 4/6 × 3 bits = 8/3 bits in average,

provided that the probabilities for each of the six cases are equal. This is
cheaper than coding each of the two pixels separately, which would require
2 × 2 bits = 4 bits.

§4. Computational Complexity

In this section, we analyze the computational complexity of the proposed
image compression scheme. To this end, we determine the computational
costs required for the performance of the steps (1),(2),(4), and (5) in
the introduction. Recall that step (1) is done by using adaptive thin-
ning. But the complexity of the adaptive thinning algorithm is already
well-understood. According to [4], we require only at most O(N log(N))
operations for the removal of n pixels from a number of N = 2p×2p pixels.

Now let us turn to the complexity of step (5). In this step, the De-
launay triangulation DI is first constructed from the m = N − n most
significant pixel positions, before the corresponding piecewise linear func-
tion L(Z,DI) is used in order to compute the n luminance values at the
deleted pixel positions. Recall that building the Delaunay triangulation
DI costs O(m log(m)) operations [6]. The subsequent reconstruction of
the n luminance values costs O(n) operations, which is O(N) for large n.

As to the remaining two steps, (2) and (4), note that these are sym-
metric. In fact, the asymptotic complexity of the encoding in step (2) is
the same as the asymptotic complexity of the decoding in step (4).

8 L. Demaret and A. Iske

Fig. 2. The two test cases, Reflex (left) and Lena (right).

Therefore, we restrict ourselves to the analysis of the computational
costs required for the performance of the encoding. To this end, recall from
Section 3 that step (2) relies on the recursive splitting of the bounding
cell Ω, containing m = |Ω| pixels. Therefore, we need to determine the
computational costs required for the construction of the entire octtree-
like data structure. Now note that the initial splitting of Ω into the two
subcells ΩW and ΩE costs m operations in the first stage. Indeed, these m
operations are required for counting the number mW of pixels in ΩW . But
the subsequent splitting of ΩW and ΩE in the second stage costs also m
operations, namely mW for splitting ΩW and mE for splitting ΩE , and so
altogether mW +mE = m. By recursion, the splitting at each level ` costs
exactly m operations. Now since the tree comprises 2p + s = log2(N) + s
levels, this leads to m × (log2(N) + s) = O(m log(N)) operations for the
performance of step (2).

Altogether, this shows that we require asymptotically at most

O(N log(N)) + O(m log(N)) = O(N log(N))

operations for the compression, in steps (1) and (2), and at most

O(m log(N)) + O(m log(m)) + O(N) = O(m log(N)) + O(N)

operations for the decompression in steps (4) and (5).

§5. Numerical Examples

We have applied our compression scheme, according to the steps (1)-(5) in
the introduction, on two different test cases. One test case is a geometric
image called Reflex, which is displayed in Figure 2 (left), the other one is
the well-known test case Lena, shown in Figure 2 (right). In both cases,
the image size is 128-by-128 (i.e., p = 7), and the greyscale values of the
luminances z(i, j) are in [0..255], i.e., r = 8.

Scattered Data Coding 9

Fig. 3. Reflex: Reconstruction by SPIHT (left) and our method (right).

Fig. 4. Reflex: 407 most significant pixels and their Delaunay triangulation.

For the data reduction in step (1), we have used one variant of the
adaptive thinning algorithm AT1 of [4]. The subsequent encoding of the
bitstream in step (2) is done by using the coding scheme of the previous
Section 3, with quantization step 8, so that we have [0..31] for the range
of the quantized symbols Q(z̃(i, j)), (i, j) ∈ I, i.e., s = 5.

In this section, we compare the performance of our compression scheme
with that of the wavelet-based compression scheme Set Partitioning Into

Hierarchical Trees (SPIHT) [7]. We remark that the good compression
rate of SPIHT is, for small images such as Reflex and Lena, and at low
bit rates, comparable with that of the powerful method EBCOT [8], which
is the basis algorithm of the standard JPEG2000.

