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ABSTRACT

This paper concerns the numerical stability of polyharraoni
spline reconstruction from multivariate irregular sansplé is

shown that the Lagrange basis functions of the polyharmonic

spline reconstruction scheme are scale-invariant. Imatedi
consequences of this result on the conditioning of the reco
struction problem are first discussed, before a suitableopre
ditioner is developed.
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1. INTRODUCTION

Irregular sampling requires reliable and robust methodmfr
scattered data approximation.
Duchon [1], are popular tools for multivariate Lagrangeeint
polation [5]. In this problem, a data vector

f‘X (f(iﬂl),’f(l‘n))Te]R”

of function values, irregularly sampled from an unknowndun
tion f : R — RatapointseX = {x;,...,2,} C R% d > 1,
is assumed to be given. Interpolation from Lagrange 91?;;;1

requires the construction ofsaitable interpolants : R¢ — R
satisfyings| . = f| . i.e.,
s(xj) = f(zy) foralll1 <j <n. (1)

Polyharmonic spline interpolation solves (1), foe N sat-
isfying k > d/2, in combination with the variational problem

|slBLE(Re) < | flBLF(RY) with s| . = f| ., )

in the Beppo Levi space
BLF(R?) = {f € C(R"): D*f € L*(R?) for all || = k},

being equipped with the semi-norm

2 —
e = [, >

|| =k

(’;) (D*f)? dz for f € BLF(R?).

Due to the ground-breaking work of Duchon [1], any solu-
tion of (2) has necessarily the form

n

s(z) =Y ejdanlllz — ;) + plz)

J=1

with p € P¢, (3)
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where
for d even,

for d odd,

r2k=d]og(r)

,r2k7d

bak(r) = {

rjs a fixed radial kernel function, termemblyharmonic spline,

w.r.t. the Euclidean norri- ||, and whereP{ is the linear space
of all d-variate polynomials of order at mokt Moreover, the
coefficientse = (c1,...,c,)T € R™ in the major part ofs in
(3) are satisfying the vanishing moment conditions

> eiplz;) =0  forallp e Py (4)
j=1

Polyharmonic splines, due tWe remark that the solutios in (3) satisfying (1),(4) is

unique [1, 6], provided thaX is P{-regular, i.e., fop € P we
have

p(z;) =0 foralll<j<n = p=0.
We shall from now assume uniquenessdor

Our previous paper [4] analyzes the conditioning and the
numerical stability of Lagrange interpolation by polyhamc
splines, where the key result in [4] is the scale-invariavfdhe
interpolation scheme’s Lagrange basis.

This paper provides a generalization of correspondindtsesu
in [4] from Lagrange interpolation to Hermite-Birkhoff rei-
struction. Moreover, a suitable preconditioner is devetbplo
this end, the scale-invariance of the problem’s conditiember
is proven for the more general case of Hermite-Birkhoff reco
struction.

The outline of this paper is as follows. In Section 2, we
first explain Hermite-Birkhoff reconstruction by polyhasmic
splines, before we show the scale-invariance of the meshad’
grange basis in Section 3. Relevant results concerningaie c
ditioning of the reconstruction problem are proven in Sett,
before a suitable preconditioner is constructed in Se@&ion

We remark that relevant applications for Hermite-Birkhoff
reconstruction include particle and collocation methods f
the numerical solution of PDEs as well as medical image re-
construction from X-ray scans in computerized tomograjpy,
mention but a few. Supporting numerical examples arisiomfr
particular application scenarios are presented duringctime
ference, where special emphasis is placed on both the ieariat
of the sampling and the comparison with other radial kernel
functions.



2. HERMITE-BIRKHOFF RECONSTRUCTION Theorem 1. LetT = {7,..., 7, } denoteaset of linearly inde-
pendent compactly supported linear functionals from the topo-
logical dual of BL. Then, the reconstruction problem (5) hasa

solution of the form (7), where s is unique, if the set 7" is Pg-

To simplify notation, we fix theorder k£ of ¢, and the di-
mensiond, with assuming@2k > d, and we letp = ¢4 and
BL = BL*(R?). To explain Hermite-Birkhoff reconstruction regular, i.e., for p € P we have
by polyharmonic splines, Ief’ = {r,...,7,} denote a set

of linearly independent compactly supported functionadsrf Ti(p) =0 for1<j<n
the topological duaBL* of BL. Recall that the norm of any -

I

7 € BL" is being defined as
7]l = inf {C:|7(f)] < C|f|pr forall f € BL}.
Now let us assume we are given a data vector
flp= @), m(f)T € R

of irregular samples taken frogh € BL. Reconstruction from
Hermite-Birkhoff dataf\T requires finding a reconstruction

satisfyings| . = f|,. i.e.,

75(s) =75 (f),

foralll1 <j <n. (5)

We assume from now th&t is P¢-regular. In this case, the
above theorem states that on given Hermite-Birkhoff qﬁga
there is one and only one elemerih the reconstruction space

R = s:r*¢+p:T:ch7‘jETkL,p€7)g C BL

j=1

(8)
satisfyings|, = f|,. Indeed, the reconstruction € R is
given by the unique orthogonal projection pfe BL ontoR.
Moreover, the coefficients € R™ of the major part ofs and
d € R™ of its polynomial parp are given by the solution of the

Note that the above reconstruction problem (5) coverdinear system

the interpolation problem (1).

