
Progressive Scattered Data Filtering

Armin Iske

Abstract. Given a finite point set Z ⊂ R
d, the covering radius of a non-

empty subset X ⊂ Z is the minimum distance rX,Z such that every point in
Z is at a distance of at most rX,Z from some point in X. This paper con-
cerns the construction of a sequence of subsets of decreasing sizes, such that
their covering radii are small. To this end, a method for progressive data
reduction, referred to as scattered data filtering, is proposed. The result-
ing scheme is a composition of greedy Thinning, a recursive point removal
strategy, and Exchange, a postprocessing local optimization procedure. The
paper proves adaptive a priori lower bounds on the minimal covering radii,
which allows us to control for any current subset the deviation of its covering
radius from the optimal value at run time. Important computational aspects
of greedy Thinning and Exchange are discussed. The good performance of
the proposed filtering scheme is finally shown by numerical examples.

Key words: Thinning algorithms, progressive scattered data reduction, scat-
tered data modelling, k-center-problem, data clustering.

1 Introduction

Let Z ⊂ R
d, d ≥ 1, be a finite scattered point set of size M = |Z|, and let

Z = {X ⊂ Z : X 6= Z, X 6= ∅} denote the power set of its 2M −2 non-empty
(strict) subsets. Moreover, let ‖ · ‖ be any norm on R

d, and for any point
z ∈ Z let

dX(z) = min
x∈X

‖x − z‖

denote the distance between z and a subset X ∈ Z.
This paper concerns the construction of a sequence {Xn}M−1

n=1 ⊂ Z of
subsets, with decreasing sizes |Xn| = M−n, such that for each X ≡ Xn ⊂ Z
its covering radius

rX,Z = max
z∈Z

dX(z)

on Z is small. The progressive construction of such a sequence is accom-
plished by using filter operators, one at a time, each of whose action on Z
returns a locally optimal subset Xn ⊂ Z (a precise definition for the term
“locally optimal” is given in Definition 1, Section 2). The resulting data
reduction scheme is termed progressive scattered data filtering.

1

This work is mainly driven by applications in scattered data modelling.
This is subject of the discussion in the previous papers [9, 10], where the
utility of scattered data filtering for least squares approximation and mul-
tilevel interpolation by radial basis functions is shown. In order to briefly
explain this particular application, we remark that scattered data modelling
requires reconstructing an unknown function f : R

d → R from its function
values sampled at the points in Z. In radial basis function schemes this is
done by using, for a fixed radial function Φ ≡ φ(‖ ·‖), approximations of the
form

s =
∑

x∈X

cxφ(‖ · −x‖), (1)

where X ⊂ Z. Hence, the approximation space is spanned by X-translates
of the basis function Φ. The coefficients cx, x ∈ X, in (1) are computed
by the underlying approximation scheme (for more details see the recent
tutorial [11]). According to the discussion in [9, 10], for the purpose of
combining good approximation quality with low computational costs, it is
desirable to select a small set X ∈ Z such that its covering radius rX,Z

on Z is small. But this requires carefully balancing the size of X and the
value rX,Z . To this end, one good subset X ⊂ Z from the sequence {Xn}n,
generated by the proposed filtering scheme, is selected.

Before we proceed with explaining details on this filtering scheme, which
is the subject of most of this paper, let us first make a few general remarks.
Observe that for the above purpose one ideally wants to pick one subset
X ≡ X∗

n ⊂ Z, with (small) size |X∗
n| = M−n, which is optimal by minimizing

the covering radius rX,Z among all subsets X ⊂ Z of equal size, so that

r∗n = rX∗
n,Z = min

X⊂Z

|X|=M−n

rX,Z . (2)

The problem of finding an algorithm which outputs for any possible input
pair (Z, n), 1 ≤ n < |Z|, such an optimal subset X∗

n satisfying (2) is one
particular instance of the k-center problem (in a more general setting, the
norm ‖ · ‖ may be replaced by any arbitrary metric).

But the k-center problem is, due to Kariv & Hakimi [12], NP-hard.
Moreover, the problem of finding an α-approximation algorithm, α ≥ 1, for
the k-center problem which outputs for any input pair (Z, n), 1 ≤ n < |Z|,
a subset Xn ⊂ Z of size |Xn| = M − n satisfying

rXn,Z ≤ α · r∗n (3)

is for any α < 2 NP-complete. Hochbaum & Shmoys [8] were the first to
provide a 2-approximation algorithm (i.e. α = 2) for the k-center problem,

2

which is best possible unless P=NP. For a comprehensive discussion on the
k-center problem we refer to the textbook [7, Section 9.4.1] and the survey
paper [14], where the Hochbaum-Shmoys algorithm is explained.

In contrast to the situation in the k-center problem, our filtering scheme
does not work with a beforehand selection for M −n, the size of the output
Xn ∈ Z. Instead of this, our algorithms picks one good subset Xn at run
time. This selection relies on adaptive bounds of the form

rXn,Z ≤ αXn,Z · r∗n, (4)

where αXn,Z = rXn,Z/σn denotes the quality index of Xn, and the numbers
σn solely depend on the distribution of the points in Z. Note that the upper
bound on rXn,Z in (4) looks similar to the one in (3). However, while αXn,Z

in (4) depends on both Z and Xn ∈ Z, the universal constant α in (3) does
not even depend on Z. In fact, the sequence of numbers αXn,Z , recorded
at run time, helps us to control the deviation between any current covering
radius rXn,Z and the optimal value r∗n. Details on this are explained in
Section 3.

The filtering scheme itself, which is subject of the following Section 2,
is a composition of greedy Thinning, a recursive point removal scheme, and
Exchange, a postprocessing local optimization strategy. Greedy Thinning
is discussed in Section 4, and important computational aspects concerning
Exchange are addressed in Section 5. Numerical examples in Section 6
finally show how the proposed filtering scheme performs in comparison with
α-approximation algorithms for the k-center problem.

2 Scattered Data Filtering

In this section, details on the construction of the abovementioned sequence
{Xn}n ⊂ Z by progressive scattered data filtering are discussed. This fil-
tering scheme is associated with a sequence F = {Fn}n of filter operators
Fn : Z → Z, satisfying |Fn(Z)| = M − n, so we let Xn = Fn(Z). Moreover,
it is required that every subset Xn ∈ Z output by the operator Fn is locally
optimal in Z.

