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Abstract

Recent advances in the analysis of high-dimensional signal data have triggered
an increasing interest in geometry-based methods for nonlinear dimensionality re-
duction (NDR). In many applications, high-dimensional datasets typically contain
redundant information, and NDR methods are important for an efficient analysis
of their properties. During the last few years, concepts from differential geometry
were used to create a new range of NDR methods. In the construction of such
geometry-based strategies, a natural question is to understand their interaction
with classical and modern signal processing tools (convolution transforms, Fourier
analysis, wavelet functions). In particular, an important task is the analysis of
the incurred geometrical deformation when applying signal transforms to the ele-
ments of a dataset. In this paper, we propose the concepts of modulation maps and
modulation manifolds for the construction of particular datasets relevant in signal
processing and NDR. We consider numerical methods for analyzing geometrical
properties of the modulation manifolds, with a particular focus on their scalar and
mean curvature. In our numerical examples, we apply the resulting geometry-based
analysis to simple test cases, where we present geometrical and topological effects
of relevance in manifold learning.

Keywords: Nonlinear dimensionality reduction, manifold learning, signal processing,
Fourier and wavelet analysis, numerical differential geometry.

1 Introduction

During the last decade, novel concepts for nonlinear dimensionality reduction (NDR) have
gained significant relevance due to the increasing complexity of new challenging problems
in data and signal analysis. In the design of these modern tools, special emphasis is
placed on geometrical aspects, where concepts from differential geometry and algebraic
topology play an important role [5,6,17,18,25,26]. The geometry-based approach of NDR
can be viewed as a complementary strategy to statistical oriented methods from machine
learning and data mining [14].
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To briefly describe the basic problem of NDR and manifold learning, suppose we are
given a dataset X = {xi}

m
i=1 ⊂ R

n lying in a high-dimensional Euclidean space, where X
is assumed to be sampled from a submanifold M of R

n, i.e., X ⊂ M ⊂ R
n. Moreover,

we assume that the dimension of M is much smaller than the dimension of the ambient
space, i.e., dim(M) ≪ n. The primary objective of manifold learning is to construct a
low-dimensional representation of X which can be used to efficiently visualize and analyze
its geometrical properties.

For many examples of datasets X = {xi}
m
i=1 ⊂ R

n, each element xi ∈ X can be
considered as a signal that may be analyzed through a transformation map T , defined via
convolution transforms, Fourier analysis, or wavelet functions. Therefore, from a manifold
learning perspective, a relevant question is the analysis of the geometrical changes that
X goes through when deformed with T resulting in the set T (X) = {T (xi)}

m
i=1 and, in

particular, to study the composition P ◦ T of a NDR map P with a signal transform T .
To analyze these problems, we construct a particular class of datasets X sampled from

manifolds M generated by modulation maps. The idea of modulation maps is inspired
by concepts in frequency modulation techniques from signal transmission in engineering
domains. Here, our main interest is to consider these signal processing concepts from a
geometrical perspective. To gain further insight into their geometrical properties, we use
numerical approximations to construct basic geometric data such as metric and curvature
tensors. With these modulation manifolds we can design examples of low-dimensional
datasets embedded in high dimensional spaces, which are relevant both in signal process-
ing and dimensionality reduction. A main characteristic of these constructions is that they
provide examples (in the same spirit as the Swiss role dataset) of test cases where classi-
cal linear projections, such as principal component analysis (PCA) are outperformed by
more recent nonlinear methods, such as isomap , Riemannian normal coordinates (RNC),
etc [14,18,25].

The contributions of this paper can be summarized as follows. We introduce modula-
tion maps and modulation manifolds as a relevant concept in dimensionality reduction.
We provide conditions that justify the terminology used for these objects (as diffeomor-
phism and manifolds). We consider numerical procedures for computing geometrical
quantities, such as metric tensors, Gaussian and mean curvatures. In our numerical ex-
amples, we finally illustrate relevant phenomena of modulated manifolds in the context
of dimensionality reduction.