T = {64,,...,0z, } Of n shifted Diracd-distributions, where

Indeed, in the special case
of problem (1), the dual functionals are given by the set

o] la)- ]

the shifts are taken aboutpairwise distinct translation points where

inX ={x1,...,z,}.

Now in order to generalize polyharmonic spline interpaati
to polyharmonic reconstruction from Hermite-Birkhoff daive
work with a reconstruction of the form

s@) =S et (@l —yl) +px)  withp e PL, (6)
j=1

where the notatiom! denotes action of dual functional € T

on variabley € R?, for 1 < j < n. Note thats in (3) coincides
with s in (6), if we letr; = §,, for1 <j < n.
We can rewrites in (6) by

forr = c¢;r; € T andp € P, (7)

Jj=1

s=Tx¢d+0p

where
(1 ¢)(x) = 7Y(o(llz — yl]))

denotes the convolution product betweeand(|| - ||). More-

over, to accommodate the side condition (4) for the coefiisie

of the reconstruction’s major part in (7), we requiree 7, in
(7), where

T;-={r € BL":7(p) = Oforallp € P}

is the linear space of all dual functionals frd31.* whose ker-
nel containsPy.

)

(r oIz = yl)i<ij<n € R™™

P = (77(z%)i<j<nijal<k € R™™,

with m = (*~ /™) denoting the dimension g#{.

Note that the well-posedness of the reconstruction prob-
lem implies that there are unique Lagrange basis functions
A, .., Ay, € R satisfying7;(A¢) = ;0 with §;, denot-
ing the usual Kronecker symbol, fdr < j,¢ < n. More-
over, note that for fixed: € R? the Lagrange basis functions
Az) = (Mi(z),..., \(z))T € R™ are satisfying

® P Az) | | o)
L0 ]
for Lagrange multiplierg:(z) = (u1(z), ..., pm(x))T € R™,
where

(T;iJ(b(Hﬂf —yl))i<j<n € R"

(xa)\a|<k c R™.

p(x)
m(xz) =

Finally, the reconstructionin (6) can be rewritten in its La-
grange representation as

n

sx) = _ T (f)N(@), 9)

j=1
or,

The well-posedness of the Hermite-Birkhoff reconstructio
problem (5) by using polyharmonic splines is covered as a 5(x) =< Al2) | f|T >
special case in [3, Theorem 6.2], which we here quote for thén short hand notation, where | > denotes the inner product
reader’s convenience. For more details, we refer to [3, 8]. of the Euclidean spade™.



3. SCALE-INVARIANCE OF THE POLYHARMONIC soR" c R. The converse inclusio® c R" can be proven
SPLINE RECONSTRUCTION SCHEME accordingly. Altogether, we fin® = o}, (R") for anyh > 0in

) . ) ) any space dimensiafy which completes our proof. |
In this section, we show the scale-invariance of the polyhar

monic spline reconstruction scheme. To this end, let usdega  Due to the well-posedness of the (scaled or unscaled) recon-

for fixed h > 0, thescaled reconstruction problem struction problem, ifR" or R, the (unique) Lagrange basis
functions are also scale-invariant. Hence, the followiegutt
7i(on(s™) = 7j(on(f)) foralll1 <j<n, (10)  can be viewed as a direct consequence of the previous theorem

whereg, is the dilatation operator, defined ag(f) = f(-/h).  Corollary 1. TheLagrangebasisfunctions A = (A,..., AT
By Theorem 1 there is a unique polyharmonic spline reconof R", satisfying

struction of the forms = o4, (s") € R satisfying (10), or, if we N

solve (10) fors”, we obtains" = o7 !(s). Let us collect all T(on(Ag)) =350 for1<j £ <mn,

possible solutions” to (10) in the scaled reconstruction space . . .
are scale-invariant. More precisely, for any h > 0 we have

h 71
{s 3] ER} A= on(Ah)
The following theorem, which can be viewed as a general-
ization of our previous result [4, Lemma 3.2], states tR&t  for the Lagrange basisfunctions A = (A1, ..., A,)" of R. W
is a scaled version dR, or, in other words, the polyharmonic
spline reconstruction scheme is scale-invariant. 4. CONDITIONING OF THE RECONSTRUCTION

Theorem 2. The reconstruction space R in (8) is scale-

. . . This and the following section are concerning the stahilftshe
invariant, i.e., R" = R for any h > 0. g g ftih

polyharmonic spline reconstruction scheme, where our aim i
Proof: If the space dimensiod is odd, then the identity 0 constructa numerically stable algorithm for the evabraof

