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Abstract—Computerized tomography allows us to reconstruct
a bivariate function from its Radon samples. The reconstruction
is based on the filtered back projection (FBP) formula, which
gives an analytical inversion of the Radon transform. The FBP
formula, however, is numerically unstable. Therefore, suitable
low-pass filters of finite bandwidth are employed to make the
reconstruction by FBP less sensitive to noise.

The objective of this paper is to analyse the reconstruction
error occurring due to the use of a low-pass filter. To this end,
we prove L2 error estimates on Sobolev spaces of fractional
order. The obtained error estimates are affine-linear with respect
to the distance between the filter’s window function and the
constant function 1 in the L∞-norm. Our theoretical results
are supported by numerical simulations, where in particular the
predicted affine-linear behaviour of the error is observed.

I. INTRODUCTION

Filtered back projection (FBP) refers to a well-known and
commonly used reconstruction technique from computerized
tomography (CT), which deals with the generation of medical
images from measurements of X-ray scans. The X-ray data can
be interpreted as a finite set of line integrals for the (unknown)
attenuation function which describes the amount of energy
being absorbed by the scanned medium. For recovering the
interior structure of the scanned object from given X-ray scans,
this requires the reconstruction of the attenuation function. We
formulate this basic reconstruction problem as follows.

Problem 1 (Basic reconstruction problem): For a bounded
domain Ω ⊂ R2, reconstruct a bivariate function f ≡ f(x, y)
with compact support contained in Ω from its line integrals∫

`

f(x, y) dxdy

for all straight lines ` ⊂ R2 passing through Ω. �
Let `t,θ denote the unique straight line which passes through

the point (t cos (θ) , t sin (θ)) ∈ R2, for (t, θ) ∈ R × [0, π),
and is perpendicular to the unit vector nθ = (cos(θ), sin(θ)).
Then, every straight line ` ⊂ R2 can uniquely be represented
by one `t,θ with parameters (t, θ) ∈ R× [0, π). This allows us
to reformulate the basic reconstruction problem accordingly.

To this end, we regard for f ∈ L1
(
R2
)

its Radon transform

Rf (t, θ) =

∫
`t,θ

f(x, y) dx dy for (t, θ) ∈ R× [0, π).

Note that the Radon transform R maps a bivariate function
f ≡ f (x, y) in Cartesian coordinates onto a bivariate function
Rf ≡ Rf(t, θ) in polar coordinates, where Rf(t, θ) repre-
sents the line integral of f over `t,θ.

Therefore, the basic reconstruction problem seeks for the
inversion of the Radon transform R from Radon data

{Rf(t, θ) | t ∈ R, θ ∈ [0, π)} .

For a comprehensive mathematical treatment of the Radon
transform and its inversion, we refer to the textbooks [2], [7].

The outline of this paper is as follows. In Section II,
we describe the inversion of the Radon transform by the
standard FBP formula. Moreover, we explain how the FBP
can be stabilized by using a suitable low-pass filter with
finite bandwidth. This stabilization modifies the FBP formula
and so leads us to an approximate reconstruction formula,
whose approximation quality depends on the choice of the
low-pass filter. The objective of this paper is to analyse the
approximation error occurring due to the use of a low-pass
filter. Therefore, in Section III we prove L2 error estimates for
the approximate FBP formula on Sobolev spaces of fractional
order. For the purpose of illustration, numerical simulations
are finally provided in Section IV.

II. FILTERED BACK PROJECTION

The inversion of the Radon transform R is well understood.
It involves the (continuous) Fourier transform, here taken as

Fg(S, θ) =

∫
R
g(t, θ)e−itS dt for θ ∈ [0, π) (1)

for g ≡ g(t, θ) in polar coordinates satisfying g(·, θ) ∈ L1(R)
for all θ ∈ [0, π). Later in this work, we will also work with
the Fourier transform on R2, defined as

Ff (ω1, ω2) =

∫
R2

f(x, y)e−i(ω1x+ω2y) dxdy (2)

for f ≡ f(x, y) in Cartesian coordinates, where f ∈ L1
(
R2
)
.

