
On the Construction of Kernel-Based Adaptive
Particle Methods in Numerical Flow Simulation

Armin Iske

Abstract This contribution discusses the construction of kernel-based adaptive
particle methods for numerical flow simulation, where the finite volume particle
method (FVPM) is used as a prototype. In the FVPM, scattered data approximation
algorithms are required in the recovery step of the WENO reconstruction. We first
show how kernel-based approximation schemes can be used in the recovery step of
particle methods, where we give preference to the radial polyharmonic spline ker-
nel. Then we discuss important aspects concerning the numerical stability and ap-
proximation behaviour of polyharmonic splines. Moreover, we propose customized
coarsening and refinement rules for the adaptive resampling of the particles. Sup-
porting numerical examples and comparisons with other radial kernels are provided.

1 Introduction

The numerical simulation of multiscale phenomena in time-dependent evolution
processes is of great importance in many relevant applications from science and
technology, which, moreover, incorporates many challenging issues concerning the
design of suitable computational methods. Efficient, robust and accurate computer
simulations require customized multiscale approximation algorithms, where adap-
tivity plays a key role.

Particle models have provided very flexible discretization schemes for the nu-
merical simulation of multiscale phenomena in various relevant applications from
computational science and engineering. In the modelling of time-dependent evolu-
tion processes, for instance, particle models are particularly well-suited to cope with
rapid variation of domain geometries and anisotropic large-scale deformations.

Numerical flow simulation by particle methods works with a finite set of scattered
particles, where some specific physical properties are attached to the individual par-
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ticles. In numerical simulations of time-dependent evolution processes, the particles
are subject to dynamic modifications during the simulation. This requires both cus-
tomized adaption rules for the adaptive modification of the active particle set, and a
suitable strategy for the resampling of the particle values.

Particle flow simulations essentially require powerful approximation algorithms
for local scattered data reconstruction. To this end, we prefer to work with kernel-
based scattered data approximation by polyharmonic splines. Supporting arguments
in favour of this particular meshfree reconstruction scheme are given in this paper,
where we address relevant numerical aspects concerning their computational effi-
ciency and flexibility, their optimality, their numerical stability, their approximation
behaviour as well as their utility for adaptive concepts of particle flow simulation.

The outline of this article is as follows. In the following Section 2, we briefly
review basic facts concerning hyperbolic conservation laws, being the governing
equations for the flow simulation model problems that we wish to address. This
then leads us to the Eulerian finite volume particle method (FVPM), which we ex-
plain in Section 3, followed by a short discussion on the required WENO recon-
struction in Section 4. Then, in Section 5, we explain how to apply kernel-based
reconstructions in particle flow simulations. This leads us to polyharmonic splines,
whose basic features are first explained in Section 6, before we turn to a more de-
tailed discussion concerning their numerical properties in Section 7, where we show
that polyharmonic splines provide numerically stable reconstructions at arbitrary lo-
cal approximation order, unlike other radial kernels. Thereby, we can give a strong
recommendation in favour of polyharmonic splines, especially for their application
to particle flow simulation. The construction of customized adaption rules for the
resampling of the particles is explained in Section 8. Finally, a relevant test case
scenario from oil reservoir simulation, the five-spot problem, shows the utility of
the proposed kernel-based adaptive particle method in Section 9.

2 Hyperbolic Conservation Laws

Numerical flow simulation requires suitable approximation algorithms for the solu-
tion of time-dependent hyperbolic conservation laws

∂u
∂ t

+∇ f (u) = 0, (1)

where for some domain Ω ⊂ Rd , d ≥ 1, and a compact time interval [0,T ], T > 0,
the solution u : [0,T ]×Ω → R of (1) is sought.

In this problem, f (u) = ( f1(u), . . . , fd(u))T denotes a given flux tensor, and it is
usually assumed that initial conditions

u(0,x) = u0(x) for x ∈Ω (2)

at time t = 0 are given.
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In the relevant nonlinear case, a nonlinear flux f usually leads to discontinuities
in the solution u, shocks, as observed in many relevant applications, such as fluid
flow and gas dynamics. Such discontinuities of the solution u in (1) can easily de-
velop spontaneously even from smooth initial data u0 in (2).

Therefore, nonlinear flow simulation requires more sophisticated and flexible
mathematical and computational methods to numerically solve the Cauchy prob-
lem (1), (2). For a comprehensive introduction to numerical methods for hyperbolic
problems we recommend the textbook [16].

3 Finite Volume Particle Method (FVPM)

In this section, we explain the main ingredients of the finite volume particle method
(FVPM) [10], which we use as a prototype for an Eulerian particle-based concept in
numerical flow simulation. In previous work [13], we have also introduced a semi-
Lagrangian particle method (SLPM). In either concept, for FVPM or SLPM, the
resulting particle method relies on local scattered data approximation, cf. [13] for
further details.

To explain basic features of the FVPM, let Ξ = {ξ1, . . . ,ξn} ⊂Ω denote a finite
point set of particles (i.e., particle positions). Moreover, for any particle ξ ∈ Ξ we
denote its influence area by VΞ (ξ )⊂Ω . To make a rather straight forward example,
the particles’ influence areas may, for instance, be given by the Voronoi tiles

VΞ (ξ ) =

{
x ∈Ω :‖x−ξ‖= min

ν∈Ξ
‖x−ν‖

}
⊂Ω for ξ ∈ Ξ

of the Voronoi diagram VΞ = {VΞ (ξ )}ξ∈Ξ for Ξ , in which case VΞ yields a decom-
position of Ω into convex and closed subdomains VΞ (ξ )⊂Ω with pairwise disjoint
interior, see Figure 1 for illustration.