Definition 1 Let X ∈ Z and Y = Z \ X ∈ Z. The set X is said to be
locally optimal in Z, iff there is no pair (x, y) ∈ X×Y of points satisfying

rX,Z > r(X\x)∪y,Z . (5)

A point pair (x, y) ∈ X × Y satisfying (5) is said to be exchangeable.

3

Hence, if X ∈ Z is locally optimal in Z, then the covering radius rX,Z of
X on Z cannot be reduced by one single exchange between a point x ∈ X
and a point y in the difference set Y = Z \ X. Note that every (globally)
optimal subset X∗

n satisfying rX∗
n,Z = r∗n is also locally optimal.

Now the idea of progressive scattered data filtering is to combine a re-
cursive point removal scheme, termed Thinning, with a postprocessing local
optimization procedure, termed Exchange. Exchange outputs, on any given
X ∈ Z, a locally optimal subset of equal size |X|. This is accomplished,
according to the following algorithm, by iteratively swapping exchangeable
point pairs between X and Z \ X.

Algorithm 1 (Exchange).

INPUT: X ∈ Z;

(1) Let Y = Z \ X;
(2) WHILE (X not locally optimal in Z)

(2a) Locate an exchangeable pair (x, y) ∈ X × Y ;
(2b) Let X = (X \ x) ∪ y and Y = (Y \ y) ∪ x;

OUTPUT: X ∈ Z, locally optimal in Z.

Note that the Exchange Algorithm terminates after finitely many steps.
Indeed, this is because the set Z is assumed to be finite, and each exchange
in step (2b) strictly reduces the current (non-negative) covering radius rX,Z .
By construction, the output set X ∈ Z is then locally optimal. A charac-
terization of exchangeable point pairs is provided in Section 5. This yields
useful criteria for the efficient localization of such point pairs.

Now let us turn to Thinning. This class of recursive point removal
schemes is used for multilevel scattered data interpolation in [5], and more-
over analyzed in [6]. A generic formulation of Thinning is given by the
following algorithm.

Algorithm 2 (Thinning).

INPUT: Z with |Z| = M , and n ∈ {1, . . . , M − 1};
(1) Let X0 = Z;
(2) FOR k = 1, . . . , n

(2a) Locate a removable point x ∈ Xk−1;
(2b) Let Xk = Xk−1 \ x;

OUTPUT: Xn ∈ Z, of size |Xn| = M − n.

4

In order to select a specific Thinning strategy, it remains to give a defi-
nition for a removable point in step (2a) of the Algorithm 2. Details on our
preferred Thinning strategy are discussed in Section 4.

For the subsequent discussion in this paper, it is convenient to associate
with any Thinning algorithm a Thinning operator T . The operation of T
on any non-empty subset X ⊂ Z is defined by T (X) = X \x for one unique
x ∈ X, so by the action of T on X the point x is removed from X. Therefore,
any subset Xn output by Algorithm 2 can be written as Xn = Tn(Z), where
Tn = T ◦· · ·◦T denotes the n-fold composition of T . Likewise, the Exchange
Algorithm 1 is viewed as an operator E : Z → Z, which returns on any
given argument X ∈ Z a locally optimal subset E(X) ∈ Z of equal size
|E(X)| = |X|. Hence, E is a projector onto the locally optimal sets in Z.

Having specified such operators T and E, this already yields by the
composition Fn = E ◦ Tn a sequence F = {Fn}n of filter operators with the
desired properties. Indeed, any subset Xn = Fn(Z) output by the operator
Fn = E ◦ Tn is locally optimal in Z and it moreover satisfies |Xn| = M − n
by construction.

3 Adaptive Bounds on the Covering Radii

In this section, adaptive bounds on the covering radii rX,Z , X ∈ Z, are
proven. To this end, assume without loss of generality that the points in
Z = {z1, . . . , zM} are ordered such that their significances

σ(z) = dZ\z(z), for z ∈ Z, (6)

are increasing, i.e.
σ(z1) ≤ σ(z2) ≤ · · · ≤ σ(zM). (7)

Note that for any z ∈ Z its significance σ(z) in (6) is the distance to its
nearest neighbour in Z. Hence, according to the above assumption (7) on
the ordering of the points in Z, the value σ(z1) yields the minimal distance
between two points in Z. In fact, since this minimum is attained by at least
two points in Z, we have σ(z1) = σ(z2).

For notational simplicity, we let σn = σ(zn), 1 ≤ n ≤ M . Moreover, for
any X ∈ Z of size |X| = M − n, we let Y = Z \ X denote the difference
set, whose size is then |Y | = n. Starting point of the subsequent discussion
is the following lower bound on the covering radius rX,Z for X ∈ Z.

5

Theorem 1 For any X ∈ Z of size |X| = M − n the inequality

σn ≤ rX,Z (8)

holds.

Proof: Since for any y ∈ Y = Z \ X the inequality

dZ\Y (y) ≥ dZ\y(y) = σ(y)

holds, we conclude

rX,Z = rZ\Y,Z = max
z∈Z

dZ\Y (z) = max
y∈Y

dZ\Y (y) ≥ max
y∈Y

σ(y). (9)

By our assumption (7) on the ordering of the points in Z and by |Y | = n,
it follows that

max
y∈Y

σ(y) ≥ σ(zn) = σn

which completes, by using (9), our proof. ¤

Note that the above inequality (8) holds in particular for any optimal
set X∗

n ∈ Z of size |X∗
n| = M −n satisfying rX∗

n,Z = r∗n, which yields σn ≤ r∗n
for n = 1, . . . , M − 1. This immediately implies

rX,Z = αX,Z · σn ≤ αX,Z · r∗n,

where we let αX,Z = rX,Z/σn. This is the adaptive upper bound (4) stated
in the introduction. In summary, we draw the following conclusion from
Theorem 1.

Corollary 1 For any X ∈ Z of size |X| = M − n the inequalities

σn ≤ r∗n ≤ rX,Z ≤ αX,Z · r∗n (10)

hold, where αX,Z = rX,Z/σn ≥ 1. ¤

The above upper bound on rX,Z in (10) is particularly useful for our
purposes. In fact, (10) implies

∣

∣

∣

∣

rX,Z − r∗n
r∗n

∣

∣

∣

∣

≤ αX,Z − 1,

which allows us to control, for any current X ≡ Xn ∈ Z in the sequence
{Xn}n, the relative deviation between the current covering radius rXn,Z and

6

the optimal value r∗n. The quality indices αXn,Z are recorded at run time
during the filtering. Whenever αXn,Z is close to one, this then indicates that
the set Xn is close to one optimal set of equal size M−n. In our applications
in [9, 10], this turns out to be a useful criterion for the subset selection.