Another operator in the inversion ofR is the back projection

Bh(x, y) =
1

π

∫ π

0

h(x cos(θ) + y sin(θ), θ) dθ

for h ∈ L1(R× [0, π)). Note that the back projection B maps
a bivariate function h ≡ h(t, θ) in polar coordinates onto a
bivariate function Bh ≡ Bh (x, y) in Cartesian coordinates.

Now the inversion of the Radon transform is given by the
filtered back projection formula (see e.g. [1, Theorem 6.2.])

f (x, y) =
1

2
B
[
F−1 (|S| F (Rf) (S, θ))

]
(x, y) (3)

which holds for any function f ∈ L1(R2) ∩ C (R2) satisfying
Rf(·, θ) ∈ L1(R) for all θ ∈ [0, π).



We remark that the FBP formula is numerically unstable.
Indeed, by the application of the filter |S| to the Fourier
transform F(Rf) in (3), high frequency components of Rf
are amplified by the magnitude of |S|. Therefore, the filtered
back projection formula is in particular highly sensitive with
respect to noise. Needless to say that this is critical in many
relevant application scenarios, where a reconstruction by FBP
would lead to an undesired corruption of the image.

In order to reduce the sensitivity of the FBP formula with
respect to noise, the filter |S| in (3) is replaced by a low-pass
filter AL(S) of bandwidth L > 0. Commonly used low-pass
filters have the form AL(S) = |S|WL(S), where WL(S) =
W
(
S
L

)
for a suitable window function W : R −→ R satisfying

the following two properties.
• W : R −→ R is even, i.e., W (S) = W (−S) for all S;
• W is compactly supported with supp (W ) ⊆ [−1, 1], i.e.,
W (S) = 0 for all |S| > 1.

By the above two properties, WL is also even with compact
support contained in [−L,L], i.e., supp (WL) ⊆ [−L,L]. In
particular, WL ∈ L1(R), and so any low-pass filter of the form
AL(S) = |S|WL(S) is in L1(R), in contrast to |S|.

Next, we replace the filter |S| in (3) by a low-pass filter
AL, in which case the reconstruction of f is no longer exact.
With assuming AL ∈ L1(R), we can simplify the resulting
approximate FBP formula as

fL(x, y) :=
1

2
B
(
F−1 [AL (S)F (Rf) (S, θ)]

)
(x, y)

=
1

2
B
(
F−1AL ∗ Rf

)
(x, y)

where ∗ denotes the usual convolution product. We can further
simply this representation of fL by involving the band-limited
function

qL (t, θ) = F−1AL (t) for (t, θ) ∈ R× [0, π),

in which case we get

fL =
1

2
B (qL ∗ Rf) . (4)

For the sake of brevity, we call any application of the
approximate FBP formula (4) an FBP method. Therefore, each
FBP method provides one approximation fL to f , fL ≈ f ,
whose quality depends on the choice of the low-pass filter AL.
In the following, we analyse the intrinsic error of the FBP
method, which is incurred by the chosen low-pass filter AL,
i.e., we wish to analyse the error

eL = f − fL. (5)

We remark that pointwise and L∞ error estimates on eL
were proven by Munshi et al. in [4]. Their results are further
supported by numerical experiments in [5]. Error bounds on
the Lp-norm of eL, in terms of an Lp-modulus of continuity of
f , were proven by Madych in [3]. In the following section, we
prove L2 error estimates on eL, where our approach involves
Sobolev spaces of fractional order and so our approach is
essentially different from that of Madych in [3].

Before doing so, it is convenient to rewrite the approximate
reconstruction formula (4) in terms of the target function f .
To be more precise, we seek for a function KL : R2 −→ R
satisfying

fL = f ∗KL.

This relation will play a central role in the error analysis of
Section III. The construction of such a function KL is based on
the following useful relation between the convolution product,
the back projection operator and the Radon transform, see [7,
Theorem II.1.3].