��
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Fig. 1 Finite volume particle method (FVPM). A finite set Ξ of scattered particles ξ (displayed •)
and their influence areas, here given by their Voronoi tiles VΞ (ξ ), are shown.
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Note that the Voronoi diagram VΞ is entirely determined by the geometry of the
particle distribution in Ξ . We remark that there are efficient algorithms from compu-
tational geometry [19] for the construction and maintenance of the Voronoi diagram
VΞ and its dual Delaunay tesselation. The combination between Voronoi diagrams
and finite volumes yields through the basic concept of the FVPM a flexible particle
method for the numerical solution of (1),(2). We further remark that a more general
concept of the FVPM [10, 14], allows for overlapping influence areas {VΞ (ξ )}ξ∈Ξ

in which case, however, the FVPM needs to be combined with a partition of unity
method (PUM). This provides more flexibility, but it leads to a more complicated
FVPM discretization. For more details, we refer to [14].

Now, for any particle located at ξ ∈ Ξ at time t, its particle average is defined by

ūξ (t) =
1

|VΞ (ξ )|

∫
VΞ (ξ )

u(t,x)dx for ξ ∈ Ξ and t ∈ [0,T ].

According to the classical concept of finite volume methods [16], for each ξ ∈ Ξ

the average value ūξ (t) is, at time step t → t + τ , updated by an explicit numerical
method of the form

ūξ (t + τ) = ūξ (t)−
τ

|VΞ (ξ )|∑ν
Fξ ,ν , (3)

where Fξ ,ν denotes the numerical flux between particle ξ and a neighbouring parti-
cle ν ∈Ξ \ξ . The required exchange of information between neighbouring particles
is modelled via a generic numerical flux function, which may be implemented by
using any suitable FV flux evaluation scheme, e.g. by the generalized Godunov ap-
proach of high order ADER flux evaluation [22, 23]. For the sake of brevity, we
prefer to omit further details concerning flux evaluation.

The following algorithm reflects one basic time step of the FVPM.

Algorithm 1 Finite Volume Particle Method (FVPM).

INPUT: Time step τ > 0, particles Ξ , particle averages {ūξ (t)}ξ∈Ξ at time t.

FOR each ξ ∈ Ξ DO

(a) Determine set Nξ ⊂ Ξ \ξ of neighbouring particles around ξ ;
(b) Compute numerical flux Fξ ,ν for each ν ∈ Nξ ;
(c) Update particle average ūξ for ξ by (3).

OUTPUT: Particle averages {ūξ (t + τ)}ξ∈Ξ at time t + τ .

4 WENO Reconstruction

Modern approaches of FV discretizations are usually combined with essentially
non-oscillatory (ENO) [9], or weighted essentially non-oscillatory (WENO) [17]
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reconstruction schemes to obtain conservative, high order numerical methods for
hyperbolic conservation laws (1).

To explain how FVPM can be combined with ENO and WENO reconstruction,
let us view the influence area VΞ (ξ ) of any particle ξ ∈ Ξ as the control volume of
ξ , where the control volume VΞ (ξ ) is uniquely represented by ξ .

The basic idea of the ENO method is to first select, for each particle ξ ∈ Ξ , a
small set {Si}k

i=1 of k stencils, where any stencil Si ⊂ Ξ is given by a set of particles
lying in the neighbourhood of ξ . Then, for each stencil Si, 1≤ i≤ k, a reconstruction
si ≡ sSi is computed, which interpolates the given particle averages {ūν(t) :ν ∈ Si}
over the control volumes {VΞ (ν)}ν∈Si of the stencil Si.

Among the k different reconstructions si, 1 ≤ i ≤ k, for the k different stencils
Si, the smoothest (i.e., the least oscillatory) reconstruction is selected, which con-
stitutes the numerical solution over the control volume VΞ (ξ ). The selection of the
smoothest si among the k reconstructions is done by using a suitable oscillation
indicator I .

In a WENO reconstruction, all reconstructions si, 1≤ i≤ k, are used to construct,
for a corresponding control volume VΞ (ξ ), a weighted sum of the form

s(x) =
k

∑
i=1

ωisi(x) with
k

∑
i=1

ωi = 1,

where the weights ωi = ω̃i
/

∑
k
j=1 ω̃ j, with ω̃i = (ε +I (si))

−ρ for some ε,ρ > 0,
are determined by using the aforementioned oscillation indicator I .

We remark that commonly used ENO/WENO schemes work with polynomial
reconstruction, which, however, may lead to severe numerical instabilities and other
disadvantages, especially for anisotropic distributions of particles, see [1, 2]. In Sec-
tion 6, we propose a numerically stable reconstruction method of arbitrary high or-
der, which essentially avoids (plain) polynomial reconstruction. The utilized recon-
struction relies on a variational formulation, which also provides a natural choice
for an efficient oscillation indicator I , as proposed in (8).

5 Kernel-based Reconstruction in Particle Flow Simulations

In a generic formulation of particle methods [13], we are essentially concerned with
the reconstruction of a numerical solution u≡ u(t, ·), for fixed time t ∈ [0,T ], from
its discrete values

uΞ = (u(ξ1), . . . ,u(ξn))
T ∈ Rn,

taken at a scattered set Ξ = {ξ1, . . . ,ξn} ⊂ Rd of particles, cf. Figure 2 for illus-
tration. In the Eulerian FVPM of the previous section, for instance, the discrete
values in uΞ may be regarded as particle averages of u attached to the particles’
positions in Ξ . In a semi-Lagrangian particle method (SLPM), the values uΞ may
reflect the concentration of the solution u at upstream locations on the characteris-
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tic curves (streamlines) of the backward flow. For more details concerning relevant
Lagrangian and Eulerian particle methods, which we have in mind, we refer to our
previous work [13], where suitable prototypes for a finite volume particle method
(FVPM) and a semi-Lagrangian particle method (SLPM) are developed.