The outline of this paper is as follows. In Section 2, basic features of manifold learn-
ing and dimensionality reduction are recalled, where we briefly discuss the interaction of
dimensionality reduction maps and signal transforms. In Section 3, the concept of modu-
lation manifolds is explained, where one concrete example is provided. This is followed by
a discussion on measuring geometric deformations of modulation manifolds using metric
and curvature tensors, and the usage of the Laplace-Beltrami operator for computing the
mean curvature. In Section 4, numerical examples are provided, where the geometric
distortion of selected manifolds (sphere and torus surfaces) is illustrated by combining
modulation maps and dimensionality reduction methods. In the numerical examples, we
also compare standard PCA techniques with modern (nonlinear) dimensionality reduc-
tion strategies. We finally present in Section 4 various geometrical and topological effects
that are relevant from both a dimensionality reduction and signal processing viewpoint.

2



2 Manifold Learning in Dimensionality Reduction

Let M ⊂ R
n denote a smooth compact Riemannian submanifold of a high-dimensional

space R
n, where the dimension of M is much smaller than that of the ambient space,

i.e., M ⊂ R
n with p = dim(M) ≪ n. The primary goal of manifold learning is to

construct a low-dimensional representation Ω of M, with assuming the existence of a
diffeomorphism A : Ω ⊂ R

d → M ⊂ R
n, d ≪ n. One relevant task that we wish to

address is the analysis of a discrete sample of M, given by a finite scattered dataset
X = {xi}

m
i=1 ⊂ M. In this problem, one aims at the construction of a low-dimensional

representation Y = {yi}
m
i=1 ⊂ Ω ⊂ R

d sharing similar geometrical properties with X.
This in turn requires a suitable smooth map R : M → Ω, whose only input is the
dataset X ⊂ M. Due to the (weak) Whitney embedding theorem (which states that
any connected smooth p-dimensional manifold can be smoothly embedded in R

2p+1), one
basic condition in this problem is 2p+ 1 ≤ d ≤ n, see [4]. Throughout this paper, we use
the term manifold to denote a compact smooth connected manifold without boundary
being embedded in some Euclidean space.

2.1 Manifold Reconstruction from Discrete Data

Now, a crucial requirement in manifold learning is to ensure conditions under which the
finite sampling X = {xi}

m
i=1 is dense enough for recovering geometrical and topological

properties of M. In the case of topological conditions, new properties have been investi-
gated over the last years [20]. A main concept is the condition number 1/τ of the manifold
which encodes local and global curvature properties of M. The condition number can be
related to the medial axis of M, which is defined as the closure of the set

G = {x ∈ R
n : ∃ p, q ∈ M, p 6= q, with d(x,M) = ‖x− p‖ = ‖x− q‖}.

By using the medial axis of the manifold, we have

τ = inf
p∈M

d(p,G).

We also recall that a deformation retract is a continuous map r : U → X between
topological spaces U and X with X ⊂ U , such that the restriction r|X is the identity [10].
Using these concepts, the following result [20] relates the sampling of the manifold with
its homological reconstruction.

Proposition 2.1 (Niyogi, Smale, Weinberger, 2008). Let M be a compact Riemannian
submanifold of R

n and X = {xi}
m
i=1 ⊂ R

n a finite ǫ/2-dense collection in M, i.e., for
each p ∈ M, there is an x ∈ X satisfying ‖p − x‖Rn < ǫ/2. Then for any ǫ <

√

3/5τ ,
we have that U =

⋃

x∈X Bǫ(x) deformation retracts to M, and therefore the homology of
U equals the homology of M.

This proposition describes requirements for the discretization of a manifold when
reconstructing the homology as a basic topological invariant. But in order to recover
geometrical information, we need to consider differential geometric data. Sampling and
discretization aspects in differential geometry are an emergent and very active research
topics. Basic concepts in this field are the angle defect [2,7] and the usage of the Laplacian
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operator when computing the mean and Gaussian curvatures [1, 3, 11, 19]. A series of
additional important developments for manifold sampling have also been developed over
the last years [22,23]. Other important topics are generalizations of the curvature concept
in Alexandrov spaces or cell-complexes, as discussed in [9, 21].

