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Abstract

Many relevant applications of signal processing rely on the separation of
sources from a mixture of signals without prior knowledge about the mixing
process. Given a mixture of signals, the task of signal separation is to esti-
mate the mixture components by using specific assumptions on their time-
frequency behaviour or statistical characteristics. Time-frequency data is
often very high-dimensional, which reduces the performance of signal sepa-
ration methods quite significantly. Therefore, the embedding dimension
of the signal’s time-frequency representation should be reduced prior to
the application of a decomposition strategy, such as independent compo-
nent analysis (ICA) or non-negative matrix factorization (NNMF). In other
words, a suitable dimensionality reduction method should be applied, be-
fore the data is decomposed and then back-projected. But the choice of
the dimensionality reduction method requires particular care, especially in
combination with NNMF and certain types of ICA, since they require non-
negative input data. In this paper, we introduce a generic concept for the
construction of suitable non-negative dimensionality reduction methods.
Furthermore, we discuss the two different decomposition strategies ICA
and NNMF for single channel signal separation. We apply the resulting
methods to the separation of acoustic signals with transitory components.

Key words and phrases: Non-negative dimensionality reduction, signal sepa-
ration, independent component analysis, non-negative matrix factorization
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1 Introduction

In relevant applications of signal processing there is an increasing demand for
efficient signal separation methods. Given a mixture of signals, the basic task
of signal separation is the estimation of the signal’s components without prior
knowledge about the mixing process. Different decomposition techniques were
recently developed to do so, e.g. independent subspace analysis (ISA) [4, 7, 8, 26],
based on independent component analysis (ICA) or non-negative matrix factor-
ization (NNMF) [9, 25, 27]. On the down side, the computational complexity of
these decomposition methods may be prohibitively large.

To reduce the computational complexity, dimensionality reduction methods
can be employed. Many dimensionality reduction methods rely on projections,
e.g. the linear principal component analysis (PCA) and multidimensional scal-
ing (MDS). More recently, nonlinear dimensionality reduction methods (see [20]
for an overview) were developed, e.g. isomap and local linear embedding (LLE).
In [14], dimensionality reduction is combined with ISA for audio signal separa-
tion.

In signal separation, dimensionality reduction is first applied to reduce the
dimension of the data obtained from a time-frequency transform (e.g. STFT),
before the reduced data is decomposed into different components, each assigned
to one of the sources. In combination with decomposition methods as NNMF,
non-negative dimensionality reduction methods are essentially required to output
non-negative data from non-negative input data. Therefore, the construction of
non-negative dimensionality reduction (NNDR) methods is of particular interest.

In this paper we develop a novel concept for the construction of non-negative
dimensionality reduction methods for signal separation. We remark that dimen-
sionality reduction for signal separation is studied in previous work [8, 14, 26],
but without using any non-negativity constraints. Therefore, the idea to apply
NNDR methods in the context of signal separation is new.

For the construction of NNDR methods we characterize the dimensional-
ity reduction as an optimization problem with a suitable cost functional. To
generate a NNDR method, we include a non-negativity constraint, which leads
us to a constrained optimization problem. To solve this problem, we consider
splitting the problem of NNDR into two subproblems that can (under suitable
assumptions) be decoupled: (a) the problem of dimensionality reduction with-
out non-negativity constraints; (b) the construction of a rotation for mapping
the reduced data to the positive orthant. Details on problems (a) and (b) and
their solutions are explained later in this paper. Moreover, for the purpose of
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illustration, we compare the two decomposition methods ICA and NNMF in
combination with a suitable NNDR method, whose construction relies on PCA.

Our concept of NNDR is explained in Section 2, and its coupling with NNMF
and ICA is subject of Section 3. Numerical examples and comparisons between
the decomposition methods ICA and NNMF are finally presented in Section 4.

2 Non-Negative Dimensionality Reduction

On given data
X = {xi}ni=1 ⊂ RD,

and for large dimensionD, dimensionality reduction aims to find a representation
Y of X, so that Y can be embedded in a Euclidean space of much smaller
dimension d � D, i.e., Y ⊂ Rd. For convenience, we will from now use the
matrix notation

X = (x1, ..., xn) ∈ RD×n.