In situations where the optimal value r∗n is known, the following observa-
tion may help to construct an optimal subset by using the initial significances
of the points in Z.

Theorem 2 Suppose X ∈ Z is an optimal subset of size |X| = M − n.
Then, σ(y) ≤ r∗n for all y ∈ Y = Z \ X.

Proof: Note that every point y ∈ Y satisfies

σ(y) = dZ\y(y) ≤ dZ\Y (y) = dX(y) ≤ rX,Z . (11)

Moreover, since X is optimal, we have rX,Z = r∗n. This in combination with
(11) implies σ(y) ≤ r∗n for every y ∈ Y , as stated. ¤

Note that the above characterization implies that any optimal X∗ ∈ Z
of size M − n is necessarily a superset of Z \ {z ∈ Z : σ(z) ≤ r∗n}. We come
back to this point in the following section.

4 Greedy Thinning

Greedy algorithms are known as efficient and effective methods of dynamic
programming for solving optimization problems. Greedy algorithms typi-
cally go through a sequence of steps, where for each step a choice is made
that looks best at the moment. For a general introduction to greedy algo-
rithms we recommend the textbook [1, Chapter 16].

4.1 Characterization of Removable Points

In our particular situation, a greedy Thinning algorithm is one where at each
step one point is removed, such that the resulting covering radius is minimal
among all other possible point removals. This leads us to the following
definition for a removable point in step (2a) of Algorithm 2.

Definition 2 For any X ∈ Z with |X| ≥ 2, a point x∗ ∈ X is said to be
removable from X, iff x∗ minimizes the covering radius rX\x,Z among all
points in X, i.e.

rX\x∗,Z = min
x∈X

rX\x,Z .

7

We remark that this definition for a removable point is different from
those used in [5, 6, 10], where a removable point is one which minimizes
the distance to its nearest neighbour in the current subset X. In contrast
to this, the removal criterion of Definition 2 depends also on the points in
Y = Z \X which have already been removed in previous steps. This idea is
also favourably used in the recent paper [3].

At first sight, the task of locating a removable point may look costly.
The computation can, however, be facilitated by using the following char-
acterization for removable points, which works with Voronoi diagrams [13].
To this end, recall that for any finite point set X and x ∈ X the convex
polyhedron

VX(x) =
{

y ∈ R
d : dX(y) = ‖y − x‖

}

denotes the Voronoi tile of x w.r.t. X, comprising all points in space whose
nearest neighbour in X is x.

Theorem 3 Let X ∈ Z with |X| ≥ 2. Every point x ∈ X which minimizes
the local covering radius

r(x) = rX\x,Z∩VX(x) (12)

among all points in X is removable from X.

Proof: Let Y = Z \ X. Note that

rX\x,Z = max
y∈Y ∪x

dX\x(y)

= max

(

max
y∈Y \VX(x)

dX\x(y), max
y∈Y ∩VX(x)

dX\x(y), dX\x(x)

)

= max

(

max
y∈Y \VX(x)

dX(y), max
y∈Y ∩VX(x)

dX\x(y), dX\x(x)

)

.

Since dX\x(y) ≥ dX(y) for all y ∈ Y ∩ VX(x), this implies

rX\x,Z = max

(

max
y∈Y

dX(y), max
y∈Y ∩VX(x)

dX\x(y), dX\x(x)

)

. (13)

Moreover, since

max

(

max
y∈Y ∩VX(x)

dX\x(y), dX\x(x)

)

= max
y∈(Y ∩VX(x))∪x

dX\x(y) = rX\x,Z∩VX(x)

and rX,Z = maxy∈Y dX(y), we obtain, by using (12), the equality

rX\x,Z = max (rX,Z , r(x))

directly from (13). Therefore, rX\x,Z ≤ rX\x̃,Z , whenever r(x) ≤ r(x̃) for
any x, x̃ ∈ X, which completes our proof. ¤

8

4.2 Computational Costs of Greedy Thinning

In this subsection, the efficient implementation of greedy Thinning is ex-
plained and the resulting computational costs are analyzed. To this end,
recall the Definition 2 for a removable point, and the characterization in
Theorem 3.

Following along the lines of the discussion in the previous papers [3, 6],
during the performance of the greedy Thinning algorithm the points of the
current set X are stored in a heap, here and in the following called X-heap.
Recall that a heap is a binary tree which can be used for the maintenance
of a priority queue. Each node x ∈ X in the X-heap bears its local covering
radius r(x) in (12) as its significance value. Recall that building the initial
X-heap costs O(M log M) operations [1], where M = |Z| is the size of the
input point set Z. Likewise, building the initial Voronoi diagram costs
O(M log M) operations [13].

Now due to the heap condition, the significance of a node in the X-heap

is smaller than the significances of its two children. Hence, the root of the
X-heap contains a removable point. Therefore, the point removal in steps
(2a) and (2b) of the Thinning Algorithm 2 can be performed by popping
the root of the X-heap. But the employed data structures, the heap and
the Voronoi diagram, need to be updated accordingly. To be more precise,
the steps (2a) and (2b) in each iteration of the Thinning Algorithm 2 are
performed as follows.

(T1) Pop the root x∗ from the heap and update the heap.

(T2) Remove x∗ from the Voronoi diagram. Update the Voronoi diagram
in order to obtain the Voronoi diagram of the point set X \ x∗.

(T3) Let X = X \ x∗ and so Y = Y ∪ x∗.

(T4) Update the local covering radii of the Voronoi neighbours of x∗ in X,
whose Voronoi tiles were changed by the update in step (T2). Update
the positions of these points in the heap.

In addition, during the performance of greedy Thinning, each y ∈ Y is
attached to a Voronoi tile containing y. Thus in step (T2), by the removal
of x∗, the points in Y ∩ VX(x∗) and x∗ itself need to be reattached to new
Voronoi tiles VX\x∗(·) of Voronoi neighbours of x∗. These (re)attachments
facilitate the required updates of the local covering radii in step (T4).

