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Abstract—Parameter estimation for exponential sums is a
classical problem in signal processing. Recently, a new concept
for estimating parameters of bivariate exponential sums has been
proposed. The resulting method relies on parameter estimations
for univariate exponential sums along several lines in the plane.
These (univariate) parameter estimations are being used to first
compute the projections of the unknown bivariate frequency
vectors onto these lines, before they are combined to obtain
estimations for the sought frequency vectors of the bivariate
exponential sum. In this paper, we address theoretical questions
concerning this new concept, namely (a) how many lines are
needed for exact reconstruction, and (b) how to recover linear
combinations of shifted positive definite functions.

I. INTRODUCTION

Univariate exponential sums are commonly used model
functions in many relevant applications. Often, one wishes
to recover their parameters exactly from only a few given
samples. This reconstruction problem is well-understood and,
in fact, it has a long history. The first reconstruction method
was devoloped by Gaspard Riche de Prony as early as 1795
[1]. A variety of numerical algorithms have been developed
since then, including ESPRIT [2], APM [3] and matrix pencil
methods [4].

A significantly more difficult reconstruction problem is that
of parameter estimation for bivariate exponential sums, i.e.,
functions of the form

f(x) =

M∑
j=1

cje
iyj ·x for x ∈ R2 (1)

with pairwise distinct frequency vectors yj ∈ R2 and their
corresponding coefficients cj ∈ C∗ := C \ {0}.

Several methods for parameter estimation of bivariate expo-
nential sums rely on gridded data samples [5], [6]. Just very
recently, a new concept has been proposed, where only a few
sample points are needed [7], [8]. The basic idea in the new
approach of [7], [8] is to first apply a univariate parameter
estimation along several lines in the plane, before the resulting
information are being combined to obtain estimations for the
bivariate frequency vectors yj in (1).

The outline of this paper is as follows. In Section II, we
briefly explain parameter estimation for univariate exponential
sums, before we turn to the bivariate case in Section III. In
Section III, we analyse theoretical properties for the line-based
method of [7], [8]. To this end, we first prove an upper bound
for the number of lines being needed for exact reconstruction
of exponential sums with fixed order (i.e., length). Moreover,
we show that there is no set of finitely many lines for which

the bivariate reconstruction problem has a unique solution.
We then characterize a bivariate exponential sum f in (1) as
the unique solution of a non-convex optimization problem,
although the complexity for computing its solution is for
practical purposes too large. In Section IV, we show how linear
combinations of shifted positive definite functions Φ : R2 → R
can be recovered from their Fourier data. Supporting numerical
examples are finally provided in Section V.

II. UNIVARIATE PARAMETER ESTIMATION

In this section, we give a short introduction to the problem
of parameter estimation for univariate exponential sums. To
this end, let

f(x) =

M∑
j=1

cje
iyjx for x ∈ R (2)

denote a univariate exponential sum of order M with pairwise
distinct frequencies yj ∈ (−π, π] and coefficients cj ∈ C∗.
We collect all univariate exponential sums of finite order in
the linear space

E1 :=


N∑
j=1

cje
iyjx

∣∣∣∣ cj ∈ C∗, yj ∈ (−π, π], N ∈ N

 .

Parameter estimation on E1 requires computing, from given
2M samples f(k), k = 0, . . . , 2M − 1, all frequencies yj
and coefficients cj of f in (2). Note that there are infinitely
many functions g ∈ E1 satisfying g(k) = f(k), for all
k = 0, . . . , 2M − 1, but f is the one with minimal order,
M . In this sense, we are concerned with a problem of sparse
approximation on E1.

The first method to solve this problem is Prony’s method [1],
which we briefly explain in this section. To this end, we let
zk = eiyk and define the Prony polynomial

P (z) =

M∏
k=1

(z − zk) =

M∑
j=0

pjz
j for z ∈ C, (3)

where pM = 1. Then, the M coefficients pj , j = 0, . . . ,M−1,
satisfy the set of M linear equations

M∑
j=0

pjf(j +m) =

M∑
k=1

cke
imyk

M∑
j=0

pjz
j
k = 0

for m = 0, ...,M − 1, which can be written in matrix form as

HMp = −f (4)



where

HM = (f(j + k))j,k=0,...,M−1 ∈ CM×M ,
p = (p0, ..., pM−1)T ∈ CM ,
f = (f(M), ..., f(2M − 1))T ∈ CM .