More precisely, with assuming the data X to lie on a (smooth) manifold
M⊂ RD, we wish to compute a low-dimensional representation Ω ofM, where
Ω ⊂ Rd is embedded in Rd, for d� D. This way we obtain Y ⊂ Ω representing
X ⊂M, as illustrated in the following diagram.

X ⊂ M ⊂ RD

Y ⊂ Ω ⊂ Rd

P B (1)

In this paper, we work with dimensionality reduction methods that can be
characterized as an optimization problem

min
P∈U

g(P ) (2)

with U ⊂ {f : X → Rd} and a cost functional g : U → R, where g is a measure for
the distance between the projection P and the homeomorphism B in (1). Note
that the pair (U , g) entirely determines the dimensionality reduction method.
We remark that most dimensionality reduction methods, including PCA, MDS,
isomap and LLE, can be formulated as (2) and, moreover, efficient algorithms
for solving their corresponding optimization problem (2) are available (see [20]).

In many relevant applications, dimensionality reduction is applied in a pre-
processing step to reduce the data complexity for making subsequent applica-
tions of signal analysis tools feasible. Quite often, subsequent operations es-
sentially require non-negative input data. This motivates us to construct non-
negative dimensionality reduction (NNDR) methods. To this end, it is straight-
forward to add a non-negativity constraint P (X) ≥ 0 to (2), and so we obtain
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a constrained optimization problem

min
P∈U

P (X)≥0

g(P ). (3)

Note that the non-negativity constraint makes the optimization problem (3)
rather difficult to solve. This is in contrast to the unconstrained optimization
problem (2), for whose solution standard algorithms are readily available [20].

For solving optimization problem (3), we consider a splitting approach, where
in a first step the dimensionality reduction problem (2) is solved, before in a
second step the reduced data is rotated into the positive orthant of Rd. To
be more precise, in the second step we compute a rotation matrix W ∈ SO(d)
satisfying WP (X) ≥ 0, where P is a solution of (2).

We remark that the splitting approach does not work for all dimensionality
reduction methods. But it turns out, that, whenever such a rotation matrix W
exists, the expected rotational invariance of g, i.e.,

W ∈ SO(d) =⇒ WP ∈ U and g(WP ) = g(P ),

guarantees the solvability of problem (3) by the proposed splitting approach. We
can show that both PCA and MDS fit in this framework, so that the existence
of a rotation matrix W is guaranteed, if the input (high-dimensional) data is
non-negative, see [18] for more details.

2.1 Non-Negative PCA (NNPCA)

Principal component analysis (PCA) is a classical linear dimensionality reduc-
tion method, whose construction relies on the singular value decomposition.
Here, the mapping P is an orthogonal projection, satisfying Y = P (X) = UTX,
with U ∈ RD×d. The projection matrix U is obtained by solving the minimiza-
tion problem

min
UTU=1

n∑
k=1

∥∥xk − UUTxk
∥∥2 . (4)

We remark that the solution of minimization problem (4) is given by the maxi-
mizer of the variance var(Y ) of Y , which in turn is given by the trace of Y Y T .
This allows us to reformulate (4) as an equivalent maximization problem,

max
UTU=1

tr(UTXXTU), (5)

where the maximizer U of var(Y ) is given by a matrix U whose d columns contain
the eigenvectors of the d largest eigenvalues of the covariance matrix XXT .

In this context, the pair (U , g) in problem (2) is given by

U = {UT ∈ Rd×D | UTU = 1},
g(UT ) = − tr(UTXXTU).
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According to (3), we reformulate the maximization problem in (5) by adding a
non-negativity constraint:

max
UT U=1
UTX≥0

tr(UTXXTU). (6)

Note that this additional restriction transforms the simple PCA problem in
(5) into a much more difficult non-convex optimization problem (6) with many
local solutions, for which (in general) none of the solutions is known analytically.

Let us further discuss this special case of PCA in more detail. First note
that the cost functional g is rotational invariant, due to the cyclic invariance of
the trace. Indeed, for W ∈ SO(d) we find the relation

g(WUT ) = − tr(WUTXXTUW T ) = − tr(W TWUTXXTU) = g(UT ).