We remark that the updates in the above steps (T2) and (T4) require
merely local operations on the Voronoi diagram. Moreover, each update in

9

the heap costs O(log n) operations [1], where n ≤ M is the number of (cur-
rent) nodes in the heap. Using similar arguments as in [3], this shows that
each removal step of greedy Thinning costs at most O(log M) operations.
Since the number n of iterations in the Thinning Algorithm 2 is bounded
above by M , we obtain the following result concerning the computational
costs of greedy Thinning.

Theorem 4 The performance of the Thinning Algorithm 2, by using the
removal criterion of Definition 2, and according to the steps (T1)-(T4)
requires at most O(M log M) operations. ¤

4.3 Localization of Optimal Subsets

In the remainder of this section, one useful (theoretical) property of greedy
Thinning is discussed. This is concerning the selection of optimal subsets
during the removal. To this end, we use the notation Tn

∗ (Z) ∈ Z for a subset
output by greedy Thinning after n point removals. In particular, we have
|Tn

∗ (Z)| = M − n for the size of Tn
∗ (Z), and so by Corollary 1 in Section 3

we obtain for any n ∈ {1, . . . , M − 1} the adaptive bounds

σn ≤ r∗n ≤ rT n
∗ (Z),Z ≤ αT n

∗ (Z),Z · r∗n
on the covering radius of Tn

∗ (Z) on Z, where αT n
∗ (Z),Z = rT n

∗ (Z),Z/σn ≥ 1.
Now, if αT n

∗ (Z),Z = 1, this then would directly imply that the subset
Tn
∗ (Z) is optimal with satisfying rT n

∗ (Z),Z = σn = r∗n. For instance, at the
first point removal (i.e. when n = 1) greedy Thinning returns the optimal
subset T∗(Z) = Z \ x∗, with x∗ some removable point, satisfying

rT∗(Z),Z = rZ\x∗,Z = dZ\x∗(x∗) = σ(x∗) = σ1.

But for general n, it is not true that σn coincides with rT n
∗ (Z),Z . In fact,

this depends also on Z, which leads us to the following definition.

Definition 3 An index n, 1 ≤ n < M , is said to be an optimal breakpoint

for Z, iff there is one X ∈ Z of size |X| = M − n satisfying rX,Z = σn.

Hence, for any Z, n = 1 is always an optimal breakpoint. Indeed, in
this case X = T∗(Z) satisfies rX,Z = σ1. But in general, i.e. for n > 1, it
is not necessarily true that n is an optimal breakpoint for Z. Nevertheless,
whenever any n is an optimal breakpoint for Z, we can show that the subset
Tn
∗ (Z) ⊂ Z generated by greedy Thinning is the unique optimum satisfying

Tn
∗ (Z) = σn, provided that σn < σn+1.

10

Theorem 5 Suppose n is an optimal breakpoint for Z. If σn < σn+1, then
the set

X∗
n = Z \ {z1, . . . , zn} ∈ Z

is optimal by satisfying rX∗
n,Z = σn. Moreover, X∗

n is the unique minimizer
of the covering radius rX,Z among all sets X ∈ Z of equal size |X| = M −n.

Proof: Since n is an optimal breakpoint in Z, there is at least one optimal
subset X ⊂ Z of size |X| = M − n satisfying rX,Z = σn. Let Y = Z \ X.
Then, due to Theorem 2, this implies

σ(y) ≤ σn (14)

for every y ∈ Y . But since σn < σn+1 and by (7), the condition (14) is only
satisfied by the points in the set Zn = {z1, . . . , zn}, and so Y ⊂ Zn. But
|Y | = |Zn| = n, and therefore Y = Zn, which implies X = Z \ Zn = X∗

n. ¤

Corollary 2 Suppose n is an optimal breakpoint for Z, and σn < σn+1.
Then the set Tn

∗ (Z) output by greedy Thinning is optimal by satisfying
rT n

∗ (Z) = σn. Moreover, Tn
∗ (Z) is the unique minimizer of the covering

radius rX,Z among all sets X ∈ Z of equal size |X| = M − n.

Proof: Due to Theorem 5, it is sufficient to show that Tn
∗ (Z) = Z\Zn holds,

where Zn = {z1, . . . , zn}. We prove this by induction. Since rZ\z,Z = σ(z),
and due to the assumption σn < σn+1, greedy Thinning removes one point
from Zn in its first step, i.e. T∗(Z) = Z \ z∗ for some z∗ ∈ Zn.

Now suppose, for any 1 ≤ k < n, that T k
∗ (Z) = Z\Y holds with Y ⊂ Zn.

Then, on the one hand, for every y ∈ Zn \ Y ⊂ Zn we have

rT k
∗ (Z)\y,Z = rZ\(Y ∪y),Z ≤ rZ\Zn,Z = σn. (15)

Indeed, this is due to the monotonicity of the covering radius, i.e.

rX,Z ≤ r
X̃,Z

, for all X, X̃ ∈ Z with X̃ ⊂ X.

On the other hand, for every z ∈ Z \ Zn = {zn+1, . . . , zM} we have

dT k
∗ (Z)\z(z) = d(Z\Y)\z(z) ≥ dZ\z(z) = σ(z) > σn,

and so rT k
∗ (Z)\z,Z > σn. This in combination with (15) shows that

rT k
∗ (Z)\y,Z < rT k

∗ (Z)\z,Z , for all y ∈ Zn \ Y, z ∈ Z \ Zn.

Therefore, greedy Thinning removes one point from Zn \Y ⊂ Zn in its next
step. After n removals, we have Tn

∗ (Z) = Z \ Zn as desired. ¤

11

5 Exchange

This section is devoted to the characterization of exchangeable point pairs.
Moreover, the following discussion addresses important computational as-
pects concerning the efficient implementation of the Exchange Algorithm 1.
In fact, this section provides useful criteria for an efficient localization of
exchangeable point pairs, as required in step (2a) of Algorithm 1.

5.1 Characterization of Exchangeable Point Pairs

For the moment of the discussion in this section, X ∈ Z denotes a fixed
subset of Z and we let Y = Z \ X. Moreover,

Y ∗ = {y ∈ Y : dX(y) = rX,Z}

stands for the set of all points y ∈ Y where the maximum rX,Z is attained.
The following theorem yields a necessary and sufficient condition for ex-
changeable point pairs. The subsequent two corollaries provide sufficient
conditions, which are useful for the purpose of quickly locating exchange-
able points.