Fig. 2 A finite scattered set Ξ = {ξ1, . . . ,ξn} ⊂R2 of particles. Each particle ξ (displayed •) bears
a scalar function value u(ξ )≡ u(t,ξ ) of the numerical solution u at time t ∈ [0,T ].

Numerical particle flow simulations usually require flexible reconstruction meth-
ods from multivariate scattered data approximation to establish, at any time t, the
coupling between the discrete model for the numerical solution u and its continu-
ous output in the recovery step. To this end, (conditionally) positive definite kernel
functions are popular tools.

To explain the basic features of such kernel-based reconstructions, we restrict
ourselves to the special case of interpolation, where we seek to compute a suitable
interpolant s : Ω → R satisfying uΞ = sΞ , i.e.,

u(ξk) = s(ξk) for all k = 1, . . . ,n. (4)

According to the general formulation of kernel-based interpolation, we assume that
the reconstruction s has the form

s(x) =
n

∑
j=1

c jϕ(x−ξ j)+ p(x) for p ∈Pd
m, (5)

for some coefficients c1, . . . ,cn ∈R, where ϕ : Ω →R is a fixed (conditionally posi-
tive definite) kernel function and Pd

m is the linear space of all d-variate polynomials
of a specific order m ∈ N0. The required order m in (5) is determined by the choice
of ϕ . If m = 0, then the polynomial part in (5) is empty, in which case the recon-
struction s has the form

s(x) =
n

∑
j=1

c jϕ(x−ξ j). (6)
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Rather than dwelling much on explaining conditionally positive definite kernel
functions and the structure of their native reproducing kernel Hilbert spaces, we
refer to the text books [5, 7, 12, 24]. For the following of our discussion, it is suf-
ficient to say that scattered data interpolation by positive definite kernels (where
m = 0) leads to a unique reconstruction of the form (6). Moreover, for condition-
ally positive definite kernels of order m ∈ N, we obtain under vanishing moment
conditions

n

∑
j=1

c j p(ξ j) = 0 for all p ∈Pd
m (7)

a reconstruction s of the form (5), where s is unique, if any polynomial p ∈Pd
m can

uniquely be reconstructed from its values at the points Ξ , i.e., pΞ = 0 implies p≡ 0.
Let us make examples of commonly used radial kernel functions ϕ(x) = φ(‖x‖),

along with their orders m ≡ m(φ), where r = ‖x‖ ∈ [0,∞) is, for x ∈ Rd , the radial
variable w.r.t. the Euclidean norm ‖ · ‖ on Rd .

Example 1. The positive definite Gaussian function

φ(r) = e−r2
for r ∈ [0,∞)

is a radial kernel of order m = 0, so that the reconstruction s has the form (6).

Example 2. The multiquadric

φ(r) =
(
1+ r2)β

for β > 0 and β /∈ N

is a conditionally positive definite kernel of order m = dβe.
The inverse multiquadric

φ(r) =
(
1+ r2)β

for β < 0

is positive definite, and so m = 0. In this case, the reconstruction s has the form (6).

Example 3. The radial characteristic functions [3]

φ(r) = (1− r)β

+ =

{
(1− r)β for r < 1

0 for r ≥ 1

are for d ≥ 2 positive definite on Rd , provided that β ≥ (d + 1)/2. In this case,
m = 0, and so the reconstruction s has the form (6).

In the following section, we add polyharmonic splines to the list of our examples.
Polyharmonic splines are extraordinarily useful radial kernels, which deserve to be
treated in a separate section. Later in this work, we give a strong recommendation
in favour of polyharmonic splines, where our supporting arguments will be based
on their superior numerical stability at arbitrary high local approximation order.
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6 Reconstruction by Polyharmonic Splines

Polyharmonic splines, due to Duchon [6], are traditional tools for Lagrange inter-
polation from multivariate scattered data. According to the polyharmonic spline in-
terpolation scheme, the reconstruction s has the form (5), where the radial polyhar-
monic spline kernel ϕ(x) = φd,m(r), for r = ‖x‖, is given as

φd,m(r) =

{
r2m−d log(r) for d even

r2m−d for d odd

}
for 2m > d,

with m being the order of the kernel φd,m, i.e., m is the order of the polynomial in (5).
According to [6], scattered data interpolation by polyharmonic splines is optimal

in its native reproducing kernel Hilbert space, as given by the Beppo Levi space

BLm(Rd) =
{

u : Dα u ∈ L2(Rd) for all |α|= m
}
⊂ C (Rd),

being equipped with the semi-norm

|u|2BLm = ∑
|α|=m

(
m
α

)
‖Dα u‖2

L2(Rd)
.

In other words, the reconstruction s in (5) minimizes the Beppo Levi energy
functional | · |BLm among all recovery functions u in BLm(Rd), i.e.,

|s|BLm ≤ |u|BLm , for all u ∈ BLm(Rd) with uΞ = sΞ .

Therefore, the energy functional | · |BLm is a natural choice for the oscillation
indicator I required in the WENO reconstruction of Section 4 (cf. [2]). Hence, we
let

I (u) := |u|BLm (8)

for the oscillation indicator of the utilized WENO reconstruction. We remark that
the semi-norm |s|BLm of the polyharmonic spline reconstruction s is readily available
by the quadratic form

|s|2BLm =
n

∑
j,k=1

c jckφd,m(‖ξk−ξ j‖),

whose coefficient vector c = (c1, . . . ,cn)
T ∈ Rn is determined by the solution of the

resulting linear system (9). This allows efficient evaluations of the reconstruction’s
oscillation indicator I (s), giving the above choice in (8) yet another advantage.