2.2 Application Examples

Relevant motivations of our framework are time-frequency representations, where a seg-
mentation of a signal is analyzed with Fourier or wavelet functions. For instance, a
typical context is the short term Fourier transform (STFT) for band-limited functions
f ∈ L2([0, 1]), using a window function g,

Ggf(b, ω) = 〈f, gb,ω〉 =

∫ 1

0

f(t)gb,ω(t) dt where gb,ω(t) = g(t− b)e2πiωt.

We use the core ideas of this framework in order to construct a dataset Xf by considering
a segmentation of the domain of f in such a way that small consecutive signal patches
are analyzed. More precisely, the set of signal patches can be defined as a dataset of the
form

Xf = {xi}
m
i=1 for xi = (f(tk(i−1)+j))

n−1
j=0 ∈ R

n

for k ∈ N being a fixed hop-size. Here, the regular sampling grid {tℓ}
km−k+n−1
ℓ=0 ⊂ [0, 1] is

constructed with considering the Nyquist-Shannon theorem for f . Notice that Xf may
be embedded in a very high-dimensional ambient space R

n, although the dimension of
Xf itself may be small. For instance, in audio analysis, for 44kHz signals, n = 1024
is commonly used, and therefore customized dimensionality reduction methods could be
of main interest. With this particular scheme, the STFT of f can be interpreted as a
transformation of the set Xf by taking the (windowed) Fourier transform of each xi.

In this paper we regard Xf as a geometrical object in the context of manifold learning,
a strategy that might provide new information when studying the function f . We remark
that the approach taken here essentially differs from traditional nonlinear time-series
analysis, in the sense that we don’t consider any time-delays and embedding dimensions
as used in phase space representations [12].

A second family of examples (similar to the spirit of time-frequency analysis) arises in
image processing. One strategy would be to consider a dataset Xf = {xi}

m
i=1 constructed

from a grayscale image f : [0, 1]2 → [0, 1], along with a finite covering of small squares
(each containing n pixels) {Oi ⊂ [0, 1]2}mi=1, centered at pixels positions {ki}

m
i=1 ⊂ [0, 1]2.

As in the previous situation, when considering band-limited images, the domain [0, 1]2

can be sampled uniformly and the dataset can then be defined as

Xf = {f(Oi) ∈ R
n}mi=1,

where n is the size of the squares Oi, and m denotes the number of pixels ki. As before,
our aim is to analyze the geometry of the image data Xf to gain useful information about
the properties of the image f .

As already explained in the outset of the introduction, it is desirable to work with
analysis methods that combine signal processing transforms with dimensionality reduc-
tion methods. In this case, the basic objects are the manifold M, the data samples
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X = {xi}
m
i=1 taken from M, and a diffeomorphism A : Ω → M, where Ω is the low-

dimensional copy of M to be reconstructed via dimensionality reduction. In this case, the
only algorithmic input is the dataset X, but with the assumption that we can reconstruct
topological information from M with X in the spirit of Proposition 2.1. Another basic
object in our scheme is a signal processing map T : M → MT , which may be based on
Fourier analysis, wavelet transforms, or convolution filters, together with the resulting set
MT = {T (p), p ∈ M} of transformed data. The following diagram describes the basic
situation.

Ω ⊂ R
d A // M ⊂ R

n

T
��

Ω′ ⊂ R
d MT ⊂ R

n

P
oo

The final component constructs an approximation to Ω, denoted as Ω′ = P (MT ), by
using a dimensionality reduction map P . The characteristics of Ω and Ω′ may differ de-
pending on the dimensionality reduction technique, but the main objective is to construct
Ω′, so that basic geometrical and topological properties of Ω are recovered. In this paper,
we will use modulation maps for the embedding A to study geometrical and topological
effects being incurred by particular dimensionality reduction projections P : M → Ω′.

