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Abstract—The parameter estimation problem for multivariate
exponential sums is currently a very active field of research.
One idea discussed in the last years is to solve multiple one
dimensional parameter estimation problems and combine their
results to get a solution of the higher dimensional problem.
While these projection-based methods give reasonable results
with only very few samples, they cannot efficiently use samples
on a grid, which is the most common sampling set. In this paper
we demonstrate how to extend the projection-based methods to
cover parallel lines and hence samples on a grid.

I. INTRODUCTION

The interest in parameter estimation for multivariate expo-
nential sums has dramatically increased in the last few years,
driven by multiple applications like super-resolution [1] or
inverse scattering [2]. While multiple algorithms are already
available, using tools from convex analysis [1], computational
algebra [3], [4] or matrix pencil methods [5], [6], to give a
non-exhaustive list, there is still a demand for new methods,
giving good result with as few samples as possible. In this
paper, we present a new method, meeting this demand.

A multivariate exponential sum is a function of the form

f(x) =

M∑
j=1

cje
iyj ·x for x ∈ Rd, (1)

where yj ∈ (−π, π]d are the pairwise distinct frequencies and
cj ∈ C \ {0} the corresponding coefficients, and where M is
the order of f . The task is now to calculate yj and cj from
samples of f , usually taken at

GdN = GN = {n ∈ Zd : ‖n‖∞ ≤ N}.

While some other sampling sets were investigated as well,
samples of f on GN are the most relevant in applications. To
make only one example, the function values of f on GN can be
interpreted as the Fourier coefficients of a linear combination
of Dirac deltas, see for example [1].

The method we present here is based on the simple ob-
servation, that restricting a multivariate exponential sum to a
line

` = {tv + bw : t ∈ R}, (2)

where v, w ∈ Rd are orthonormal and b ∈ R, gives a univariate
exponential sum of the form

f(tv + bw) =

M∑
j=1

cje
ibyj ·wei(yj ·v)t =: f |`(t) for t ∈ R.

Taking samples on the line `, we may apply a univariate
method (e.g ESPRIT [7]) and obtain some information about
the frequencies of f . This trick has been used multiple times,
see for example [2], [8], [9]. But all these methods rely on
sampling along several non-parallel lines. This does not fit into
the setting of sampling on a grid GN , where our samples are
aligned on parallel lines. We show how nonetheless univariate
methods can be used to estimate the frequencies yj ∈ Rd.

Our method is quite close to a recently introduced method
in [10], but we focus on a pre-determined sampling set. Also,
we are able to deal with critical special cases. For instance,
the restriction of f to a line ` gives an exponential sum where
some frequencies yj · v may not occur, due to cancellations.

The rest of this paper is organized as follow. In Section II
we introduce the basic idea of using univariate methods along
a few parallel lines (`j)j=1,...,K and then once more to the
coefficients of f |`j to obtain estimates for the frequencies of
f . Also, we give a sampling set G̃N ⊂ GN , where unique
reconstruction is possible. In Section III we then present a
new ESPRIT type algorithm, which bundles the application
of the univariate ESPRIT to a single step, stabilizing our
scheme significantly. Numerical examples are finally provided
in Section IV.

II. PROJECTED COEFFICIENT ALGORITHM

Let us briefly recall the univariate case, d = 1 in (1). If an
upper bound, N , for the order M of f is known, M ≤ N , then
we can reconstruct M , the frequencies yj and the coefficients
cj from 2N samples f(k), k = −N, . . . , N−1. From the large
set of available methods, we prefer to work with ESPRIT [7],
which is well-known for its good efficiency and stability.

If we restrict a multivariate exponential function to a line
`, as given in (2), then we will obtain a univariate function

f |`(t) =
∑

y∈{yj ·v}

c`ye
iyt for t ∈ R (3)

with coefficients

c`y =
∑

j : y=yj ·v
cje

ibyj ·w.

Now two possible difficulties may occur. Firstly, the number
of frequencies of f |` may be smaller than M because several
frequency vectors yj may feature the same projection yj · v.
Secondly, it may happen that c`y = 0, which results in hidden
frequencies yj , which are seemingly invisible in f |`.

While the first problem is not too severe, the second one is
not covered in previous methods relying on univariate ideas in



the multivariate setting [8], [10]. Although in [9] we discuss
how to circumvent these problems theoretically, the solution
is computational unfeasible.

To this end, we show how parallel lines can be used to solve
these issues. To suppress some technical details, we start with
the important two dimensional case. Without loss of generality,
we assume v = e1 = (1, 0)T and b = 0 in (2). For L ∈ N let
(`k)L−1k=−L be a collection of parallel lines

`k = {te1 + ke2 : t ∈ R} .