R = o,,(R) immediately follows from the homogeneity of the @ny polyharmonic spline reconstructisre R. To this end, we

polyharmonic splin@ = ¢, and the linearity of the dual func- first analyze the conditioning of the given problem (donehis t

tionals inT. section), before we turn to the construction of a stableuatal
Now supposel is even. In this case we have in the following section. For a comprehensive discussiothen
relevant principles and concepts from error analysis, @ajhg
bap(hr) = b2 (¢g,(r) + r**log(h)) . the condition number of a givenproblem versus thestability of
anumerical algorithm, we recommend the textbook [2].
Therefore, any" € R" has, up to some € P/, the form To discuss the conditioning of polyharmonic spline recon-

struction, recall that the condition number of the recangton
problem is given by the operator norm of the reconstructjme o

n

_ 12k—d _
s"(ha) = h ZCJ i (Par(lz —yll) +log(P)a(=) |, iorT - BL — R, which returns on any argumelite BL a
- (unigue) polyharmonic spline reconstructiere R satisfying
where we let f|T = SIT'
. Therefore, for fixedI’, the condition number of polyhar-
_ Y _2k—d monic spline reconstruction from dafz#iT is the smallest num-
alx) = Zl (e =yl ). berx = x(T) satisfying
i=

To see thats" is contained inR, it remains to show that the ZflBL < - [f]BL forall f € BL.

degree of the polynomiaj is at mostk — 1. To this end, we The following result is useful for the subsequent discussio

rewriteq as on the stability of polyharmonic spline reconstruction.
Theorem 3. The condition number « of polyharmonic spline
_ Y a, B
a(z) = Y ¢ Do Capr®y reconstruction is bounded above by the Lebesgue constant

i=1 |a|+|8|=2k—d

n
= 751 - [AjlBL,
S ot e L
j=1

la|+]8|=2k—d

- ) e,k <A
for some coefficients, g with |a| + |3| = 2k — d. Now due

to the orthogonality relatioE;?:1 c;jT; € Tk, as required in Proof: Let for any f € BL and for fixedT' = {r,...,7,}
(7), this implies that the degree of the polynomjak at most  the data vectof|T be given, and let = Z(f) € R denote the
2k —d—k =k —d < kford > 1. Therefores” € R, and  polyharmonic spline reconstruction of the form (7) saiisfy



f|; = s|,. Using the Lagrange representationsdh (9), we
immediately obtain the estimate

|slBL < > I75(f)
j=1

:

> lml - Ale
j=1

Z(f)lBL

|- [AjlBL

) ‘leLv
|

M) < 75l - 1AsBL, for 1 < j < m,

IN

and therefores < A.
Note that byl = |7;(

we find A > n, and so the Lebesgue constant is bounded below

by the numbem of functionals in7T". The following result is

a direct consequence of the scale-invariance of the Lagran%

basis.

Corollary 2. The Lebesgue constant of polyharmonic splinere-
construction is scale-invariant.

Proof: For fixedT = {ry,...,7,} and anyh > 0, let

Toop={m00h,...,Tho 0L}

Then, the identity

ZIITJII jon () BL = ZII%II [AjlBL = A(T)

A(Tooy,)

holds, where we used the scale-invariance of the Lagrargje ba
functions,\ = o, (\"), from Corollary 1. |

5. PRECONDITIONING

A naive method for solving the scaled reconstruction pnoble
is given by the direct solution of the scaled linear system

[ B[R] (] w
where
o, = (') o(l(x —y)/hl))i<ij<n € RM”
Pp = (77((x/h)*))1<j<nijal<k € R™™.
It is convenient to abbreviate the system (11) as
Apbt = f (12)

Now let us turn to the construction of a numerically stable
algorithm for evaluating the polyharmonic spline recomstion
s" satisfying (10). To this end, we require that the given recon
struction problem (10) is well-conditioned. Note that acliog
to Corollary 2, the Lebesgue constantbeing an upper bound
of the reconstruction problem’s condition numbemerely de-
pends on the functionals ifi, but not on the scalk.

However, the spectral condition numbes(A;) of matrix
Ay, in (12) depends oh. The following rescaling can be viewed

as a simple way of preconditioning the matdy for very small
h, whereka(Ap) > ka(A1). Our method relies on the follow-
ing sequence of calculations, where we use the scale-ameei
of the Lagrange basis functions? = o4 ()\), from Corollary 1,

s'(ha) = < \'(ha) |fh >=<Aa)|f" >
< (Ma), p T’ fh7 T
<A7'(p ( 2)" [ (f*.0)
= < (p(),n(z))" !A (f",0 )T >,
which yields the more suitable representatlon
s"(ha) =< Bi(x) | AT' - fr > (13)

for the polyharmonic spline reconstruction, where we let
= (p(e),m(x))” and fi, = (f",0)”. Due to repre-
sentatlon (13) we can evaluaté at ha by solving the system
A; - b = f3,, whose solutiorb € R™ "¢ yields the coefficients
of s"(hx) w.r.t. the basis functions ifi; ().

Finally, note that by working with the representation (1®) f
s, we can avoid solving the linear system (11). This is useful
insofar as the linear system (11) is often ill-conditionedvery
smallh, but well-conditioned for sufficiently large. Hence, for
the sake of numerical stability, one should, for snigllavoid
solving (11) directly (cf. [7] for details). Further suppiog
arguments on this, along with illustrative numerical exésap
and comparisons, are presented during the conference.
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