3 Modulation Maps and Curvature Distortion

This section is devoted to a particular construction of manifolds M and diffeomorphisms
A based on modulation maps. Modulation techniques are well-known engineering and
telecommunication procedures used to transmit information by varying the frequency of
a carrier signal φ. A main property of these techniques is the simultaneous transmission
of different information by using different frequency bands that can be conveniently sep-
arated with special convolution filters. Motivated by these ideas, we want to analyze,
from a geometrical point of view, a frequency modulation map A : Ω → M, where M
represents the carrier signals modulated by Ω, which is the information content to be
transmitted. Rather than analyzing a specific engineering modulation method, our goal
is to use and generalize these concepts in order to construct manifolds and datasets with
relevant properties in dimensionality reduction and signal analysis. In our particular
situation, the domain Ω is a manifold and so its structural content, transmitted via A,
needs to be extracted from M.

3.1 Modulation Maps and Modulated Manifolds

We now define the concept of modulation maps and modulation manifolds. Moreover, we
provide basic examples together with some properties where these ideas can formally be
described. We start with an intuitive explanation and a short motivation using an image
processing example. Our current focus on smooth manifolds is an important conceptual
step before one may address more general situations (e.g. simplicial complexes, CW-
complexes, Alexandrov spaces, etc) that are crucial for many engineering applications.

In the following, we assume M to be a submanifold of a high dimensional Euclidean
space H, M ⊂ H, and Ω to be a parameter space considered as a submanifold of a low
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dimensional Euclidean space. The intuition behind the concept of a modulated manifold
M is to generate the elements of M by a family of signal transforms {s(α) : H → H}α∈Ω

and a vector φ ∈ H such that for each y ∈ M, we have y = s(α)φ for some α ∈ Ω. This
concept extends the classical notion of modulation by considering maps s(α) : H → H
in order to transform (or modulate) a function φ for generating the elements of M. A
straightforward generalization is to consider a family of vectors {φk}

d
k=1 ⊂ H together

with a corresponding family of signal transforms {sk(α) : H → H}dk=1, α∈Ω, such that for
any y ∈ M there is one unique α ∈ Ω satisfying

y =
d
∑

k=1

sk(α)φk.

To further explain our motivation, let us return to the analysis of a grayscale image
f : [0, 1]2 → [0, 1] using a covering of small squares, or patches, {Oi ⊂ [0, 1]2}mi=1, each
containing n pixels. In this toy example we assume that the corresponding point cloud
data Xf = {f(Oi) ∈ R

n}mi=1 lies in some manifold M ⊂ R
n. If an image f is composed of

an homogeneous texture, the dataset Xf is a cluster whose elements have similar geomet-
rical characteristics. In a simplified scenario, the idea would be to use a representative
patch φ ∈ R

n in order to generate all elements of Xf . The main task is to find a family
of transformations (the modulation maps) s(α) : R

n → R
n, parametrized by a low di-

mensional space Ω, such that for any patch y ∈ Xf , there is some α ∈ Ω with y = s(α)φ.
We remark that several methods in image processing have recently been proposed with
a loosely related philosophy (see e.g. the patch-based texture analysis as part of classical
texture synthesis methods [13]).

Definition 3.1 (Modulation maps and modulation manifolds). Let {φk}
d
k=1 ⊂ H be a

set of vectors in an Euclidean space H, and {sk : Ω → CH(H)}dk=1 a family of smooth
maps from a manifold Ω to CH(H) (the continuous functions from H into H). We say
that a manifold M ⊂ H is a {φk}

d
k=1-modulated manifold if

M =

{

d
∑

k=1

sk(α)φk, α ∈ Ω

}

.

In this case, the map A : Ω → M, α 7→
∑d

k=1 sk(α)φk, is called modulation map.