Let us finally discuss the popular special case of thin plate spline reconstruction.
In this case, d = m = 2, so that the thin plate spline kernel is φ2,2(r) = r2 log(r).
Therefore, the reconstruction in (5) has the form
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s(x) =
n

∑
j=1

c j‖x−ξ j‖2 log(‖x−ξ j‖)+d0 +d1x1 +d2x2 for x = (x1,x2),

where
BL2(R2) =

{
u :Dα u ∈ L2(Rd) for all |α|= 2

}
⊂ C (R2)

is the Beppo-Levi space of second order over R2, whose semi-norm

|u|2BL2 =
∫
R2

(
u2

x1x1
+2u2

x1x2
+u2

x2x2

)
dx

reflects the bending energy for a thin plate of infinite extent. Since the result-
ing reconstruction minimizes the bending energy | · |BL2 among all interpolants in
BL2(R2), this motivates the naming thin plate spline.

7 Numerical Aspects of Polyharmonic Spline Reconstruction

In this section, we discuss the following numerical aspects of polyharmonic splines.

• conditioning of the reconstruction problem;
• numerical stability of the reconstruction algorithm;
• preconditioning and stable implementation of the reconstruction scheme;
• local approximation order.

7.1 Spectral Condition Number of Reconstruction Matrix

The coefficients c = (c j)1≤ j≤n ∈ Rn and d = (dα)
T
|α|<m ∈ Rq of the reconstruction

s(x) =
n

∑
j=1

c jφd,m(‖x−ξ j‖)+ ∑
|α|<m

dα xα

are given by the solution of the (n+q)× (n+q) linear system[
Φ P

PT 0

]
·

[
c

d

]
=

[
uΞ

0

]
, (9)

resulting from the interpolation conditions (4), under constraints (7), where

Φ =
(
φd,m(‖ξk−ξ j‖)

)
1≤ j,k≤n ∈ Rn×n and P = (ξ α

k )1≤k≤n;|α|<m ∈ Rn×q,

with q =
(m−1+d

d

)
being the dimension of the polynomial space Pd

m. We abbreviate
the linear system in (9) as
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A ·b = u0
Ξ . (10)

Since for local reconstruction problems, the number n of interpolation conditions
is usually small and since, moreover, the dimension q is small, the dimension of
the resulting system (10) is small. In this case, one may be tempted to solve the
linear system (10) by a direct solver. This, however, is a rather naive approach for
the implementation of the polyharmonic reconstruction scheme, which may lead to
severe stability problems. We can explain this as follows.

If the separation distance

qΞ = min
1≤ j<k≤n

‖ξ j−ξk‖

of the particles in Ξ is small, then the spectral condition number of the system ma-
trix A in (10) will be large. Indeed, if two particles in Ξ are close, then two columns
(rows) of the (symmetric) matrix A are almost identical, in which case the small-
est eigenvalue of A is close to zero. This important correlation is due to Narcowich
and Ward [18], where they prove that the spectral norm of the matrix Φ−1 in (9)
is bounded above by a monotonically decreasing function of the separation dis-
tance qΞ . This in turns implies that one should, for the sake of numerical stability,
avoid solving the system (10) directly for very small qΞ . For further details on this,
see [18] and the more general discussion in [20].

To illustrate the spectral behaviour of the reconstruction matrix A in (10), we con-
sider the following numerical experiment. For an initial choice of seven (randomly
chosen) interpolation points Ξ = {x0,x1, . . . ,x6} ⊂ R2 in the plane, as displayed in
Figure 3, we computed the spectral condition number κ2(A) of the reconstruction
matrix A, for five different radial kernel functions: Gaussians, multiquadrics, inverse
multiquadrics, thin plate splines, and a compactly supported radial kernel.

Further in this numerical experiment, we apply a uniform scaling to the points in
Ξ to obtain a sequence of scaled point sets hΞ = {hx0,hx1, . . . ,hx6}⊂R2, where we
let h = 2−i for i = 0,1,2,3,4. Due to the translation invariance of the reconstruction
scheme, we assume x0 = 0, without loss of generality, so that the points in hΞ are,
for decreasing h > 0, shifted towards the origin x0, cf. Figure 3. The sequence of
resulting condition numbers κ2(A) of the matrices A≡ AhΞ are, for the five different
radial kernel functions, displayed in the bi-logarithmic plot of Figure 3.

Note that for all five choices of radial kernels, the spectral condition number
κ2(A) of A is growing at decreasing scale h > 0, where κ2(A) is most rapidly grow-
ing for the three smooth kernels, i.e., for the Gaussians and the (inverse) multi-
quadrics. In fact, there is an intimate correlation between the growth of κ2(A) and
the smoothness of the kernel φ . This observation is due to Schaback [21], who has
developed a general theory for an uncertainty relation between the numerical sta-
bility and the approximation order of kernel-based reconstruction schemes.

Given our numerical observations in this rather unsuspicious test case, we can
conclude that particular care needs to be taken, when the solution of the reconstruc-
tion problem is computed through the linear system (10) — even in situations, where
the number of particles (and so the number of interpolation conditions) is small. In
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Fig. 3 Spectral condition number κ2(A) of reconstruction matrix A for five different radial kernels.

fact, as soon as two particles are close, this may spoil the numerical stability of the
reconstruction scheme, when a direct method for the numerical solution of the sys-
tem (10) is applied. In such critical situations, one should rather consider applying
preconditioning techniques. In the following of this paper, we will develop a suit-
able preconditioner for the polyharmonic spline reconstruction method. But before
doing so, let us first analyze the conditioning of the reconstruction problem.