Lemma 1: Let f ≡ f (x, y) ∈ L1
(
R2
)

be a bivariate
function in Cartesian coordinates and g ≡ g (t, θ) be a
bivariate function in polar coordinates with g (·, θ) ∈ L1 (R)
for all θ ∈ [0, π). Then, the identity

(Bg ∗ f) (X,Y ) = B (g ∗ Rf) (X,Y )

holds for all (X,Y ) ∈ R2.
Proof: For (X,Y ) ∈ R2, we have

(Bg ∗ f) (X,Y ) =

∫
R

∫
R
Bg (X − x, Y − y) · f (x, y) dxdy,

where, with letting x̄ = X − x and ȳ = Y − y,

Bg (x̄, ȳ) =
1

π

∫ π

0

g (x̄ cos (θ) + ȳ sin (θ) , θ) dθ.

By the substitutions

x = t cos (θ)− s sin (θ)

y = t sin (θ) + s cos (θ)

we get dx dy = dsdt and, therefore, with

Rf (t, θ) =

∫
R
f (t cos (θ)− s sin (θ) , t sin (θ) + s cos (θ)) ds

and sθ = X cos (θ) + Y sin (θ), we can conclude

(Bg ∗ f) (X,Y ) =
1

π

∫ π

0

∫
R
g (sθ − t, θ) · Rf (t, θ) dtdθ

=
1

π

∫ π

0

(g ∗ Rf) (sθ, θ) dθ

= B (g ∗ Rf) (X,Y ) ,

as stated.
Consequently, for qL ∈ L1 (R× [0, π)), we define the

convolution kernel KL : R2 −→ R by

KL (x, y) :=
1

2
BqL (x, y) for (x, y) ∈ R2. (6)

By using Lemma 1, we obtain the desired representation for
the reconstruction fL by

fL (x, y) =
1

2
B (qL ∗ Rf) (x, y) = (f ∗KL) (x, y)

for all (x, y) ∈ R2.



III. ERROR ESTIMATES

In this section, we prove an L2 estimate for the error in (5),
where our upper bound on the L2-norm of eL will be split into
one term depending on the window function W and another
one depending on its bandwidth L > 0.

Before we turn to our error analysis, we wish to first discuss
the special case of the Ram-Lak filter, given as

AL(S) =

{
|S| for S ∈ [−L,L],
0 otherwise.

Note that the Ram-Lak filter’s window function W is given
by the characteristic function χ[−1,1] of the interval [−1, 1],
so that WL ≡ χ[−L,L]. From this observation, we see that
the reconstruction error eL vanishes identically, eL ≡ 0, for
functions f with band-limited Radon transform Rf , provided
that the bandwidth L is at least as large as the largest frequency
contained in Rf . Indeed, in this case the Ram-Lak FBP
formula (4) coincides with the FBP formula (3), so that
f ≡ fL. Yet it remains to discuss how reasonable it is to
assume for f a band-limited Radon transform Rf .

To further elaborate this, let us recall the central slice
theorem (see e.g. [1, Theorem 6.1.]), which states that for any
f ∈ L1(R2) ∩ C (R2) the identity

Ff (S cos (θ) , S sin (θ)) = F (Rf) (S, θ) (7)

holds for all (S, θ) ∈ R × [0, π). Therefore, the (bivariate)
Fourier transform Ff of f ≡ f(x, y) is entirely determined
by the (univariate) Fourier transforms of Rf ≡ (Rf)(t, θ).

Now Rf is band-limited, iff Rf has a compactly supported
Fourier transform. However, for applications of medical image
reconstruction, it is usually assumed that f 6≡ 0 is compactly
supported. But in this case, Rf is compactly supported, too,
and so the Fourier transform F(Rf) of Rf 6≡ 0 cannot have
compact support. The latter is due to the Paley-Wiener theorem
(see e.g. [8, Theorem 7.22]), which states that the Fourier
transform of a compactly supported function is analytic.