Now, HM can be diagonalized by the (regular) Vander-
monde matrix V(z) = (zk−1j )k,j=1,...,M ∈ CM×M ,

HM = V(z) diag(c1, ..., cM )V(z)T , (5)

so that HM is regular. Hence, we can solve the system (4)
uniquely for the (unknown) Prony coefficients p, and so we
get the Prony polynomial P in (3). Finally, from the roots zk
of P we obtain the frequencies yk, and the coefficients cj can
then be obtained by solving the overdetermined linear system

M∑
j=1

cjz
k
j = f(k) for k = 0, ..., 2M − 1. (6)

On the down side, Prony’s method is numerically unstable.
Moreover, for the performance of the Prony method, the order
M of f is required to be known beforehand. Many methods
have been developed to improve on the shortcomings of the
Prony method, one of which is ESPRIT. For the performance
of the ESPRIT algorithm, only an upper bound K ≥ M of
M is needed. Then, 2N ≥ 2K equispaced samples of f are
stored in the rectangular Hankel matrix

H2N−K,K+1 = (f(j + k − 2)) 1≤j≤2N−K
1≤k≤K+1

∈ R(2N−K)×(K+1).

We can factorize H2N−K,K+1 similarly as HM in (5), so
that the rank of H2N−K,K+1 is equal to the order M of
f . In practice, we determine the order numerically by the
singular value decomposition of H2N−K,K+1. More precisely,
the numerical rank of H2N−K,K+1 is taken as the largest
number M satisfying εσ1 < σM , where σj is the j-th singular
value of H2N−K,K+1 and ε > 0 is chosen with respect to the
expected noise level.

The frequencies yj of f in (2) can then be calculated
by solving an eigenvalue problem for a matrix computed
from the right singular vectors of H2N−K,K+1, before the
coefficients cj in (2) are finally determined by the solution
of an overdetermined system similar to that in (6). For more
details on the method ESPRIT, we refer to [2].

III. BIVARIATE PARAMETER ESTIMATION

Now we turn to parameter estimation for bivariate expo-
nential sums. We collect all bivariate exponential sums (1) of
finite order in the linear space

E2 :=


N∑
j=1

cje
iyj ·x

∣∣∣∣ cj ∈ C∗,yj ∈ R2, N ∈ N

 .

By the restriction of any f ∈ E2 to a straight line

` = {λv + βη
∣∣ λ ∈ R}, (7)

for fixed perpendicular unit vectors v ⊥ η and β ∈ R, we
obtain a univariate exponential sum

f |`(λ) =

M∑
j=1

cje
iβyj ·ηeiλyj ·v =

M∑̀
j=1

dje
iyjλ ∈ E1. (8)

for frequencies yj = yj · v ∈ R and coefficients dj ∈ C∗.
Note that M` ≤M , since distinct frequencies yj 6= yk may

have the same projection onto `, i.e., yj ·v = yk ·v. We choose
M`, such that dj 6= 0 for all 1 ≤ j ≤M`. Then, we apply the
univariate parameter estimation from the previous section to
f |` in (8), where we take equispaced samples from f |`. This
way we obtain all parameters dj and yj of f |` in (8).

This line-based parameter estimation can be applied to f
on any set L = {`1, ..., `L} of L pairwise non-parallel
lines `1, ..., `L, yielding L pairs of projected frequencies
y ≡ y`k ∈ RM`k and corresponding coefficient vectors
d ≡ d`k ∈ RM`k , i.e., one pair (y`k ,d`k) for each restriction
f |`k , for k = 1, . . . , L.

Yet it remains to derive practical conditions under which f
is uniquely determined. For the purpose of doing so, we can
rely on the following useful result by Renyi [9].

Theorem 1: Any set of M points yj ∈ R2, associated with
positive weights cj > 0, is uniquely determined by the point
projections onto M + 1 distinct lines through the origin. �

We can adapt the proof in [9] to obtain a first result
concerning the order of f ∈ E2. To this end, we define, for
any set L = {`1, ..., `L} of L pairwise non-parallel lines `j
the restriction operator

RL : E2 → C (L,C),

which maps any f ∈ E2 onto its restriction to the lines in L.
Theorem 2: For a set L = {`1, ..., `L} of L pairwise non-

parallel lines, let f ∈ ker RL \ {0} be a non-trivial element
in the kernel of RL. Then, f is of order at least 2L.