7.2 Conditioning of Reconstruction Problem

Recall that the absolute condition number of the reconstruction problem is given by
the smallest number κ∞ ≡ κ∞,Ξ satisfying

‖IΞ u‖L∞(Ω) ≤ κ∞ · ‖u‖L∞(Ω) for all u ∈ C (Ω),

where IΞ is the interpolation operator, which maps, on given Ξ , any u ∈ C (Ω) onto
its unique polyharmonic spline reconstruction s satisfying uΞ = sΞ . Therefore, κ∞ is
the operator norm ‖IΞ‖∞ of IX w.r.t. the norm ‖ ·‖L∞(Ω) on C (Ω), i.e., κ∞ = ‖IΞ‖∞.

Now, the operator norm ‖IΞ‖∞, and so the absolute condition number κ∞, can be
computed as follows.

Theorem 1. For Ξ = {ξ1, . . . ,ξn} ⊂Ω , the norm ‖IΞ‖∞ of the interpolation opera-
tor IΞ is given by the Lebesgue constant
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Λ∞ := max
x∈Ω

n

∑
j=1
|λ j(x)|= max

x∈Ω

‖λ (x)‖1, (11)

where {λ j}n
j=1 are the Lagrange basis functions of the reconstruction, satisfying

λ j(ξk) = δ jk =

{
1 for j = k,
0 for j 6= k.

For the convenience of the reader, we provide the proof of this general result.

Proof. For any u ∈ C (Ω), let s = IΞ (u) denote the unique interpolant to u on Ξ

satisfying uΞ = sΞ . Using the (unique) Lagrange representation

s(x) =
n

∑
j=1

λ j(x)u(ξ j)

of the reconstruction s, we obtain the estimate

‖IΞ (u)‖L∞(Ω) = ‖s‖L∞(Ω) ≤max
x∈Ω

n

∑
j=1
|λ j(x)| · |u(x j)| ≤Λ∞ · ‖u‖L∞(Ω),

and therefore ‖IΞ‖∞ ≤Λ∞.
In order to see that ‖IΞ‖∞ ≥ Λ∞, suppose that the maximum of Λ∞ in (11) is

attained at x∗ ∈Ω . Moreover, let g ∈ C (Ω) be satisfying g(ξ j) = sign(λ j(x∗)), for
all 1≤ j ≤ n, and ‖g‖L∞(Ω) = 1. Then,

‖IΞ (g)‖L∞(Ω) ≥ (IΞ (g))(x∗) =
n

∑
j=1

λ j(x∗)g(ξ j) =
n

∑
j=1
|λ j(x∗)|= Λ∞

and so ‖IΞ (g)‖L∞(Ω) ≥Λ∞, which implies ‖IΞ‖∞ ≥Λ∞. Altogether, ‖IΞ‖∞ = Λ∞.

7.3 Scale-Invariance of the Lebesgue Constant

Now let us return to our numerical experiment of Subsection 7.1, where in this sec-
tion, we record the Lebesgue constants Λ∞ ≡ Λ∞(Ω ,Ξ) for the same sequence of
scaled point sets hΞ , and for the five different radial kernels as in Subsection 7.1.
The resulting behaviour of the Lebesgue constants Λ∞ is shown in Figure 4. Note
that the Lebesgue constant Λ∞ of the thin plate spline reconstruction scheme is
scale-invariant. In contrast, for any of the other four kernel functions, the Lebesgue
constant, and so the conditioning of the reconstruction problem, is (strictly) mono-
tonically increasing at decreasing scaling h > 0.

We can prove the scale invariance for the general case of polyharmonic splines,
where our arguments rely on the scale invariance of their Lagrange basis functions
in combination with the representation of the Lebesgue constant in (11).
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Fig. 4 Lebesgue constant Λ∞ ≡Λ(Ω ,hΞ) for five different radial kernels, where h = 2−i.

Theorem 2. The Lagrange basis functions {λ j}n
j=1 are scale-invariant.

Proof (sketch): Following our work [11], we see that the reconstruction space

R =

{
s =

n

∑
j=1

c jφ(‖ ·−ξ j‖) :
n

∑
j=1

c j p(ξ j) = 0 for all p ∈Pd
m

}

containing all possible polyharmonic spline reconstructions of the form (5) is in-
variant under uniform scalings, i.e., for any h > 0 we find Rh = R, where

Rh = {σh(s) :s ∈R}

denotes the scaled reconstruction space, and where σh is the dilation operator, being
given by σh(s)= s(·/h). Given uniqueness of the Lagrange functions in either space,
R or Rh, this implies

σh(λ j(x)) = λ j(x/h) = λ
h
j (x),

where {λ h
j }n

j=1 denotes the Lagrange basis in Rh. ut
The above theorem immediately implies that the Lebesgue constant Λ∞ in (11) is

scale-invariant. Since the polyharmonic spline reconstruction scheme is also invari-
ant under translations and rotations, this yields the following important result.

Corollary 1. The Lebesgue constant Λ∞ of polyharmonic spline reconstruction is
invariant under translations, rotations, and uniform scalings. ut
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7.4 Stable Evaluation of the Reconstruction

Now the scale invariance of the polyharmonic spline reconstructions’ absolute con-
dition number allows us to construct a simple preconditioner to obtain a stable evalu-
ation of the reconstruction s in (5). To this end, we regard for any h > 0 the scaled
reconstruction problem sh

hΞ
= uhΞ , i.e.,

sh(hξ j) = u(hξ j) for all j = 1, . . . ,n,

where sh denotes the unique polyharmonic spline interpolant to the given input data
uhΞ . The coefficients of the reconstruction sh can be computed by the scaled linear
system [

Φh Ph
PT

h 0

]
·
[

ch

dh

]
=

[
uhΞ

0

]
,

which we abbreviate as
Ah ·bh = u0

hΞ . (12)

Moreover, for any x ∈ Rd , the Lagrange basis functions

λ
h(hx) = (λ h

1 (hx), . . . ,λ h
n (hx))T ∈ Rn

are given by the solution of the linear system[
Φh Ph
PT

h 0

]
·
[

λ h(hx)
µh(hx)

]
=

[
φd,k(‖h(x−ξ j)‖) j

((hx)α)α

]
,

which we abbreviate as
Ah ·κh(hx) = βh(hx).