To conclude our discussion on the special case of the Ram-
Lak filter, we see that, for compactly supported f 6≡ 0, the
error eL of the Ram-Lak FBP method cannot be zero for finite
bandwidth L > 0. But if we let L tend to infinity, the Ram-Lak
FBP method will, in the limit, coincide with the filtered back
projection formula (3), so that the error vanishes, e∞ ≡ 0.

Let us now turn to the analysis of the L2 reconstruction
error. To this end, we assume f ∈ L1

(
R2
)
∩ L2

(
R2
)
, in

which case we get

‖f − fL‖2L2(R2) = ‖f − f ∗KL‖2L2(R2)

=
1

2π
‖Ff −Ff · FKL‖2L2(R2;C)

by using the Rayleigh-Plancherel theorem.
By letting WL(x, y) := WL(r), for r =

√
x2 + y2 and

(x, y) ∈ R2, we obtain a radially symmetric bivariate function
WL : R2 → R. It can be verified that this radial window WL

is given by the Fourier transform of the convolution kernel KL

in (6), i.e., for KL ∈ L1
(
R2
)

we can establish the identity

WL (x, y) = FKL (x, y) for all (x, y) ∈ R2,

in consequence of [7, Theorem II.1.4]. Hence, it follows that

‖eL‖2L2(R2) =
1

2π
‖Ff −WL · Ff‖2L2(R2;C)

=
1

2π

∫
R

∫
R
|(Ff −WL · Ff) (x, y)|2 dxdy.

To continue our analysis, we split the above representation
of the L2-error ‖eL‖L2(R2) into a sum of two integrals,

‖eL‖2L2(R2) = I1 + I2,

where

I1 =
1

2π

∫
‖( xy )‖

2
≤L
|(Ff −WL · Ff) (x, y)|2 dxdy

I2 =
1

2π

∫
‖( xy )‖

2
>L

|Ff (x, y)|2 dx dy.

To further analyse the error terms in I1 and I2, we first need
to introduce Sobolev spaces of fractional order. The Sobolev
space Hα

(
R2
)

of order α ∈ R is defined as

Hα
(
R2
)

=
{
f ∈ S ′

(
R2
) ∣∣∣ ‖f‖Hα(R2) <∞

}
,

and equipped with the norm ‖·‖Hα(R2), given by

‖f‖2Hα(R2) =

∫
R2

(
1 + ‖ω‖22

)α
|Ff (ω)|2 dω,

where S ′ denotes the space of tempered distributions. It can
be shown that for any non-negative integer α ∈ N0 the
space Hα(R2) consists of all functions whose (distributional)
derivatives up to order α are square-integrable.

In relevant application of (medical) image processing,
Sobolev spaces of compactly supported functions,

Hα
0 (Ω) =

{
f ∈ Hα(R2)

∣∣ supp (f) ⊆ Ω̄
}
,

on open and bounded domain Ω ⊂ R2, and of fractional order
α play an important role (cf. [6]). In fact, a density function
f of an image in Ω ⊂ R2 has usually jumps along smooth
curves, but is otherwise smooth off these curve singularities.
Such functions belong to a Sobolev space Hα

0

(
R2
)

for α < 1
2 .

Thus, we can describe the density of an image as a function
in a Sobolev space Hα

0 (Ω) whose order α is close to 1
2 .

Now let us return to the required L2 error estimates for eL.
For f ∈ Hα(R2), with α ≥ 0, the integral I2 can be bounded
above by

I2 =
1

2π

∫
r>L

(1 + r2)α(1 + r2)−α |Ff (x, y)|2 dxdy

≤ 1

2π

∫
r>L

(1 + r2)αL−2α |Ff (x, y)|2 dxdy

≤ 1

2π
L−2α ‖f‖2Hα(R2) ,

where we let r =
√
x2 + y2.