Proof: If all points are co-linear, they have distinct
projections on all but at most one line. Otherwise we find for
each line `j two perpendicular lines, passing through at least
two frequency vectors, such that all other frequency vectors lie
in the region between these two lines. The intersection of these
regions forms a convex polygon, which contains all frequency
vectors. This polygon has 2L edges, as at least two frequency
vectors lie on each line and no line segment is in the interior
of the polygon. In particular, at least 2L frequency vectors lie
on the boundary of the polygon.

Corollary 3: Let f1, f2 ∈ E2 be of order at most M . If f1
and f2 coincide on a set L of M + 1 pairwise non-parallel
lines, RL(f1) ≡ RL(f2), then they coincide on R2, f1 ≡ f2.

Proof: The function f1−f2 ∈ E2 is of order at most 2M
and hence cannot be a non-trivial kernel element of RL.

We remark that the estimate for the order of f in Theorem 2
is sharp. For instance, if we choose the vertices of a regular
2L-gone P2L as frequency vectors and associate them with
alternating coefficients ±1, then the corresponding exponential
sum f vanishes along all lines through the origin which are
perpendicular to the edges of P2L.



For a set L of arbitrarily chosen 2L lines, however, it is not
clear whether such examples exist. But we can show that the
restriction operator RL has a non-trivial kernel f ∈ E2.

Theorem 4: For any finite set L of pairwise non-parallel
lines there exists one non-trivial element f ∈ kerRL with
arbitarily small frequency vectors and real coefficients.

Proof: Any line ` ∈ L has the form (7) for some
perpendicular unit vectors v ⊥ η and β ∈ R. Therefore,

f`(x) = eiαv·x − ei(αv+γη)·x ∈ E2

is zero along ` for any α ∈ R, where γ ∈ R \ {0} satisfies
γβ ∈ 2πZ. If β = 0, we can choose γ arbitrarily small.
Otherwise we use the ansatz

f`(x) = c1e
iαv·x + c2e

i(αv+γ1η)·x + c3e
i(αv+γ2η)·x

with γ1 6= γ2 ∈ R \ {0}. But then

f`(λv + βη) = eiαλ(c1 + c2e
iγ1β + c3e

iγ2β)

and so in this case it is always possible to choose non-
vanishing real coefficients cj such that f`(λv1 + βη1) = 0
for all λ ∈ R. Therefore, in either case, we find f

∣∣
`
≡ 0 on `.

By construction, the product

f =
∏
`∈L

f` ∈ E2

is a non-trivial element in kerRL.
It was conjectured in [8] that – under certain additional

assumptions – it is possible to choose only four lines passing
through the origin to guarantee a unique reconstruction of any
f ∈ E2. The additional assumptions are in [8] stated as follows.
• All coefficients of f are assumed to be positive.
• The first line `1 be the x-axis, and `2 be the y-axis. The

other two lines, `3 and `4, be perpendicular, `3 ⊥ `4.
Moreover, `3 is assumed to be spanned by the unit vector
(cos(α), sin(α))T for α ∈ (0, π/2), where α is required
to satisfy tan(α) 6= 1/n for all n ∈ N.

• Arbitrarily many samples may be taken along the 4 lines.
We now use the construction in our proof of Theorem 4

to falsify that conjecture in [8]. To this end, let f 6≡ 0 be an
exponential sum which is zero along the four preselected lines
with real coefficients and sufficently small frequency vectors.
We can represent f as a difference

f(x) = f1(x)− f2(x)

between two functions f1 and f2 with positive coefficients.
By construction, f is zero along all of the four lines, i.e., f1
and f2 are equal along all four lines. But f1 and f2 cannot be
equal on R2, since f 6≡ 0.

While Corollary 3 states that an exponential sum of order
M is uniquely determined by its restriction to M +1 pairwise
non-parallel lines, this does not give a construction to compute
f from its samples. But we can characterize f as a solution
of a non-convex optimization problem. Our characterization
relies on the following Lemma.