Indeed, if we let x = ξk, for any 1 ≤ k ≤ n, then the right hand side βh(hξk) of the
linear system coincides with the k-th column of the matrix Ah, and so λ h(hξk) is the
k-th unit vector in Rn, i.e., we have λ h

j (hξk) = δ jk.
Now, a stable evaluation of the reconstruction sh at hx relies on its Lagrange

representation

sh(hx) =
n

∑
j=1

λ
h
j (hx)u(hξ j), (13)

which we can further rewrite as

sh(hx) = 〈λ h(hx),uhΞ 〉= 〈λ 1(x),uhΞ 〉= 〈κ1(x),u0
hΞ 〉

= 〈A−1
1 ·β1(x),u0

hΞ 〉= 〈β1(x),A−1
1 ·u

0
hΞ 〉,

where 〈·, ·〉 denotes the usual Euclidean inner product.
In conclusion, by using the above representation for sh, the evaluation of the

polyharmonic spline reconstruction sh at hx can be accomplished by solving the
linear system
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A1b = u0
hΞ (14)

for b ∈Rn+q, where the spectral condition number κ2(A1) of matrix A1 is, for small
0 < h� 1, much smaller than the spectral condition number κ2(Ah) of Ah. In this
way, we can avoid the direct solution of the ill-conditioned system in (12), by solv-
ing the well-conditioned system in (14). This can be viewed as a simple way of
preconditioning the scaled system (12), giving a stable method for the evaluation
of sh, provided that the absolute condition number of the given reconstruction prob-
lem not too large.

7.5 Local Approximation Order

Now let us turn to the approximation properties of the polyharmonic spline recon-
struction method. Recall that we are only interested in local scattered data interpo-
lation, which motivates the following definition.

Definition 1. For h > 0, let sh be the polyharmonic spline reconstruction satisfying

u(hξ j) = sh(hξ j), for all 1≤ j ≤ n.

Then, p is said to be the local approximation order of the polyharmonic spline
reconstruction scheme, iff

|u(hx)− sh(hx)|= O(hp), for h→ 0, for all u ∈ C p.

Due to our earlier paper [8], the local approximation order of thin plate splines,
using the kernel φ2,2, is p = 2. We have generalized this result in [11] to polyhar-
monic splines to obtain arbitrary high local approximation orders.

Theorem 3. The local approximation order of polyharmonic spline reconstruction
w.r.t. C m, using φd,m, is m.

We can sketch the proof of this important result as follows.

Proof (sketch). Regard for h > 0 and x ∈ Rd the m-th order Taylor polynomial

T m
u,hx(y) = ∑

|α|<m

1
α!

Dα u(hx)(y−hx)α

of u ∈ C m around hx. This yields the identity

u(hx) = T m
u,hx(hξ j)− ∑

0<|α|<m

1
α!

Dα u(hx)(hξ j−hx)α for all j = 1, . . . ,n.

By using the Lagrange representation of the reconstruction sh in (13) in combination
with the polynomial reproduction property
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p(hx) =
n

∑
j=1

λ
h(hx)p(hξ j) for all p ∈Pd

m

this immediately implies the representation

u(hx)− sh(hx) =
n

∑
j=1

λ
h
j (hx)

[
T m

u,hx(hξ j)−u(hξ j)
]

for the pointwise error at hx. Now, due to the scale-invariance of the Lagrange basis,
the Lebesgue function

Λ(x) :=
n

∑
j=1

∣∣λ h
j (hx)

∣∣= n

∑
j=1

∣∣λ 1
j (x)

∣∣
is uniformly bounded in any local neighbourhood of the origin. Since we have

T m
u,hx(hξ j)−u(hξ j) = O(hm), for h→ 0, for all 1≤ j ≤ n,

this then implies
|u(hx)− sh(hx)|= O(hm) for h→ 0.

7.6 Advantages of Polyharmonic Spline Reconstruction

Let us draw an intermediate conclusion on polyharmonic spline reconstruction.

Well-posedness. We have shown that polyharmonic spline interpolation leads to
a well-posed reconstruction method, which works for arbitrary distributions of scat-
tered interpolation points Ξ ⊂ Rd , for arbitrary function values uΞ , and in arbitrary
space dimensions d ≥ 1.

Optimality. The polyharmonic spline reconstruction scheme is optimal in its cor-
responding Beppo-Levi space BLm(Rd), being the native reproducing kernel Hilbert
space of the polyharmonic spline kernel φd,m. We remark that the optimal recovery
space BLm(Rd) is the Sobolev space H m(Rd), which is a relevant function space
in nonlinear hyperbolic problems.

Meshfree reconstruction and high flexibility. The reconstruction scheme of
polyharmonic splines is meshfree and therefore very flexible, especially when it
comes to adaptively modifying the set of moving particles. This property is par-
ticularly important for problems with solutions of rapid variation or singularities,
or for problems with free or complicated boundaries as well as for various other
challenging problems, where the simulation of multiscale phenomena is an issue.

Efficient implementation. The implementation of the polyharmonic spline re-
construction scheme requires solving a square linear system (9), which is small, if
the number of particles in Ξ is small. On the down side, the linear system (9) is
ill-conditioned, if the separation distance qΞ of the particles in Ξ is small.
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Before we further discuss the properties of polyharmonic splines, let us make a
comparison with the other four types of kernel functions, from Examples 1-3, where
the following three remarks are in order.