This is the case covering the sample set GN .
The key idea is now as follows. The coefficients c`ky are

again samples of a univariate exponential sum

c`ky = cy(k) =
∑

j : yj1=y

cje
iyj2k,

where we let yj = (yj1, yj2)T . This idea is used in [10]
as well. Now if L > M , then we have enough samples
of all cy to reconstruct their frequencies. This has the nice
feature of matching the different projections of the frequency
vectors automatically, which is otherwise a difficult problem
when trying to use one dimensional methods. Indeed, for
any frequency yj2 of cy , we know that (y, yj2)T ∈ R2 is
a frequency vector of f with coefficient cj and all frequencies
of f are obtained in such a way. In fact, we can even reduce
the sampling set a little bit, as the order of all cy sum up to
the order of f and hence we either have a lot of frequencies
in f |` or in some of the cy . This leads us to our first result.

Theorem 1. Let f be an exponential sum as in (1) for
dimension d = 2. Moreover, assume N ≥ M is known.
Further consider the set

G̃N = {(n+ δ1,m+ δ2)T ∈ Z2 : δj ∈ {0, 1}
and |n|+ |m| < N}.

Then f is uniquely determined by f |G̃N
and its parameters

can be reconstructed using univariate methods.

Proof: Denote the frequencies of f by Y and let

Y1 = {y : y is a frequency of a f`k , k = 0, 1}.

This set can be calculated by applying any univariate method
along the lines `0, `1. Denote the corresponding coefficients
by cy(k), k = 0, 1. Assuming that these are exponential sums
with only one frequency each (namely the second component
of the frequency vector of f with first component y), we use
a univariate method and obtain c̃y ∈ C and ỹ ∈ (−π, π] with

cy(k) = c̃ye
iỹk.

This gives an exponential sum

f1(x) =
∑
y∈Y1

c̃ye
i(y,ỹ)T ·x for x ∈ R2.

If f1 agrees on all samples with f , we are done. Otherwise
at least two frequency vectors of f have to have the same
first component. But then only 2N − 2 samples suffice to

reconstruct all frequencies of f`k . We repeat the procedure
with two more lines. Let

Y2 = {y : y is a frequency of a f`k , k = −1, 0, 1, 2}.

Again, we obtain Y2 and the corresponding coefficients
cy(k), −1 ≤ k ≤ 2, by applying univariate methods. We build
f2 as we built f1. If f2 agrees with f on our sampling set, we
are done. Otherwise at least three frequency vectors of f have
the same first component. We iterate this argument. Note that
in the case where all frequency vectors of f have the same
first component, we have two samples on 2N parallel lines
and the coefficient sum has order N . Now we have exactly
the number of samples needed to cover this case.

Now we sketch the higher dimensional case, again choosing
lines that are parallel to the standard axes. For each k ∈ Gd−1N

we consider the line

`k =

te1 +

d−1∑
j=1

kjej+1 : t ∈ R

 ,

where e1 = (1, 0, . . . , 0) ∈ Rd. Again, f`k takes the form (3)
with frequencies y being equal to the first component of the
frequency vectors of f . The coefficients c`ky are exponential
sums of dimension d − 1, sampled at k ∈ Zd−1, as each
line gives us one such sample. In the generic case, where
all frequency vectors of f have different first components, all
cy(k) have actually only one frequency vector, namely the last
d− 1 components. Otherwise, when we sample f at the grid
GdN = GN , we can use univariate methods to obtain samples
for each of the exponential sums cy at Gd−1N . Therefore, we
can recursively reduce the multivariate problem to multiple
one dimensional problems.

As we use samples on GdN , we need O(Nd) samples.
Even when reducing the sampling set with a more sophis-
ticated calculation, as in Theorem 1, we still need O(Nd)
samples. On the other hand, algebraic techniques prove that
O(N2 log2d−2(N)) are sufficient [11]. This rather poor effi-
ciency is shared by all methods operating on GdN . But in the
relevant case of two dimensions, this is not critical at all.

Although the above construction provides an algorithm,
several problems still remain, in particular with noisy samples.

• We use univariate methods very often. In the bivariate
case we start using the univariate method 2N times to
obtain the frequencies of f |`k and up to N times for the
cy’s. As the dimension increases, the number of utilized
univariate methods increases rapidly, as we already start
with (2N)d−1 different lines.

• After using the univariate method along the first collec-
tion of lines, we have to decide when two frequencies
y, ỹ are considered equal. Therefore, some level of
tolerance is required, i.e., we need to select one δ > 0
such that for

min
k∈Z
|y − ỹ − 2πk| = |y − ỹ|T < δ



we consider y and ỹ as equal. But the selection of the
tolerance δ is obviously critical, as small changes in δ
may change the output of the procedure significantly.