Lemma 5: Let f be an exponential sum of order M and let
L = {`1, . . . , `M+1} be M+1 pairwise non-parallel lines with
direction vectors v1, . . . ,vM+1. Then, for every frequency
vector y of f , there are at least two distinct lines `j1 , `j2 ∈ L,
such that the frequency y·v`jk appears in the representation (8)
of f |`jk ∈ E1, with djk 6= 0, for k = 1, 2.

Proof: Assume that y ·vj is not a frequency of f |`j . Then
there must be another frequency vector ỹ such that y − ỹ is
orthogonal to vj . But there are only M − 1 possible choices
for ỹ, since L contains only M + 1 lines.

Note that the result of Lemma 5 allows us to find a large
set of possible frequency vectors. In fact, we can characterize
the frequency vectors of f ∈ E2 by a non-convex optimization
problem, whose formulation is given in the following theorem.

Theorem 6: Let f ∈ E2 be a bivariate exponential sum of
order M and let L = {`1, ..., `M+1} be a set of be pairwise
non-parallel lines with direction vectors v1, ...,vM+1. More-
over, let Yj be the set containing the frequencies of f |`j , and
let

Ỹ := {y ∈ R2 | ∃j 6= k : y · vj ∈ Yj and y · vk ∈ Yk}.

Let G be a set containing 2M equispaced sample points along
each of the M + 1 lines in L. Assume that ‖y‖2 < π/hmax

for every frequency vector y of f , where hmax is the largest
stepsize of the equispaced samples taken from the lines in L.
Then, the solution of the constrained optimization problem

min
c∈R|Ỹ |

‖c‖0 subject to
∑
y∈Ỹ

cye
iw·y = f(w) for all w ∈ G

determines f , where the frequency vectors of f are all those
y ∈ Ỹ with cy 6= 0, cy are the corresponding coefficients,
and ‖c‖0 gives the number of nonzero entries of c.

Proof: By Lemma 5, f corresponds to a coefficient vector
c(f) ∈ R|Ỹ | with c(f)y = cj if y = yj and zero otherwise.
Hence, every solution corresponds to an exponential sum with
at most M summands. The equality constraint ensures that
the solution is equal to f along the chosen lines. Applying
Corollary 3 yields the claim.

Unfortunately, the minimization problem in Theorem 6 is
NP-hard (cf. [10]). Moreover, we cannot expect that the system
matrix satisfies the restricted isometric property, which would
allow to relax the zero semi-norm to the convex 1-norm. The
reason is that frequency vectors may have projections which
are close, leading to close points in Ỹ . Unfortunately, |Ỹ | is
of order M4, which is too large for practical purposes.

A. Reconstruction Algorithms

But is there a more efficient method to calculate the fre-
quency vectors from the projections onto the lines? It turns out
that under a weak assumption there is one, namely the sparse
approximate Prony method (SAPM) of [7]. Reconstruction
by SAPM relies on the assumption, that the projections of
all frequency vectors on all lines do not vanish, i.e., for
k = 1, ..., L we have

{yj · vk | j = 1, ...,M} = {y(`k)j | j = 1, ...,M`k}.



Note that frequency vectors with the same projection on a
chosen line are allowed, as long as their coeffcients do not
sum up to zero.

Without loss of generality we assume that `1 is the x-axis
and `2 is the y-axis. We start with the large set of possible
frequency vectors

Y (1) = {(y(`1)j , y
(`2)
k ) ∈ R2 | j = 1, ...,M`1 , k = 1, ...,M`2}.

Our above assumption ensures that all frequency vectors are
contained in this set. Then one compares the projection of the
points in Y (1) with the projected frequencies y(`3)j , then let

Y (2) = {y ∈ Y (1) | ∃j ∈ {1, . . . ,M3} : |y·v3−y(`3)j | < ε(2)},

where M3 = M`3 and ε(2) > 0 is an accuracy bound. We then
repeat this reduction step for all available lines, obtaining the
set Y (L−1). If L is larger than the order of f , then Y (L−1)

will be equal to the set of all frequency vectors. Often, it
will be sufficient to take significantly less lines to obtain all
frequencies of f . Having determined all frequencies of f , we
can compute the coefficients cj . To this end, we compute the
coefficients as the least squares solution of the overdetermined
linear system∑

y∈Y (L−1)

cye
iy·x = f(x) for all x ∈ G.