Furthermore, the orthogonal projection UT solving (5) is an angle preserving
mapping fromM to Rd, i.e., data lying in the positive orthant of RD is mapped
into a pointed linear cone of angle 90◦ in Rd. Thus, the splitting approach, as
described above, can be applied. Indeed, there exists a matrix W ∈ SO(d) rotat-
ing the reduced data into the positive orthant of the low-dimensional space Rd.
The value of the cost functional g in (6) is not changed by this rotation.

The crucial point, however, is to compute such a rotation matrix W . In
order to do so, we consider solving an auxiliary optimization problem on the set
of orthogonal matrices SO(d) for the cost functional

J(W ) =
1

2

∑
i,j

[(
WUTX

)
−

]2
ij
, (7)

where we let

[Y−]ij =

{
yij if yij < 0,

0 otherwise,

as this was proposed in [24] in the context of ICA. Note that the cost functional J
in (7) penalizes negative entries in the low-dimensional representation WUTX,
and it attains its minimal value zero for a suitable rotation.

However, the minimization of (7) can not be solved directly by an additive
update algorithm, since the set of rotation matrices SO(d) is not invariant under
summation, i.e., updating with ∆W does in general not implyW+∆W ∈ SO(d).
There are several possibilities to overcome this difficulty. After each update, a
projection to the space of orthogonal matrices SO(d) as in [23] would do. But
it is not clear if this would lead to a viable descent strategy. Another approach
is to include a relaxation term and to consider an unconstrained optimization
problem, see [29].

A more elegant way to minimize the cost functional J in (7) exploits the
Lie-group structure of SO(d), leading to a corresponding optimization problem
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in the associated Lie algebra of skew-symmetric matrices so(d) (see [15] for a
comprehensive account to Lie groups and Lie algebras). In the set of skew-
symmetric matrices an additive update is computed and mapped to the group
of special orthogonal matrices via the matrix exponential. In this way, a multi-
plicative update in SO(d) is induced and the orthogonality of the updated matrix
is guaranteed in a rather natural way. Due to the vector space property of so(d),
standard methods, e.g. line search, can be applied to find the minimum [18, 24].

We finally remark that the NNPCA, as specified in [29] and used in several
papers (e.g. [16, 22, 28]), essentially differs from the one introduced here, since
they require U ≥ 0 rather than UTX ≥ 0, which is a more restrictive constraint.

3 Application of NNDR to Signal Separation

In recent years, techniques for blind source signal separation, such as independent
component analysis (ICA) or independent subspace analysis (ISA), were coupled
with dimensionality reduction methods, e.g. PCA, LLE or isomap [8, 14, 26].
Moreover, non-negative matrix factorization (NNMF) has gained enormous in-
terest in signal separation (see e.g. [17, 25, 27]). Often, the utilized decompo-
sition, in particular NNMF, essentially requires non-negative input. Therefore,
the construction of non-negative dimensionality reduction (NNDR) methods is
of primary interest in signal separation.

Let us briefly introduce the basic concept of signal separation, with focussing
on the interaction between dimensionality reduction and decompositions. For a
band-limited signal f ∈ L2([0, T ]) and a segmentation of its domain [0, T ] into
small patches, we can analyze f on each of these patches, as this is usually done
by short-time Fourier-transform (STFT) or wavelet analysis. In this way, we
obtain a dataset X of vectors in RD by drawing n samples from f :

X = {xi}ni=1 ⊂ RD.

With using the matrix notation X = (x1, ..., xn) ∈ RD×n, the output of the
time-frequency analysis is a high-dimensional and (componentwise) non-negative
matrix X, called the spectrogram of signal f . The columns of X represent fre-
quencies which are present in f at a certain time. Now, a suitable dimensionality
reduction method is first applied to the data matrix X, before a decomposition
of the reduced data is performed. The reduced data is represented by a matrix
Y ∈ Rd×n of much smaller dimension, d� D. With the subsequent decomposi-
tion of Y , each extracted component of Y is assigned to one source signal. The
basic steps of the overall procedure are shown in Figure 1.