Remark 1. The above mentioned advantages of the polyharmonic spline reconstruc-
tion scheme are also satisfied for the above mentioned alternative choices of radial
kernels, i.e., for the Gaussians, the (inverse) multiquadrics, and for the compactly
supported radial kernels, from Examples 1-3.

Remark 2. For the smooth kernels, i.e., for the Gaussians and for the (inverse) mul-
tiquadrics, their corresponding optimal recovery spaces are much smaller than the
Beppo-Levi space BLm(Rd) from the polyharmonic spline kernels φd,m. In fact, their
restrictive native spaces are mainly consisting of band-limited functions, which are
(compared with the Sobolev spaces BLm(Rd)) less relevant for hyperbolic problems.

Remark 3. The key property of the polyharmonic spline reconstruction scheme is
the scale-invariance of their Lagrange basis functions. This important property is
not satisfied for the other four types of kernel functions, i.e., the Lagrange basis
functions of the Gaussians, of the (inverse) multiquadrics and of the compactly sup-
ported radial kernels, from Examples 1-3, are not scale-invariant.

Note that the last remark implies that the preconditioner for polyharmonic
splines, as developed in Subsection 7.4, is not available for the other four types
of radial kernel functions. Moreover, our results of Subsection 7.5 concerning the
local approximation order do only apply to polyharmonic splines. This gives the
polyharmonic spline reconstruction scheme yet another a major advantage over the
other four radial kernels. We can summarize this as follows.

Numerical stability. The polyharmonic spline reconstruction scheme allows for
numerically stable evaluations of the interpolant, with using the preconditioner of
Subsection 7.4.

Arbitrary local approximation order. Polyharmonic spline reconstruction has
local approximation order m w.r.t. C m functions, with using the kernel φd,m.

We conclude our discussion by giving a strong recommendation in favour of
polyharmonic splines, especially when they are used in combination with adaptive
particle methods for numerical flow simulation, where highly flexible and suffi-
ciently robust reconstructions of arbitrary order are needed. This recommendation
is in particular supported by our numerical experiments in Section 9.

8 Adaption Rules

Let us finally discuss the construction and implementation of customized adaption
rules, as they are required for dynamic modifications of the moving particles.
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8.1 Error Indication

An effective strategy for the adaptive modification of the particle set requires well-
motivated refinement and coarsening rules as well as a customized error indicator.
We understand the error indicator η : Ξ → [0,∞) as a function of the particle set
Ξ which assigns a significance value η(ξ ) to each particle ξ ∈ Ξ . The significance
η(ξ ) is required to reflect the local approximation quality of the reconstruction
around ξ ∈ Ξ .

Our proposed adaption rules rely on the error indicator

η(ξ ) = |u(ξ )− sNξ
(ξ )| for ξ ∈ Ξ ,

where sNξ
is the polyharmonic spline reconstruction which matches the solution’s

values at a particle set Nξ ⊂ Ξ \ξ in a neighbourhood around ξ , but not at ξ , i.e.,

sNξ
(ν) = u(ν) for all ν ∈ Nξ ,

see Figure 5 for illustration.

ξ

Fig. 5 Error indication for particle ξ ∈Ξ . The polyharmonic spline reconstruction sNξ
interpolates

u at the points Nξ ⊂ Ξ \ ξ in a local neighbourhood around ξ ∈ Ξ , but not at ξ . The deviation
between the interpolated value sNξ

(ξ ) and u(ξ ) yields an error indication η(ξ ) at ξ .

Therefore, the error indicator measures the deviation between the known function
value u(ξ ) of the solution and the interpolated value around the particle ξ . When ξ

lies in a smooth region of the solution, the error indication η(ξ ) is expected to be
small, whereas in regions of less regularity for u, or around discontinuities, the error
indication η(ξ ) is expected to be large.

The significances η(ξ ), ξ ∈ Ξ , are used in order to flag single particles ξ ∈ Ξ as
“to be refined” or “to be coarsened” according to the following criteria.

Definition 2. Let η∗ = maxξ∈Ξ η(ξ ), and let θcrs,θref be two tolerance values sat-
isfying 0 < θcrs < θref < 1. We say that a particle ξ ∈ Ξ is to be refined, iff
η(ξ )> θref ·η∗, and ξ is to be coarsened, iff η(ξ )< θcrs ·η∗.
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In our numerical examples typical choices for the relative tolerance values are
θcrs = 0.1 and θref = 0.2. Note that a particle ξ cannot be refined and be coarsened
at the same time; in fact, it may neither be refined nor be coarsened.

8.2 Coarsening and Refinement

In order to balance the approximation quality of the model against the required
computational complexity we insert new particles into regions where the value of
the error indicator η is high (refinement), whereas we remove particles from Ξ in
regions where the value of η is small (coarsening).

To avoid additional computational overhead and complicated data structures, ef-
fective adaption rules are required to be as simple as possible. In particular, these
rules ought to be given by local operations on the current particle set Ξ . The follow-
ing coarsening rule is in fact very simple to implement and, in combination with our
refinement rule, it turns out to be very effective as well.

Definition 3. A particle ξ ∈ Ξ is coarsened by its removal from the current particle
set Ξ , i.e. Ξ is modified by letting Ξ = Ξ \ξ .