As regards integral I1, we consider a fixed low-pass filter
AL(S) = |S|WL(S) with window function W ∈ L∞ (R).
Then, for f ∈ L1

(
R2
)
∩ L2

(
R2
)
, the integral I1 can be

bounded above by

I1 ≤ ‖1−W‖2∞,[−1,1] ‖f‖
2
L2(R2) ,

since ‖1−WL‖∞,[−L,L] = ‖1−W‖∞,[−1,1].

We can summarize the discussion of this section as follows.

Theorem 1 (L2-error estimate): Let f ∈ L1(R2)∩Hα(R2)
for some α ≥ 0, let W ∈ L∞(R) and KL ∈ L1(R2). Then,
the L2-norm of the FBP reconstruction error eL = f − fL
in (5) can be bounded above by

‖eL‖L2(R2) ≤ ‖1−W‖∞,[−1,1] ‖f‖L2(R2) + L−α ‖f‖α ,

where we let
‖f‖2α =

1

2π
‖f‖2Hα(R2) .

We can conclude from the above theorem that the choice
of both the window function W and the bandwidth L are of
fundamental importance for the L2-error of the FBP method.
In fact, the error term ‖1−W‖∞,[−1,1] can be used to evaluate
the quality of the window function W . Note that the window
function W ≡ χ[−1,1] of the Ram-Lak filter is the unique
minimizer of that quality indicator, and so the Ram-Lak filter
is in this sense the optimal low-pass filter.

Moreover, note that the smoothness of f determines the
decay rate of the other error term by

L−α ‖f‖α = O(L−α) for L→∞.

But the right hand side of our L2 error estimate can only
tend to 0, iff we choose the Ram-Lak filter with window
W = χ[−1,1] and let L tend to ∞. This observation complies
with the derived conditions under which we achieve an exact
reconstruction of the target function f by the FBP formula (3),
as this is explained at the outset of this section.

Finally, note that, for fixed target function f and bandwidth
L, the obtained error estimate is affine-linear with respect to
the L∞ distance between the window function and the constant
function 1. This relation will also be observed numerically in
the following section.

IV. NUMERICAL RESULTS

In this section, we provide selected numerical examples
to evaluate the FBP reconstruction error numerically and to
validate our L2 error estimate from the previous section.

Note that the FBP reconstruction formula assume the Radon
data Rf (t, θ) to be available for all t ∈ R and θ ∈ [0, π). In
practice, however, only a finite number of Radon values are
given,

(Rf)j,k = Rf (tj , θk) (8)

for −M ≤ j ≤ M and 0 ≤ k ≤ N − 1 for some M,N ∈ N.
To reconstruct f from given Radon data (8), this requires a
suitable discretization of the FBP method. But this will lead

(a) Phantom (b) Reconstruction

θ

t

(c) Sinogram

Fig. 1. Reconstruction of the Shepp-Logan phantom

to discretization errors, which are not covered by our error
analysis and cannot be avoided.

To implement the approximate reconstruction formula

fL =
1

2
B
(
F−1AL ∗ Rf

)
,

we need to discretize the back projection B, the inverse Fourier
transform F−1, the convolution product ∗ and the Radon
transform R. For the sake of brevity, we do not intend to
explain details concerning the discretization. For our purposes
it is sufficient to say that we use parallel beam geometry for
the discretization of the Radon transform and otherwise refer
to the textbook [1] for further details.

In our numerical experiments, we considered using the
popular Shepp-Logan phantom as a test function, whose Radon
transform can be calculated analytically. The Shepp-Logan
phantom consists of ten ellipses of constant densities, but
different sizes, eccentricities and locations, see Fig. 1(a). The
phantom was introduced by Shepp and Logan [9] and it
simulates a cross-section of the human head. In our version,
we modified the densities of the different ellipses from the
original Shepp-Logan phantom in order to get a higher contrast
in the image for a better visual perception. Fig. 1(c) shows the
corresponding sinogram, i.e., the Radon data of the phantom in
the (t, θ)-plane. The FBP reconstruction based on this test case
is displayed in Fig. 1(b), where we used the Ram-Lak filter
with window W = χ[−1,1], bandwidth L = 20 and N = 45
for the number of angles θk.