Theorem 6 A point pair (x̂, ŷ) ∈ X × Y is exchangeable, if and only if all
of the following three statements are true.

(a) rX,Z > dX∪ŷ(y) for all y ∈ Y ∗;

(b) rX,Z > d(X\x̂)∪ŷ(x̂);

(c) rX,Z > d(X\x̂)∪ŷ(y) for all y ∈ Y ∩ VX(x̂).

Proof: Suppose all of the three statements (a),(b), and (c) are true. Note
that condition (a), together with the definition for Y ∗, implies

rX,Z > dX∪ŷ(y) for all y ∈ Y. (16)

Moreover, for any y ∈ Y \ VX(x̂) we have dX(y) = dX\x̂(y), and therefore

dX∪ŷ(y) = d(X\x̂)∪ŷ(y) for all y ∈ Y \ VX(x̂).

This, in combination with statement (c) and (16), implies

rX,Z > d(X\x̂)∪ŷ(y) for all y ∈ Y. (17)

12

By combining (17) with condition (b), we find

rX,Z > max

(

max
y∈Y \ŷ

d(X\x̂)∪ŷ(y), d(X\x̂)∪ŷ(x̂)

)

= max
y∈(Y \ŷ)∪x̂

d(X\x̂)∪ŷ(y)

= max
z∈Z

d(X\x̂)∪ŷ(z)

= r(X\x̂)∪ŷ,Z ,

in which case the pair (x̂, ŷ) is, according to Definition 1, exchangeable.

As to the converse, suppose the pair (x̂, ŷ) ∈ X × Y is exchangeable, i.e.
rX,Z > r(X\x̂)∪ŷ,Z . This implies

rX,Z > max
y∈(Y \ŷ)∪x̂

d(X\x̂)∪ŷ(y) ≥ max
y∈Y \ŷ

d(X\x̂)∪ŷ(y) = max
y∈Y

d(X\x̂)∪ŷ(y), (18)

and therefore

rX,Z > max
y∈Y ∗

d(X\x̂)∪ŷ(y) ≥ max
y∈Y ∗

dX∪ŷ(y),

which shows that in this case statement (a) holds. Finally, note that (18)
immediately implies the statements (b) and (c), which completes our proof.
¤

Corollary 3 Let ŷ ∈ Y satisfy condition (a) of Theorem 6. Moreover, let
x̂ ∈ X satisfy r(x̂) < rX,Z . Then, the pair (x̂, ŷ) ∈ X × Y is exchangeable.

Proof: Recall the expression r(x̂) = rX\x̂,Z∩VX(x̂) in (12) for the local cov-
ering radius of x̂, which yields

r(x̂) = max

(

max
y∈Y ∩VX(x̂)

dX\x̂(y), dX\x̂(x̂)

)

≥ max

(

max
y∈Y ∩VX(x̂)

d(X\x̂)∪ŷ(y), d(X\x̂)∪ŷ(x̂)

)

.

Therefore, the assumption rX,Z > r(x̂) directly implies that the pair (x̂, ŷ)
satisfies the conditions (b) and (c) in Theorem 6. In combination with
the other assumption on ŷ, all of the three conditions (a), (b), and (c)
in Theorem 6 are satisfied by (x̂, ŷ). Therefore, the point pair (x̂, ŷ) is
exchangeable. ¤

In many situations, the set Y ∗ contains merely one point y∗. In this
case, the point y∗ ∈ Y ∗ ⊂ Y is potentially a good candidate for an exchange,

13

since it satisfies the condition (a) in Theorem 6. This observation yields, by
using the criterion in Corollary 3, the following sufficient condition for an
exchangeable pair.

Corollary 4 Let y∗ ∈ Y satisfy dX(y∗) > dX(y) for all y ∈ Y \{y∗}. Then,
for x̂ ∈ X, the pair (x̂, y∗) ∈ X × Y is exchangeable, if they satisfy

dX(y∗) > r(x̂). (19)

Proof: Note that the first assumption on y∗ implies

rX,Z = dX(y∗) > dX(y) ≥ dX∪y∗(y), for all y ∈ Y.

Hence, the point y∗ satisfies the condition (a) of Theorem 6. Moreover, by
the other assumption in (19), we obtain rX,Z = dX(y∗) > r(x̂). But in this
case, the point pair (x̂, y∗) is, due to Corollary 3, exchangeable. ¤

5.2 Computational Costs of Exchange

In this subsection, the implementation of the Exchange Algorithm 1 and the
resulting computational costs are discussed. In particular, we explain how
the exchange in steps (2a) and (2b) of the Exchange Algorithm 1 can be
done efficiently. To this end, we merely work with the sufficient criterion of
Corollary 4 for locating exchangeable point pairs.

Recall from the discussion in Section 4 that greedy Thinning works with
a heap, called X-heap, for maintaining removable points. In the X-heap,
the significance of a node x ∈ X is given by the value r(x) of its current
local covering radius. We use this X-heap also for the performance of the
Exchange algorithm. Note that the X-heap is already available when the
greedy Thinning algorithm terminates, so that no additional computational
costs are required for building the X-heap.

Moreover, during the performance of the Exchange algorithm we use
another heap, called Y-heap, where the points of the current set Y = Z \X
are stored. The priority of a node y ∈ Y in the Y-heap is given by its
distance dX(y) to the set X. The nodes in the Y-heap are ordered such that
the significance of a node is greater than the significances of its two children.
Hence, the root of the Y-heap contains a point y∗ from the set Y ∗, so that
dX(y∗) = rX,Z .

We remark that the Y-heap may either be built immediately before the
performance of the Exchange algorithm, or it may be maintained during
the performance of the greedy Thinning algorithm. In either case, building

14

the Y-heap costs at most O(M log M) operations. We can explain this as
follows. First note that the abovementioned attachments of the points in
Y = Z \X to corresponding Voronoi tiles (see Subsection 4.2) can be used in
order to facilitate this. Indeed, by these attachments the significance dX(y)
of any y ∈ Y ∩ VX(x) is already given by the Euclidean distance between y
and x ∈ X. Now since the number |Y | of points in Y is at most M , and each
insertion into the Y-heap costs at most O(log M) operations, this altogether
shows that we require at most O(M log M) operations for building the initial
Y-heap.