We address these issues in the next section. We propose
an algorithm, which estimates the frequencies along several
parallel lines simultaneously. Hence, no matching is required.

III. SIMULTANEOUS FREQUENCY ESTIMATION

When we have a multivariate exponential sum f sampled
along several parallel lines and perform a univariate method
along each of the lines, we expect to find the same frequencies
along each line except for a few frequencies missing along
some of the lines due to cancellation. And as we are only
interested in the set of all frequencies it is better to estimate
them in a joint procedure. To this end, we propose an extension
of the well known ESPRIT algorithm [7], which covers the
following situation. Let

fl(x) =
∑
y∈Yl

clye
iyx l = 1, . . . , L

be a collection of univariate exponential sums with frequency
sets Yl, Ml = |Yl|, coefficients cl = (cly)y∈Yl

∈ (C \ {0})Ml .
We aim to recover Y = ∪Ll=1Yl from given samples fl(k),

k = 0, . . . , 2N , where we assume M = |Y | ≤ N . This fits
(up to a simple transformation) into our setting of sampling
on GN . To solve this problem, we propose a solution close
to the matrix enhancement method in [5], adapted to our
particular situation. To this end, just as in the univariate
ESPRIT algorithm, we consider the Hankel matrix

Hl
2N−P+1,P+1 =


fl(0) . . . fl(P )
fl(1) . . . fl(P + 1)

...
. . .

...
fl(2N − P ) . . . fl(2N)

 ,

Hl
2N−P+1,P+1 ∈ C(2N−P+1)×(P+1). We assume P ≥ N . We

can rely on the factorization

Hl
2N−P+1,P+1 = V2N−P+1,Ml

(zl)diag(cl)VP+1,Ml
(zl)T .

Here, zl = (eiy)y∈Yl
∈ CMl and

Vm,n(z1, ..., zn) = (zqp)q=0,...,m
p=0,...n

∈ Cm×n

is a Vandermonde matrix. Clearly, we can insert some ad-
ditional frequencies with coefficients zero (again, we denote
the new coefficient vector as cl for notational convenience) to
obtain

Hl
2N−P+1,P+1 = V2N−P+1,M (z)diag(cl)VP+1,M (z)T ,

where z = (eiy)y∈Y ∈ CM . We then stack these Hankel
matrices in a big matrix

HN,P+1 =
(
(H1

2N−P+1,P+1)T . . . (HL
2N−P+1,P+1)T

)T
.

Due to the common factorization we have

HN,P+1 = ṼD̃VP+1,M (z)T (4)

where Ṽ is a matrix consisting of L V2N−P+1,M (z) blocks
on the diagonal and D̃ =

(
diag(c1) . . . diag(cL)

)T
. By

deleting the first or the last column of HN,P+1 we obtain
the matrices HN,P+1(0) and HN,P+1(1), respectively. They
feature a factorization like (4), where VP+1,M (z)T is replaced
by VP,M (z)T and for HN,P+1(1) each diagonal matrix of D̃
is multiplied with diag(z). Hence, the matrix pencil

HN,P+1(1)− µHN,P+1(0) (5)

has rank reducing numbers equal to {eiy, y ∈ Y }, just as in
the univariate case of the ESPRIT algorithm. To actually solve
this matrix pencil, we use its special structure. We start with
the SVD of HN,P+1

HN,P+1 = UΣW. (6)

This matrix has rank equal to the order of f , as (4) shows.
Hence, calculating the SVD we obtain M . When we have
noisy samples, the rank has to be estimated, for example by
thresholding the singular values. Furthermore, we can delete
all up to the first M rows of W and all but the first M columns
of Σ. Now by deleting the first (resp. last) column of W we
obtain a SVD of HN,P+1(0) (resp. HN,P+1(1)), given by

HN,P+1(s) = UΣ̃W̃(s) s ∈ {0, 1}.

Note that W̃(s) has full rank and (5) is equivalent to the pencil

W̃(1)− µW̃(0)

where W̃(s) ∈ CM×P . Hence, every matrix F ∈ CM×M
satisfying

FTW̃(1) = W̃(0)

has eigenvalues equal to the rank reducing numbers and
therefore to {eiy, y ∈ Y }. We use the least square solution

F = (W(0)T )†W(1)T , (7)

where A† denotes the Moore-Penrose pseudoinverse of matrix
A. Of course the total least square solution is possible as well.

In summary, we obtain the following algorithm.

Algorithm. Given: f(n, k), 0 ≤ n, k ≤ 2N , upper bound
P ≤ N on the order of f , threshold tol > 0, second threshold
ε > 0

1) Build the Hankel matrix HN,P+1 and compute its sin-
gular value decomposition (6).

2) Find M , such that σM > tol · σ1 ≥ σM+1, where σj is
the j-th singular value of HN,P+1. Thus, M estimates
the order of f .