To measure the reconstruction error, we used the standard
root mean square error (RMSE), which is defined as

RMSE =

√√√√ 1

N ×M

N∑
n=1

M∑
m=1

(
fn,m − (fL)n,m

)2
,

where N ×M is the total number of pixels in the images.



For the numerical evaluation of the FBP method (4), the in-
trinsic error of the reconstruction, being incurred by the choice
of the low-pass filter AL, is of primary interest. However, we
also need to take into account inevitable discretization errors,
which are not covered by our error analysis.

Recall that our L2 error estimate states that for any function
f ∈ L1

(
R2
)
∩Hα

(
R2
)

with smoothness α ≥ 0 we have

‖f − fL‖L2(R2) ≤ ‖1−W‖∞,[−1,1] ‖f‖L2(R2) + L−α ‖f‖α .

Here, we see that, for fixed function f and bandwidth L,
the performance of the used low-pass filter AL is governed
by the L∞ distance between the window function W and
the constant function 1. Moreover, the error formula predicts
an affine-linear behaviour of the error eL with respect to
‖1−W‖∞,[−1,1].

To investigate the error eL numerically, we have employed
three commonly used low-pass filters:

Name W (R) for |R| ≤ 1 ‖1−W‖∞,[−1,1]
Ram-Lak 1 0

Shepp-Logan sinc
(
πR
2

)
1− 2

π

Hamming β + (1− β) cos (πR) 2 (1− β)

In addition to the popular Ram-Lak and Shepp-Logan filter,
we considered using the Hamming filter for different choices
of parameters β ∈

[
1
2 , 1
]
. This decision was taken in order

to work with a sequence of filters of the same form, but with
different values for ‖1−W‖∞,[−1,1]. For the Hamming filter,
we see that the quantity ‖1−W‖∞,[−1,1] decreases for β
increasing. Hence, for the Hamming filter, the reconstruction
error should increase for decreasing β.

Fig. 2 shows, for the test case of the Shepp-Logan phantom,
the RMSE as a function of ‖1−W‖∞,[−1,1] for different
choices of bandwidth L and number of views N .

We can describe our numerical results as follows.

First of all, we have observed an increasing RMSE at in-
creasing ‖1−W‖∞,[−1,1] in all of our numerical experiments.
This is exactly the behaviour we expected, due to the first term
in our L2 error estimate, given as

‖1−W‖∞,[−1,1] ‖f‖L2(R2) .

Moreover, the affine-linear behaviour of the RMSE with
respect to ‖1−W‖∞,[−1,1] is clearly visible (see Fig. 2).

Secondly, we see that the RMSE decreases at increasing
bandwidth L. This behaviour complies with the second term
in our L2 error estimate,

L−α ‖f‖Hα(R2) for α ≥ 0.

In particular, comparing our numerical results for an equal
number N = 18 of views but for different bandwidths, L = 6
(Fig. 2(a)) and L = 10 (Fig. 2(b)), we see that the RMSE
decreases, for all filters, as predicted by our error estimate.

When increasing the number of views from N = 18 to
N = 36, at fixed bandwidth L = 10, we see that the
RMSE decreases further (see Fig. 2(b),(c)). We remark at
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(d) L = 16, N = 100

Fig. 2. RMSE for the Shepp-Logan phantom

this point that the value of N does not contribute to the
intrinsic FBP reconstruction error, but it rather affects the
discretization error: the larger N , the smaller the discretization
error. Increasing N is necessary for larger bandwidths L,
since in that case the intrinsic error is small, so that a finer
discretization can contribute more to the reduction of the
RMSE (see Fig. 2(d)).

In conclusion, the numerical results of this section comply
with the predictions from our theoretical L2 error estimates,
although they do not cover the discretization errors. But
the affine-linear behaviour of the error with respect to the
magnitude of ‖1−W‖∞,[−1,1] is clearly observed.
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