Now let us return to the performance of the steps (2a) and (2b) of the
Exchange Algorithm 1. In order to locate an exchangeable pair in (2a),
we compare the significance r(x∗) of the point x∗ (the point in the root of
the X-heap) with the significance dX(y∗) of y∗ (the point in the root of the
Y-heap). If r(x∗) < dX(y∗) and Y ∗ = {y∗}, then the pair (x∗, y∗) ∈ X × Y
is, due to Corollary 4, exchangeable. Step (2b) of the Exchange Algorithm 1
is then accomplished as follows.

(E1) Remove x∗ from X by applying greedy Thinning on X. To this end,
perform the steps (T1)-(T4), described in the previous section.

(E2) Pop the root y∗ from the Y-heap and update the Y-heap.

(E3) Add the point y∗ to the Voronoi diagram of the set X 1 in order to
obtain the Voronoi diagram of the set X ∪ y∗.

(E4) Update the local covering radii of those points in X, whose Voronoi
tiles were modified by the insertion of y∗ in step (E3). Update the
positions of these points in the X-heap.

(E5) Update the significances dX(y) of those points in Y , whose surrounding
Voronoi tile was deleted by the removal of x∗ in step (T2) or by the
insertion of y∗ in step (E3). Reattach each of these points to a new
Voronoi tile, and update their positions in the Y-heap.

(E6) Let X = X ∪ y∗ and so Y = Y \ y∗.

(E7) Compute the local covering radius r(y∗) of y∗, and insert y∗ into the
X-heap.

(E8) Compute the significance dX(x∗) of x∗, and insert x∗ into the Y-heap.

1Note that at this stage x
∗ has already been removed from X by step (T3).

15

Now let us turn to the computational costs required for one exchange
step of the Exchange Algorithm 1. As explained above, step (2a) requires
only O(1) operations, when working with the two heaps, X-heap and Y-heap.
The performance of one step (2b), as described by the above instructions
(E1)-(E8), can be done in at most O(log M) operations, provided that each
Voronoi tile contains O(1) points from Y . We tacitly act on this reasonable
assumption from now. In this case, the required updates of the local covering
radii in steps (E1), (E4), and (E7) cost only O(1) time. Likewise, the
updates of the significances in steps (E5) and (E8) cost O(1) time. Finally,
each update in either of the two heaps in steps (E1),(E2),(E4),(E5),(E7),
and (E8) costs at most O(log M) time.

Theorem 7 One exchange step of the Exchange Algorithm 1, by performing
the instructions (E1)-(E8), requires at most O(log M) operations. ¤

We finally remark that we have no (non-trivial) upper bound on the
number nE of exchange steps (required in the Exchange Algorithm 1). But
in all of our numerical experiments we observed that nE is always much
smaller than the size of the input point set Z, i.e., nE ¿ M = |Z|. We
summarize the above results concerning the computational costs of scattered
data filtering by combining the Theorems 4 and 7.

Theorem 8 For any finite point set Z of size M = |Z|, and 1 ≤ n < M , the
construction of the subset Xn = E ◦Tn

∗ (Z) by n steps of the greedy Thinning
Algorithm 2 followed by nE steps of the Exchange Algorithm 1 requires at
most O(M log M) + O(nE log M) operations. ¤

6 Numerical Results

We have implemented the proposed scattered data filtering scheme in two
dimensions, d = 2, by using the Euclidean norm ‖·‖ = ‖·‖2. For the purpose
of locating exchangeable point pairs, in step (2a) of Algorithm 1, we decided
to merely work with the sufficient criterion in Corollary 4, as explained in
the previous section. Moreover, our implementation only removes interior
points, though the algorithm could easily be extended so as to remove also
boundary points.

Initially, on given input set Z, the significance σ(z) in (6) is computed
for every point z ∈ Z. Then, the occurring significances (but not the
points!) are sorted in increasing order, so that we obtain the sequence
σ1 ≤ σ2 ≤ . . . ≤ σM , which is required for recording the quality indices

16

αXn,Z = rXn,Z/σn, where Xn = E ◦ Tn
∗ (Z) or Xn = Tn

∗ (Z), at run time.
Note that this preprocess costs only at most O(M log M) operations [1],
where M = |Z|.

The filtering scheme was applied on two different types of scattered data,

• clustered data from terrain modelling (Figure 1 (a));

• track data from marine seismic data analysis (Figure 4 (a)).

The numerical results on these two examples are discussed, one after the
other, in the following Subsections 6.1 and 6.2. We remark that the numer-
ical experiments were prepared on a Sun-Fire-480R workstation (900 MHz
processor, 16384 MB physical memory).

6.1 Terrain Data

Figure 1 (a) shows a scattered data sample of a terrain around Gjøvik,
Norway, comprising M = 7928 data points. Note that the sampling density
is subject to strong variation. In fact, the data is rather sparse in flat regions
of the terrain, whereas a higher sampling rate around steep gradients of the
terrain’s surface leads to clusters.

For the purpose of graphical illustration, Figure 1 shows also the three
different subsets (b) F2000(Z), (c) F4000(Z), and (d) F6000(Z), which were
generated by using the proposed filtering scheme. The resulting covering
radii and the quality indices of Tn

∗ (Z) and Fn(Z), n = 2000, 4000, 6000, are
shown in Table 1. Moreover, Table 1 shows the CPU seconds u(T) which
were required for computing the subsets Tn

∗ (Z) from Z by greedy Thinning,
and the CPU seconds u(E) for the postprocessing exchange of point pairs.
Therefore, the sum u(F) = u(T) + u(E) of these values are the total costs,
in terms of CPU seconds, for computing the subsets Xn = Fn(Z) from Z.
The numbers nE of exchange steps are also shown in Table 1.

n rT n
∗ (Z),Z rFn(Z),Z αT n

∗ (Z),Z αFn(Z),Z u(T) u(E) nE

2000 3.0321 2.9744 1.3972 1.3706 1.86 0.21 71
4000 5.2241 4.6643 1.6462 1.4698 2.84 1.18 409
6000 23.9569 7.9306 5.4281 1.7969 3.74 0.81 381

Table 1: Scattered data filtering on Gjøvik.