Recall that we assume the data points in X to lie on a smooth manifold.
The dimensionality reduction map P which maps X on Y is required to be non-
negativity preserving according to (3). Furthermore, for the reconstruction of
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spectrograms
of f1 and f2

ICA, NNMF
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decomposed data
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Figure 1: Signal separation with dimensionality reduction.

the source signals we need a suitable left-inverse of the map P , giving an approxi-
mation of B−1 in diagram (1). This assumption is in general very restrictive,
but in the special case of PCA it is satisfied by P−1(y) = Uy.

There are different methods for the decomposition of the (reduced) spectro-
gram Y . Among them, ICA and NNMF are commonly used. In either case, for
the application of ICA or NNMF, we assume the input data Y to be a linear
mixture of source terms si, i.e.,

Y = AS, (8)

where the matrices A ∈ Rd×d and S ∈ Rd×n are unknown. We assume S ⊂ Ω
as this is the case for PCA. For the estimation of A and S we need specific
additional assumptions to balance the disproportion of equations and unknowns
in the factorization problem (8).

1. Independent Component Analysis (ICA). The basic assumption of ICA
is that the source signals are statistically independent. Furthermore, the data
matrix Y is assumed to result from n realizations of a d-dimensional random
vector. In order to estimate S, a random variable S is constructed, whose n
realizations yield the columns of the source matrix S. The components of S are
chosen to be as stochastically independent as possible, where the stochastical
independence can be measured by the Kullback-Leibler distance (cf. [5]).

In practice, the number of sources is usually not known. In consequence, we
may detect more independent components than the true number of sources. In
this case, two or more of the separated components belong to the same source.
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Thus, the sources are combinations of the independent components. In a sub-
sequent step, the sources are grouped (partitioned) into independent subspaces,
each corresponding to one source. Finally, the sources are reconstructed from
these multi-component subspaces (see [4]). This procedure is called independent
subspace analysis (ISA). The main difficulty of ISA is to identify components
belonging to the same multi-component subspace.

2. Non-negative Matrix Factorization (NNMF). Note that the factorization
of the given data set Y into a mixing matrix A and the source signals (source
components) S, i.e., Y = AS, could also be done by a matrix factorization.
The data which we use for signal separation are obtained by taking the modulus
of the signal’s STFT, and so the input data is non-negative. Since the source
components are assumed to be spectrograms, too, we assume them to be non-
negative as well. Therefore, non-negative matrix factorizations (NNMF) are
suitable tools for decomposition.

Different algorithms for NNMF are available, each of which relies on the non-
negativity Y,A, S ≥ 0, where different measures d(Y,AS) for the reconstruction
error were proposed (see e.g. [9, 25, 27]). Here, we consider using the generalized
Kullback-Leibler divergence

d(Y,AS) =
∑
i,j

Yij log
Yij

(AS)ij
− Yij + (AS)ij ,

proposed by Lee & Seung [19], as used for decomposition of signal data in [27].

We summarize the steps of the resulting signal separation as follows.

Algorithm (Signal Separation by NNDR).

input signal f as time series
compute spectrogram X and phase Φ of f (e.g. STFT)
reduce dimension of X (by e.g. PCA, Y = UTX)
rotate low dimensional data set Y by W ∈ SO(d),
| such that WY ≥ 0, where
x W=arg min

WY≥0
J(W ) with Lie Group Method

decompose WY by ICA (jade [3]) or NNMF (toolbox [12])
separate WY = Z1 + Z2, see [4]
invert dimensionality reduction (X1 = UWTZ1, X2 = UWTZ2)
reconstruct time series of sources si using phase Φ (ISTFT)

We remark that the consecutive steps of our proposed signal separation by
NNDR can be performed by the application of the computational methods, as
they are suggested for the different stages in the above algorithm. But we wish
to discuss three main steps of our algorithm in more detail: (a) reduction (b)
decomposition (c) inversion. To this end, we discuss theoretical properties of
the algorithm’s ingredients to further justify our signal separation framework.
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In particular, we explain basic hypotheses concerning the performance of the
three steps (a), (b), and (c). In the case of ICA, statistical independence is the
main requirement for a successful signal separation procedure. In the context of
our setting, it needs to be verified whether the dimensionality reduction map P
preserves the statistical independence of the input signals. In the case of NNMF,
we require suitable criteria that can be formulated by using a geometrical inter-
pretation of NNMF. Indeed, as indicated for instance in [6, 10], the procedure
of NNMF can be described as a nested polytopes problem.