Finally, we remove all frequency vectors from Y (L−1) which
are corresponding to small coefficients. This gives, for some
ε̃ > 0, the smaller set of frequencies

Ỹ = {y ∈ Y (L−1) | |cy| ≥ ε̃} ⊂ Y (L−1)

on which we solve the linear system (rather than on Y (L−1))
to obtain the corresponding coefficients cy (cf. [7] for details).

A posteriori chosen lines: Often, SAPM only needs data
taken along three lines, namely when the points in Y (1) have
pairwise distinct projections on the third line. This observation
is used in [8], where the following algorithm is proposed.
(1) Apply ESPRIT along two lines `1, `2 and calculate Y (1).
(2) Find a third line, `3, on which all frequencies in Y (1)

have a distinct projection.
(3) Apply ESPRIT along `3. This gives the frequency vectors

and the corresponding coefficients of f ∈ E2.
We remark that the above reconstruction scheme relies on the
same assumption as SAPM, since it uses data taken on the first
two lines to find a set which contains the frequency vectors.

IV. RECONSTRUCTION FROM FOURIER DATA

In this section, we show how the reconstruction method
of the previous section can be used to reconstruct linear
combinations of shifted basis functions from their Fourier data
(see [8]). Here, we define the (continuous) Fourier transform
f̂ of a function f ∈ L1(R2) by

f̂(w) =
1

2π

∫
Rd

f(x)eix·wdx for w ∈ R2.

For an even function Φ : R2 → R, we consider the model

f(x) =

M∑
j=1

cjΦ(x− xj). (9)

For Φ ∈ L1(R2), we get the Fourier transform of f by

f̂(w) = Φ̂(w)

M∑
j=1

cje
iw·xj .

Sampling f̂ at a finite point set G leads us to a reconstruction
problem for bivariate exponential sums, provided that Φ̂ 6≡ 0
on G. As Φ is assumed to be even, Φ̂ is real-valued. Therefore,
to allow all possible choices for G, we require Φ̂ to be positive
(or negative) on R2. By Bochner’s theorem, the condition

Φ̂(w) > 0 for all w ∈ R2

guarantees Φ to be positive definite. Positive definite functions
are an important tool in approximation theory. Prototypical
examples for positive definite functions are the Gaussians
Φ(x) = e−α‖x‖

2
2 , for α > 0, whose Fourier transform is

Φ̂(w) =
1

2α
e−‖w‖

2
2/(4α) > 0.

Other examples are the inverse multiquadrics

Φ(x) =
(
1 + ‖x‖22

)β
for − 2 < β < 0.

We finally summarize our proposed reconstruction method
for model functions of the form (9) briefly as follows.
(1) Take equispaced samples from f̂ on enough lines.
(2) Calculate

g(w) =
f̂(w)

Φ̂(w)
=

M∑
j=1

cje
iw·xj

for all sample points.
(3) Use SAPM to reconstruct g, and so obtain the shift

vectors xj ∈ R2 and coefficients cj ∈ R of f in (9).
Let us finally make one remark concerning the stability of

the proposed reconstruction scheme. As we divide by Φ̂(w),
we require Φ̂ to be uniformly bounded away from zero, i.e.,

Φ̂(w) > C > 0 (10)

for some sufficently large constant C. Otherwise noise gets
overamplified. Due to the Riemann-Lebesgue lemma, we have

Φ̂(w)→ 0 for w→∞,

for Φ ∈ L1(R2), and so (10) can only hold on a bounded set.

V. NUMERICAL EXAMPLES

For the purpose of illustration, we provide two numerical
examples, one for the reconstruction by SAPM (as proposed
in Section III) and another one for the reconstruction from
Fourier data (as proposed in Section IV).