17

−400 −300 −200 −100 0 100 200 300 400 500 600
−400

−300

−200

−100

0

100

200

300

(a)

−400 −300 −200 −100 0 100 200 300 400 500 600
−400

−300

−200

−100

0

100

200

300

(b)

−400 −300 −200 −100 0 100 200 300 400 500 600
−400

−300

−200

−100

0

100

200

300

(c)

−400 −300 −200 −100 0 100 200 300 400 500 600
−400

−300

−200

−100

0

100

200

300

(d)

Figure 1: Gjøvik. (a) The input data set Z comprising 7928 points, and
the subsets (b) X2000 of size 5928, (c) X4000 of size 3928, and (d) X6000 of
size 1928, generated by scattered data filtering.

For further illustration, we have recordered the results in Table 1 for
all possible n. The following Figures 2 and 3 reflect the results of the
entire numerical experiment. The graphs of the resulting covering radii
rT n

∗ (Z),Z , rFn(Z),Z and the quality indices αT n
∗ (Z),Z , αFn(Z),Z , 100 ≤ n ≤ 7391,

are displayed in Figure 2. Figure 2 (a) shows also the graph of the initial
significances σn. Recall that σn ≤ r∗n by Theorem 1, i.e., the value σn is a
lower bound for the optimal value r∗n.

We remark that for large values of n the deviation between σn and the
optimal value r∗n is typically very large. For n = M − 1, for instance, we
find r∗M−1 = 516.264 for the optimal covering radius, but σM−1 = 22.581
for the penultimate significance value. This observation partly explains why

18

the quality indices of αT n
∗ (Z),Z and αFn(Z),Z in Figure 2 (b) are so rapidly

growing for large n.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

25

r(T
*
n(Z),Z)

r(F
n
(Z),Z)

σ
n

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

α(T
*
n(Z),Z)

α(F
n
(Z),Z)

α ≡ 2

(b)

Figure 2: Gjøvik. (a) The covering radii rT n
∗ (Z),Z , rFn(Z),Z , and the signif-

icances σn. (b) The quality indices αT n
∗ (Z),Z and αFn(Z),Z .

0 1000 2000 3000 4000 5000 6000 7000 8000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

u(F
n
)

u(Tn
*
)

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

300

400

500

600

700

(b)

Figure 3: Gjøvik. (a) CPU seconds u(Fn) required for computing Fn(Z),
and u(Tn

∗) for computing Tn
∗ (Z); (b) number of exchange steps.

Nevertheless, for n ≤ 6435, we found α(Fn(Z), Z) < 2 and moreover,

α(Fn(Z), Z) < α2 =
√

2 +
√

3 ≈ 1.9319 for n ≤ 6327. We mention the
latter because for the special case of the Euclidean norm, the best possi-
ble constant in (3) is α = α2. In other words, there is for α < α2 no
α-approximation algorithm for the k-center problem, when using the Eu-

19

clidean norm, unless P=NP. This result is due to Feder & Greene [4] (see
also [14, Section 4]).

In conclusion, the numerical results reflected by Figure 2 illustrate the
good performance of the proposed filtering scheme, especially in comparison
with possible α-approximation algorithms for the k-center-problem. The
required seconds of CPU time and the number of exchange steps for com-
puting the sets Xn = Fn(Z) from Tn

∗ (Z) are displayed Figures 3 (a) and
(b). Not surprisingly, we found that the CPU seconds u(E) for the exchange
are roughly proportional to the number nE of exchange steps.

6.2 Track Data

In our second numerical experiment, we considered using one example from
marine seismic data analysis. In this case, the spatial distribution of the
sampled data is organized along tracks, since these data are acquired from
ships. Figure 4 (a) shows such a seismic data set which was taken in a region
of the North Sea. This data set, here referred to as NorthSea, comprises
M = 9758 data points.

We have recorded the covering radii, rT n
∗ (Z),Z and rFn(Z),Z , and the qual-

ity indices, αT n
∗ (Z),Z and αFn(Z),Z , for all possible n. Figure 5 (a) displays

the graphs of rT n
∗ (Z),Z and rFn(Z),Z along with that of the significances σn,

whereas the graphs of αT n
∗ (Z),Z and αFn(Z),Z , 1 ≤ n ≤ 8300, are shown

in Figure 5 (b). Moreover, we have also recorded the elapsed CPU time
required for computing Fn(Z) and Tn

∗ (Z), see Figure 6 (a), as well as the
number nE of exchange steps, which are required for computing Fn(Z) from
Tn
∗ (Z), see Figure 6 (b).

We remark that both greedy thinning and the proposed scattered data
filtering scheme perform very well on this data set. This is confirmed by the
numerical results concerning the behaviour of the quality indices αT n

∗ (Z),Z

and αFn(Z),Z , see Figure 5 (b). Indeed, the values αT n
∗ (Z),Z and αFn(Z),Z are

very close to the best possible value α ≡ 1 in the range 1083 ≤ n ≤ 5472,
where we find

1.00155 ≤ αT n
∗ (Z),Z ≤ 1.00279, for all 1083 ≤ n ≤ 5472.

The quality index αFn(Z),Z continues to be very close to α ≡ 1 beyond
n = 5472, where we find

1.00135 ≤ αFn(Z),Z ≤ 1.00272, for all 1083 ≤ n ≤ 5765.

Moreover, we have αFn(Z),Z < α2 =
√

2 +
√

3 for every n ≤ 6032, and
αFn(Z),Z < 2 for every n ≤ 6908.

20

The subsets F5765(Z) and F6908(Z) are shown in the Figures 4 (b) and (c),
along with the subset F8112(Z), which is displayed in Figure 4 (d).

5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
x 10

4

(a)

5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
x 10

4

(b)

5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
x 10

4

(c)

5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
x 10

4

(d)

Figure 4: NorthSea. (a) The input data set comprising 9758 points, and
the subsets (b) X5765 of size 3993, (c) X6908 of size 2850, and (d) X8112 of
size 1646, generated by scattered data filtering.

Finally, let us spend a few remarks concerning the results in Figure 5.
Firstly, note from Figure 5 (a) that the significance values σn are almost

constant for n ≥ 1083, where we find 12.3987 = σ1083 ≤ σn ≤ σM = 12.5005
for all 1083 ≤ n ≤ M . This is due to the (almost) constant sampling rate of
the data acquisition along the track lines. In fact, the smaller significances
σn, for n ≤ 1082, are attained at sample points near intersections between
different track lines.