Moreover, a decomposition of Y = AS in the sense of NNMF requires an
analysis of the pullback of Y, φ(Y ) = Y D(Y ), where D(Y ) is a diagonal matrix
whose diagonal elements are the inverse of the `1-norms of the columns of Y .
Now, the geometrical interpretation of NNMF can be described as the search of
a polytope T = conv(φ(A)) (the convex hull of the columns of the matrix φ(A)),
such that conv(φ(Y )) ⊆ T ⊆ ∆n, where ∆n is the unit simplex of dimension
n − 1. The theoretical analysis for our framework can therefore be described
as the adequate dimensionality reduction and reconstruction of the polytopes
involved in the geometrical interpretation of NNMF.

The reconstruction part (i.e, the inversion in the penultimate line of our
algorithm) can also be formalized. Especially, the rich theory on approximation
methods for high-dimensional scattered data data by using radial kernels, or,
radial basis functions (RBF) is particularly useful. For a more general discussion
on theoretical aspects of multivariate scattered data approximation by RBF we
refer to the textbooks [2, 30], whereas a more recent account to the interactions
between kernels and signal analysis tools can be found in our work [13].

As previously described, the application of (nonlinear) dimensionality re-
duction methods requires suitable strategies for mapping data between high and
low dimensional Euclidean spaces. In fact, various (nonlinear) dimensionality
reduction methods incorporate intrinsic interpolation strategies. In the gen-
eral case, however, the reconstruction of high-dimensional scattered data from
low-dimensional representations is a difficult problem. The general concept of
reproducing kernels in their native Hilbert spaces has already provided powerful
tools for multivariate scattered data approximation [2, 30]. A more basic de-
scription of the main tools can be found in [1]. We finally remark that additional
comparisons between ICA and NNMF can be found in [21].

4 Numerical Results

For the purpose of illustration, we present one numerical example, where we
compare the decompositions by ICA and NNMF. To this end, we consider a
mixture f = f1 + f2 of acoustic transient signals, where f1 is a sequence of
castanets and f2 a cymbal signal, see Figure 2.
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Figure 2: Two acoustic transient signals: (a) castanets f1, (b) cymbal signal f2;
(c) spectrogram of f1, (d) spectrogram of f2.
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Figure 3: Signal f = f1 + f2 and its spectrogram X.

The combination f = f1 + f2 of the castanets and the cymbal is shown in
Figure 3. Their spectrograms were generated by a STFT using a Hann-window.
Since f2 is a high-energy signal, f has a complex frequency characteristic. There-
fore, the task of extracting the castanets signal f1, being active only at a few time
steps, is quite challenging. For the ISTFT we have used the phase information
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from the original signal.
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Figure 4: Signal separation by NNPCA-NNMF (left column); separation by
NNPCA-ICA (right column).

The separations obtained from NNPCA and the decomposition methods,
NNMF and ICA, are shown in Figure 4. Note that either method, ICA or
NNMF, reproduces the characteristic peaks of the castanets quite well. But for
the separation by NNMF, a few more artifacts are visible in the cymbal signal,
in contrast to the separation by ICA (see Figure 4). Given our numerical results,
we can conclude that NNPCA-ICA outperforms NNPCA-NNMF, as shown in
waveform for intermediate low-energy regions of the cymbal signal (see Figure 4).

We can explain the effects that are visible in Figure 4 as follows.

First note that the statistical independence between the attack in the cas-
tanets and the cymbal signal may be more pronounced in the low-energy areas of
the cymbal signal, in contrast to the high energy areas. Secondly, by application
of the proposed signal separation method, phase information of the frequency
data is being removed. But phase information is of importance, when it comes
to the reconstruction of attack components in acoustic signals. However, in our
current implementation of NNMF, only the energy levels in the spectrogram are
considered. For similar comparisons between ICA and NNMF, we refer to [21].