TABLE I
RESULTS OF THE FIRST EXAMPLE

N K δ ε e(y) e(c) e(f)

5 5 ∞ 1e-7 3.06e-12 2.25e-13 7.75e-13
20 10 ∞ 1e-7 3.28e-15 1.11e-15 3.35e-15

5 5 8 1e-7 2.31e-05 1.71e-06 6.31e-06
20 10 8 1e-7 1.31e-09 2.49e-10 4.00e-10

5 5 6 1e-5 - - 0.30
10 10 6 1e-5 7.53e-06 5.56e-07 1.90e-06
20 10 6 1e-5 2.35e-07 1.39e-08 7.58e-08
40 20 6 1e-5 1.07e-08 1.36e-08 1.50e-08

10 10 4 1e-3 - - 0.23
20 10 4 1e-3 1.10e-05 2.56e-06 5.01e-06
40 20 4 1e-3 1.10e-06 1.38e-06 1.55e-06

First Example: Regard frequency vectors and coefficients(
y1 y2 y3 y4 y5

)
=

(
0 2 2 0.5 1
0 1 2 1 2.5

)
c =

(
−2 5 1.7 −0.2 3.3

)
We let `1 be the x-axis and `2 be the y-axis. Moreover, we let
`3 = {λ(1/2,

√
3/2)T | λ ∈ R} and h = 0.5 for the sampling

size. For univariate parameter estimation, we use ESPRIT. In
our numerical experiments, we recorded the relative errors

e(y) =
maxj |yj − ỹj |

maxj |yj |
and e(c) =

maxj |cj − c̃j |
maxj |cj |

for the frequency and coefficient vectors, and

e(f) =
max[0,4]2 |f − f̃ |

max[0,4]2 |f |

to measure the relative error of the reconstruction f̃ . Our
numerical results are in Table I, where N is the number of
samples taken along each line, K is an upper bound for the
order of f , and ε is the parameter used in ESPRIT to determine
the rank of the Hankel matrix and so the order of f .

Moreover, we considered choosing ε(2) = ε̃ = 10−3

(cf. the definitions of Y (2), Ỹ in Section III). Furthermore,
we have added noise, uniformly distributed in [10−δ, 10δ]. At
the absense of noise we let δ =∞. All our numerical results
(as shown in Table I) are averaged values over 50 runs.

Our numerical results of Table I support the good perfor-
mance of the algorithm SAPM in [7]. Given enough samples,
the algorithm is stable with respect to noise. Often, the error
is even smaller than the added noise.

Second Example: We consider using the same frequency and
coefficient vectors as in our first example. We take samples
from a sum of shifted Gaussians

f(x) =

5∑
j=1

cjΦ(x− yj),

where Φ(x) = e−25‖x‖
2
2 , and so Φ̂(w) = 1

50e
−‖x‖22/100.

Our numerical results are summarized in Table II. We see
that for any sampling point of modulus greater than ten, the

TABLE II
RESULTS OF THE SECOND EXAMPLE

N K δ ε e(y) e(c) e(f)

5 5 ∞ 1e-7 5.08e-12 3.17e-13 8.36e-13
20 10 ∞ 1e-7 1.44e-15 1.07e-15 5.15e-15

5 5 8 1e-7 1.20e-03 8.43e-05 2.17e-04
20 10 8 1e-7 5.63e-06 4.21e-07 8.36e-07

5 5 6 1e-5 - - > 1

10 10 6 1e-5 4.56e-04 3.32e-05 7.41e-05
20 10 6 1e-5 3.47e-05 4.04e-06 1.11e-05
40 20 6 1e-5 - - > 1

10 10 4 1e-3 - - > 1

20 10 4 1e-3 3.30e-03 3.72e-04 2.80e-03
30 10 4 1e-3 - - > 1

error is overamplified. The error is then magnified by factor
50e‖w‖

2
2/100, i.e., any sample taken at ‖w‖2 > 10 is very

sensitive w.r.t. noise. In such cases, a larger set of samples may
lead to even worser reconstructions. Nevertheless, we believe
that our numerical results in Table II are quite promising.

VI. CONCLUSION

We have investigated the reconstruction problem for bivari-
ate exponential sums f from samples taken along a few lines.
Samples on at least M + 1 lines are needed to guarantee
unique reconstruction for any f of order M . The recon-
struction can be characterized by a non-convex optimization
problem. Under rather mild assumptions on f , an efficient
reconstruction method is discussed. A method to recover a
sum of shifted positive definite functions from Fourier data is
finally explained.
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