Secondly, observe from Figure 5 (a) the step-like behaviour of the cover-
ing radii rT n

∗ (Z),Z and rFn(Z),Z . For the purpose of explaining the jumps in
the graph of rT n

∗ (Z),Z , let us for the moment assume that the data contains

21

1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

25

30

35

40

45

50

55

σ
n

r(F
n
(Z),Z)

r(Tn
*
(Z),Z)

(a)

1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

α(F
n
(Z),Z)

α(Tn
*
(Z),Z)

α ≡ 2

α ≡ 1

(b)

Figure 5: NorthSea. The graphs of (a) the covering radii rT n
∗ (Z),Z , rFn(Z),Z

and the significances σn; (b) the quality indices αT n
∗ (Z),Z and αFn(Z),Z .

only one track line, with a constant sampling rate. In this case, the data
points are uniformly distributed along one straight line, so that our discus-
sion boils down to greedy Thinning on univariate data. But greedy Thinning
on (uniformly distributed) univariate data is already well-understood [2]. In
this case, greedy Thinning generates equidistributed subsets of points. To
this end, in the beginning the algorithm prefers to remove intermediate
points, each of whose left and right neighbour have not been removed by
the algorithm, yet. Note that the covering radius is then constant. But
the point removal leads, after sufficiently many steps, to a situation where
the algorithm must remove a point, say x∗, in its next step, whose left and
right neighbour have already been removed in previous steps. Now by the
removal of x∗, the resulting covering radius will be doubled, which leads to
the first jump in the graph of the covering radii. By recursion, the covering
radius is kept constant for a while, before the next jump occurs at one later
removal, and so on.

Now let us return to the situation of the data set NorthSea, which incor-
porates several track lines. Note that the interferences between the different
track lines are rather small. In this case, the recursive point removal by
greedy Thinning on the separate track lines can widely be done simultane-
ously. This in turn explains the jumps in the graph of the covering radii
rT n

∗ (Z),Z by following along the lines of the above arguments for the univari-
ate case. Note that the postprocessing exchange algorithm can only delay,
but not avoid, the jumps of the resulting covering radii of rFn(Z),Z . This
also explains the step-like behaviour of the graph rFn(Z),Z in Figure 5 (a).

22

Thirdly, given the almost constant significances σn and the jumps in the
graphs of rT n

∗ (Z),Z and rFn(Z),Z , the resulting quality indices αT n
∗ (Z),Z and

αFn(Z),Z are clearly also subject to jumps by definition, see Figure 5 (b).
Moreover, we remark that for large n, the differences between the signif-
icances σn and the optimal covering radii r∗n(Z) are very large, see Fig-
ure 5 (a). For n = M − 1, for instance, we find r∗M−1 = 2652.46 for the
optimal covering radius, but σM−1 = 12.5004. In this case, albeit the adap-
tive bound in (10) is no longer a useful criterion for the subset selection (see
the corresponding discussion immediately after Corollary 1), the proposed
filtering scheme continues to generate subsets, whose sample points are uni-
formly distributed along the track lines. One example is given by the subset
F8112(Z) in Figure 4 (d), whose quality index is αF8112(Z),Z = 3.0012.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1

2

3

4

5

6

7

8

u(F
n
)

u(Tn
*
)

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

(b)

Figure 6: NorthSea. (a) CPU seconds u(Fn) required for computing Fn(Z),
and u(Tn

∗) for computing Tn
∗ (Z); (b) number of exchange steps.

Acknowledgment

The author was partly supported by the European Union within the project
MINGLE (Multiresolution in Geometric Modelling), contract no. HPRN-
CT-1999-00117.

23

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to
Algorithms, 2nd edition, MIT Press, Cambridge, Massachusetts, 2001.

[2] N. Dyn, M.S. Floater, A. Iske, Univariate adaptive thinning, Mathemati-

cal Methods for Curves and Surfaces: Oslo 2000, T. Lyche and L.L. Schu-
maker (eds.), Vanderbilt University Press, Nashville (2001) 123–134.

[3] N. Dyn, M.S. Floater, A. Iske, Adaptive thinning for bivariate scattered
data, J. Comp. Appl. Math. 145 (2002) 505–517.

[4] T. Feder, D.H. Greene, Optimal algorithms for approximate clustering,
Proceedings of the 20th Annual ACM Symposium on Theory of Com-

puting (1988) 434–444.

[5] M.S. Floater, A. Iske, Multistep scattered data interpolation using com-
pactly supported radial basis functions, J. Comp. Appl. Math. 73 (1996)
65–78.

[6] M.S. Floater, A. Iske, Thinning algorithms for scattered data interpola-
tion, BIT 38 (1998) 705–720.

[7] D.S. Hochbaum (ed.), Approximation Algorithms for NP-hard Problems,
PWS Publishing Company, Boston, 1997.

[8] D.S. Hochbaum, D.B. Shmoys, A best possible heuristic for the k-center
problem, Mathematics of Operations Research 10 (1985) 180–184.

[9] A. Iske, Reconstruction of smooth signals from irregular samples by us-
ing radial basis function approximation, Proceedings of the 1999 Inter-

national Workshop on Sampling Theory and Applications, Y. Lyubarskii
(ed.), The Norwegian University of Science and Technology, Trondheim
(1999) 82–87.

[10] A. Iske, Hierarchical scattered data filtering for multilevel interpola-
tion schemes, Mathematical Methods for Curves and Surfaces: Oslo

2000, T. Lyche and L.L. Schumaker (eds.), Vanderbilt University Press,
Nashville (2001) 211–221.

[11] A. Iske, Scattered data modelling using radial basis functions, Tutori-

als on Multiresolution in Geometric Modelling, A. Iske, E. Quak, and
M.S. Floater (eds.), Springer-Verlag, Heidelberg (2002) 205–242.

24

[12] O. Kariv, S.L. Hakimi, An algorithmic approach to network location
problems, part I: the p-centers, SIAM J. Appl. Math 37:3 (1979) 513–538.

[13] F.P. Preparata, M.I. Shamos, Computational Geometry, 2nd edition,
Springer, New York, 1988.

[14] D.B. Shmoys, Computing near-optimal solutions to combinatorial opti-
mization problems, DIMACS, Ser. Discrete Math. Theor. Comput. Sci.
20 (1995), 355–397.

Armin Iske
Zentrum Mathematik
Technische Universität München
D-85747 Garching, GERMANY
iske@ma.tum.de

25