As concerns the refinement of a particle ξ ∈ Ξ , our starting point for the de-
sign of a customized refinement rule is motivated by available local error estimates
for polyharmonic spline interpolation, which are, for a local region U ⊂ Ω of the
computational domain Ω relying on the local fill distance on U ,

h≡ hΞ (U) = sup
y∈U

dΞ (y),

where dΞ (y) = minξ∈Ξ ‖y−ξ‖ is the distance between the y and the point set Ξ .
Therefore, hΞ (U) reflects the local density of points Ξ around U by giving the

largest Euclidean distance between a point in U and its nearest particle in Ξ . To
reduce the norm of the pointwise error functional of the polyharmonic spline recon-
struction scheme on U , the local fill distance hΞ (U) should be reduced.

This motivates us to construct the refinement rule as follows. Regarding the local
fill distance hΞ (U) in a local neighbourhood U ≡ U(ξ ) of a particle ξ , we wish
to insert only a few new particles into U , such that the resulting local fill distance
around ξ is reduced as much as possible.

We remark that the distance function dΞ : Ω → [0,∞) is a convex function which
attains local maxima in the local neighbourhood U of ξ at the Voronoi vertices of
the Voronoi tile VΞ (ξ ), see Figure 6 for illustration.

This gives rise to define the refinement of a particle as follows.

Definition 4. A particle ξ ∈ Ξ is refined by the insertion of the vertices of the
Voronoi tile VΞ (ξ ) into the particle set Ξ .
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ξ

V
Ξ
(ξ)

Fig. 6 Refinement of particle ξ ∈ Ξ . The Voronoi vertices (�) of Voronoi tile VΞ (ξ ) are inserted.

9 Oil Reservoir Simulation: The Five-Spot Problem

In this section, we recap selected numerical results from our previous work [13] for
the purpose of illustration, where all numerical simulations were performed by using
the FVPM in combination with WENO reconstruction by polyharmonic splines.

9.1 The Five-Spot Problem

The following variant of the five-spot problem in two dimensions, d = 2, may be
summarized as follows. The computational domain Ω = [−0.5,0.5]2 is correspond-
ing to a bounded reservoir, where we assume, for the sake of simplicity, unit perme-
ability of a homogeneous porous medium.

Initially, the pores of the reservoir are saturated with non-wetting fluid (oil), be-
fore wetting fluid (water) is injected through one injection well, being placed at the
center of Ω . During the simulation, the non-wetting fluid (oil) is displaced by the
wetting fluid (water) towards the four corners of the square domain Ω .

The five-spot problem requires solving the following set of three coupled equa-
tions: the Buckley-Leverett equation

∂u
∂ t

+v ·∇ f (u) = 0, (15)

with fractional flow function

f (u) =
u2

u2 +µ(1−u)2 , (16)

µ = µw/µo being the ratio of the two fluids’ viscosities, µw (water) and µo (oil),
together with the incompressibility relation

∇ ·v(t,x) = 0, (17)
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and Darcy’s law
v(t,x) =−M(u)∇p(t,x), (18)

describes the flow of two immiscible incompressible fluids, water and oil, through a
porous homogeneous medium, in the absence of capillary pressure and gravitational
effects.

The solution u of (15),(17),(18) is the saturation of the wetting fluid (water).
Hence, the value u(t,x) is, at a time t and at a point x, the fraction of available
volume (in the pores of the medium) filled with water, and so u = 1 means pure
water, and u = 0 means pure oil. Figure 7 shows the contour lines of the pressure
field p together with the streamlines of the velocity field v, resulting from Darcy’s
law (18).

We consider solving the above equation system (15),(17),(18) on Ω , in combi-
nation with the initial condition

u0(x) =
{

1 for ‖x‖ ≤ R,
0 otherwise, (19)

where we let R = 0.02 for the radius of the injection well.

9.2 Adaptive Particle Flow Simulation

We apply our adaptive particle method to the Cauchy problem (15),(19) for the
Buckley-Leverett equation. Recall that this is in order to model the propagation of
the shock front, which is of primary importance in the relevant application, where
the accurate approximation of the shock front requires particular care. This is in our
method mainly accomplished by the adaptive modification of the particles during the
simulation. For details concerning the construction of the required adaption rules,
we refer to [4].

Now let us turn straight to our numerical results, provided by our particle ad-
vection scheme. In our simulation, we decided to select a constant time step size
τ = 5 · 10−5, and the simulation comprises 2100 time steps, so that I = [0,2100τ].
Moreover, we let µ = 0.5 for the viscosity ratio of water and oil, appearing in the
fractional flow function (16).

The initial conditions u(0,x) are shown in Figure 8, where also the initial particle
distribution is shown. Moreover, Figure 9 shows the water saturation u during the
simulation at three different times, t = t420, t = t1260, and t = t2100. Figure 9 shows
also the corresponding particle distribution. The colour code for the water saturation
is shown at the right margin of Figure 9, respectively.

Note that the shock front, at the interface between the non-wetting fluid (oil,
u ≡ 0) and the wetting fluid (water, u ≡ 1), is moving from the center towards the
four corner points of the computational domain Ω . This way, the non-wetting fluid
(oil) is effectively displaced by the wetting fluid (water) into the four production
wells, as expected.
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Fig. 7 Five-spot problem. (a) Contours of the pressure field, (b) streamlines of the velocity field.
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(a) t = t0 (b) t = t0

Fig. 8 Five-spot problem. (a) Initial condition, (b) initial particle distribution.

Due to the adaptive distribution of the particles, the shock front propagation of
the solution u is captured very well. This helps to reduce the required computational
costs while maintaining the accuracy, due to a higher resolution around the shock
front. The effective distribution of the particles around the shock supports the utility
of the adaption rules, proposed in our previous paper [4], yet once more.
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Fig. 9 Five-spot problem. Solution obtained by our particle simulation. The colour plots indicate
the water saturation u during the simulation at three different times, (a1) t = t420, (b1) t = t1260,
(c1) t = t2100. The corresponding adaptive particle distributions are shown in (a2),(b2),(c2).
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