We measure the compression rate in bits per pixel, bpp. Moreover,
the quality of the reconstruction Ẑ = (ẑ(i, j))ij is evaluated by its Peak

Signal to Noise Ratio (PSNR), measured in dB,

PSNR = 10 × log10

(

2r × 2r

MSE

)

,

10 L. Demaret and A. Iske

Fig. 5. Lena: Reconstruction by SPIHT (left) and our method (right).

Fig. 6. Lena: 2205 most significant pixels and their Delaunay triangulation.

where

MSE =
1

22p

∑

i,j

|z(i, j) − ẑ(i, j)|2

denotes the Mean Square Error.
In each of the two test cases, we consider using a fixed compression

rate. Therefore, we compare our method with SPIHT by regarding the
differences of their PSNR values.

In the test case of Reflex, we fix the compression rate by 0.28 bpp.
The resulting reconstruction of our method is, in comparison with that
of SPIHT, displayed in Figure 3. Our method yields the PSNR value
32.54 dB, whereas SPIHT provides the PSNR value 31.33 dB. Hence, with
respect to this quality measure, our method is better. Note that our
method manages to localize the sharp edges in this image. Moreover,
undesired oscillations around the edges are avoided, see Figure 3. This
is due to the well-adapted distribution of the 407 most significant points,
which are, along with their Delaunay triangulation, displayed in Figure 4.

Scattered Data Coding 11

Now let us turn to the test case Lena, where we fixed the compression
rate by 1.24 bpp. In this case, we obtain the PSNR value 31.45 dB for
our compression scheme, whose reconstruction is displayed in Figure 5
(right). This reconstruction is obtained by using the 2205 most significant
points, which are, along with their Delaunay triangulation, displayed in
Figure 6. Note that by the distribution of these 2205 most significant
points, the main features of the image, such as sharp edges and silhouettes,
are captured very well. On the other hand, our reconstruction fails to
render some of the textures in the image.

The resulting reconstruction of SPIHT is also shown in Figure 5
(left). In comparison, the method SPIHT yields the better PSNR value of
33.26 dB. Given the visual quality of the two reconstructions in Figure 5,
however, we believe that our compression method is quite competitive.

References

1. Cohen, A., W. Dahmen, I. Daubechies, and R. DeVore, Tree approx-
imation and optimal encoding, Appl. Comput. Harmonic Anal. 11
(2001), 192–226.

2. Cohen, A., and B. Matei, Nonlinear subdivision schemes: applica-
tions to image processing, in Tutorials on Multiresolution in Geomet-

ric Modelling, A. Iske, E. Quak, and M. S. Floater (eds.), Springer-
Verlag, Heidelberg, 2002, 93–97.

3. Davis, G. M., and A. Nosratinia, Wavelet-based image coding: an
overview, in Applied and Computational Control, Signals, and Cir-

cuits, B. N. Datta (ed.), Birkhauser, Boston, 1999, 205–269.

4. Dyn, N., M. S. Floater, and A. Iske, Adaptive thinning for bivariate
scattered data, J. Comput. Appl. Math. 145 (2002), 505–517.

5. Le Pennec, E. and S. Mallat, Image compression with geometrical
wavelets, Proceedings of ICIP 2000, September 2000, Vancouver.

6. Preparata, F. P. and M. I. Shamos, Computational Geometry, 2nd
edition, Springer, New York, 1988.

7. Said, A. and W. A. Pearlman, A new, fast, and efficient image codec
based on set partitioning in hierarchical trees, IEEE Trans. Circuits
and Systems for Video Technology 6 (1996), 243–250.

8. Taubman, D., High performance scalable image compression with
EBCOT, IEEE Trans. on Image Processing, July 2000, 1158–1170.

Laurent Demaret, Armin Iske
Zentrum Mathematik
Technische Universität München
D-85747 Garching, GERMANY
demaret@ma.tum.de, iske@ma.tum.de