3) Form W̃(s) and calculate F as given in (7) and compute
its eigenvalues λ1, . . . , λM .

4) Solve for the coefficents cly by solving

V2N,M (λ1, . . . λM )cl = (f(l, k))k=0,...,2N

5) For every j = 1, . . . ,M apply the univariate ESPRIT al-
gorithm to (clj)l=−N,...N . Call the observed frequencies
{yjk, k = 1, . . . ,Mj} with coefficients cjk.



6) Delete all frequencies with coefficients of modulus
smaller than ε. Recalculate coefficients.

7) Let yj1 = log(λj)/i, where log is the principal branch
of the logarithm. Result: {(yj1, yjk), j = 1, . . . ,M k =
1, . . .Mj} with coefficients cjk.

Remark: One advantage of this algorithm is, that it can
be used with significantly less samples, for example with the
sampling set GN,2 = {(k, j), k = 0, . . . , 2N j = 0, 1}. While
a recovery cannot be guaranteed, assuming the frequencies
are randomly distributed, samples on G̃N,2 are almost surely
sufficient, as no cancellation will occur. We demonstrate this
in the next section. Also, it should be noted that we only need
the right singular vectors and that the linear systems in 4) all
have the same system matrix.

Finally, we remark that the tolerance parameter tol > 0
essentially needs to reflect the noise level. In fact, tol is
the value for the threshold used in the univariate ESPRIT
algorithm to determine the number of frequencies. On the
other hand, the threshold ε > 0 cuts off small (noisy)
coefficients cj to zero. Hence, possible a priori knowledge
on the minimal modulus of the coefficients cj may be used.

IV. NUMERICAL EXAMPLES

Now to illustrate the proposed algorithm, we give numerical
examples. We focus on the undersampled case, where many
known algorithms are not even directly applicable.

First Example: We choose frequencies and coefficients ran-
domly. M frequencies are uniformly distributed in (−π, π]2,
the coefficients in {c ∈ C : 0.25 ≤ |c| ≤ 2.25}. We bound
the coefficients from below to avoid numerically undetectable
frequencies. The sampling set is given by

GN,K = {(n, k) : 0 ≤ n ≤ N − 1, 0 ≤ k ≤ K}.

We report the `2 error in the frequencies

e2(Y, Yest) = min
σ permutation

|Y |∑
j=1

‖yj − yσ(j),est‖2

whenever it is smaller than 0.5, otherwise we count the
estimate as failed. Also, we count all instances as failed,
where the number of frequencies does not match. All errors
are averages over 1000 runs.
To test the stability with respect to noise, we add noise which
is uniformly distributed in α([−1/2, 1/2]+i[−1/2, 1/2]). The
threshold for the rank estimation we denote by tol and the
upper bound for the order of f by P . Throughout all instances,
we set the threshold for the coefficients to ε = 0.1. The results
are reported in Table I. Overall, it is clear that the algorithm
runs reasonable with a very small number of samples. If noise
is large, more samples are needed to stabilize the procedure.

Second Example: We now consider a specific example,
where critical cancellations occur. To this end, we consider
the frequencies

y1 = π(0.2, 0.2)T , y2 = π(0.6, 0.2)T ,

y3 = π(0.6, 0.2)T , y4 = π(0.6, 0.6)T

TABLE I
RESULTS OF THE FIRST EXAMPLE

M P N K tol α e2(Y, Yest) fails/1000

5 5 10 2 1e-7 0 1e-09 0
5 5 10 2 1e-5 1e-6 3e-03 24
5 10 20 2 1e-5 1e-6 6e-04 2
5 10 20 4 1e-5 1e-6 3e-05 1
5 10 20 4 1e-2 1e-3 4e-03 34

10 10 20 2 1e-5 1e-6 2e-02 114
10 10 40 4 1e-5 1e-6 5e-03 28
10 20 50 8 1e-5 1e-6 5e-06 2
10 20 50 8 1e-2 1e-2 4e-03 100
10 20 60 15 1e-2 1e-2 1e-03 81
10 20 60 40 1e-2 1e-2 8e-04 50

with coefficients c1, c4 = 1, c2, c3 = −1. Due to cancellations,
f(x, 0) = f(0, y) = 0 for all x, y ∈ R, which makes
the frequency estimation problem rather difficult for many
algorithms.

Running the proposed algorithm with P = 4, samples on
G8,4 and a noise level of α = 1e-2 and tol = 1e-2, we
observed an average error of e2 ≈ 1e-2 for over 1000 runs
with no fails. To give one example where the exact number
of frequencies is not given, samples on G20,8 with the same
noise level and P = 10, the algorithm gives an average error
of 5e-3, where no fail occurred.
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