Merely at time steps, where a high amplitude of the cymbal exactly matches
the peaks of the castanets, a correct separation is not quite achieved (see Fig-
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ure 4). This, in fact, is not too surprising since matching energy levels of sources
are rather critical, not only from a technical viewpoint, but also from a numer-
ical viewpoint. Yet a more systematic tradeoff study between overall recovery
error versus relative energy levels of the various sources remains to be developed.

For the reconstruction of the reduced signal, either method, ICA or NNMF,
yields an almost complete reconstruction of f , as their reconstructions are nearly
identical (cf. Figure 5).

time [s]

a
m
p
li
tu
d
e

0 1 2
−1

−0.5

0

0.5

1

(a)

time [window]

fr
eq
u
en

cy

0 500 1000 1500

50

100

150

200

250

(b)

time [s]

a
m
p
li
tu
d
e

0 1 2
−1

−0.5

0

0.5

1

(c)

time [window]

fr
eq
u
en

cy

0 500 1000 1500

50

100

150

200

250

(d)

Figure 5: (a) Reconstruction of f by NNPCA and NNMF and (b) spectrogram;
(c) difference to reconstruction by NNPCA and ICA and (d) spectrogram.

For the purpose of further evaluation and comparison between the utilized
signal separation algorithms, we have recorded their L∞-error ε∞ and their
signal to noise ratio (SNR) for the reconstructed audio signal, SNRrec, for the
cymbal signal, SNRcym, and for the castanet signal, SNRcas, respectively. Our
numerical results are shown in Table 1.

We can explain the utilized quality indicators as follows.

The L∞-error in the time-amplitude domain is the maximum in time for the
difference between the amplitudes of fi and those of the reconstructed source
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Table 1: Numerical comparison by L∞-error ε∞ in (9) and signal to noise ratio
(SNR) in (10) for the reconstructed signal, SNRrec, for the cymbal, SNRcym, and
for the castanet signal, SNRcas. The overall length of the signal is 2.27 seconds
[s] (elapsed time) and the size of the spectrogram is 256× 1569.

# components time [s] ε∞ in (9) SNRrec SNRcym SNRcas

NNPCA-NNMF

3 14.8 0.57 2.899 2.339 0.978
10 35.6 0.55 2.239 1.262 0.553
20 248 0.68 2.170 1.942 0.237

NNPCA-ICA

3 8 0.70 3.212 2.421 1.114
10 20 0.58 2.227 1.368 1.888
20 201 0.64 2.207 2.082 0.109

signals si, i.e.,
ε∞(fi, si) = max

k
|fi(tk)− si(tk)|. (9)

For the reconstruction we only used the phase of the original mixture rather
than separating also the phase spectrogram. Therefore, the extracted sources
may have different phases than the original input sources, which typically leads
to an increase of the L∞-error.

Nevertheless, L∞-error ε∞ can be used to quantify the effect incurred by
the dimensionality reduction. To this end, we just reduced the dimension and
lifted the data back to the high-dimensional space to obtain a reconstruction of
the mixture. This reconstruction does not suffer from a possible phase shift as
the phase remains unchanged. Thus, with using the L∞-error the reconstructed
mixture can be compared to the original input signal.

The signal to noise ratio (SNR) is a standard error measure for estimating
the portion of noise in a signal, and is measured in decibel (dB). Here, the error
fi(tk)− si(tk) can be considered as noise and thus, the SNR error [11] is

εSNR(fi, si) = 10 log10

( ∑
k |fi(tk)|2∑

k |fi(tk)− si(tk)|2

)
. (10)

The obtained SNR values are interpreted as follows. The larger the SNR,
the smaller the noise level, i.e., the better the reconstruction.

Our numerical results indicate that for signal separation without dimension-
ality reduction, NNMF is quite competitive to ICA, as further supported by [27].
We remark that this complies with our numerical results in [18] and with earlier
of our numerical experiments which we omitted here for the sake of brevity. Al-
though it remains to further strengthen the theory on this, we feel comfortable
enough to state that the separation by NNPCA-NNMF can be improved.
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In fact, this could be achieved by more sophisticated (nonlinear) dimensional-
ity reduction methods, which, however, would lead to a much more complicated
back-projection of the data. Nevertheless, although NNPCA is only a linear pro-
jection method, our numerical results show that its performance in combination
with ICA is already quite promising.
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