This concept can also be described using the language of vector bundles. Recall that
a vector bundle (E,Ω, π, F ) is defined for a manifold E as a surjective map π : E → Ω,
with a vector space F as a fiber, and a manifold base Ω such that π−1(α) is isomorphic to
F for each α ∈ Ω. Locally, E is homeomorphic to Ω×F , where E may have a non-trivial
global structure. Two typical examples for a vector bundle are the tangent bundle of
a manifold and the Möbius band E, whose base Ω is a circle and whose fiber F is a
line. Sections of a vector bundle π : E → Ω are smooth maps s : Ω → E such that
π(s(α)) = α, and their prototypical examples are vector fields on Ω. In our Definition 3.1
we currently use a trivial vector bundle π : E → Ω for E = Ω × CH(H), a fiber CH(H),
and smooth sections {sk : Ω → E}dk=1.

6



Example 3.1 (Frequency and scale modulation). A basic example of a modulation map
for a manifold Ω ⊂ R

d is a map A : Ω ⊂ R
d → R

n of the form

Aα(ti) =
d
∑

k=1

φk(αkti), α = (α1, . . . , αd) ∈ Ω, {ti}
n
i=1 ⊂ [0, 1],

for a finite set of smooth band-limited functions {φk ∈ C∞([0, 1]) ∩ Bfs
, }dk=1, with

Bfs
= {f ∈ L2([0, 1]), supp(f̂) ⊆ [−fs, fs]}, and a given fixed sampling rate fs. We use a

uniformly spaced finite sampling set {ti}
n
i=1 ⊂ [0, 1] (as justified by the Nyquist-Shannon

sampling theorem), by considering band-limited functions {φk}
d
k=1. Note that we use

the same notation for the band-limited functions φk and the vector of sampling values
{φk(ti)}

n
i=1, as justified by the Whittaker-Shannon interpolation formula. More precisely,

as the support of our functions φk is located in [0, 1], and due to their band-limited
property, the interpolation formula allows us to reconstruct each φk with the finite sam-
pling set (φk(ti))

n
i=1 ∈ R

n, which unambiguously identifies the function φk : [0, 1] → R

with a vector φk ∈ R
n. Note that the maps sk(α) of Definition 3.1 are in this ex-

ample given by sk(α)φk(ti) = φk(αkti). In other words, we use the (continuous) map
sk(α) : C∞([0, 1]) → C∞([0, 1]), f(t) 7→ f(αkt), as the scaling by factor αk, the k-th
coordinate of vector α ∈ Ω ⊂ R

d. We now consider additional properties to ensure a
meaningful definition of frequency modulation, as required in Proposition 3.1.

The first property is the band separation for Ω, defined as Bk ∩Bj = ∅, for all k 6= j,
with Bk = {αk ∈ R, α = (α1, . . . , αk−1, αk, αk+1, . . . , αd) ∈ Ω}. The intuition behind
this assumption is that the coordinates of the manifold Ω are ranged in different and non
overlapping regions. This is actually a standard condition in telecommunication engi-
neering, where different non-overlapping frequency bands are used for the transmission
of different signals. This property will help ensure the injectivity of A, as required in
Proposition 3.1.

The second property is a sufficiently dense sampling set for {φk : [0, 1] → R}dk=1

and Ω ⊂ R
d, defined as a set {ti}

n
i=1 ⊂ [0, 1] that is dense enough for reconstructing

each function in {φk}
d
k=1 using the Whittaker-Shannon interpolation formula. Note that

these conditions restrict the range of values for Ω, but more general situations could be
considered when using different domains for the functions φk.

Now the following proposition justifies the motivation of Definition 3.1 and the ter-
minology used in the above example.

Proposition 3.1 (Manifold structure of M and diffeomorphism property of A). Suppose
that Ω is a submanifold of R

d with separated bands. Moreover, let {ti}
n
i=1 ⊂ [0, 1] be

a sufficiently dense sampling set for Ω and a family of smooth band-limited functions
{φk : [0, 1] → R}dk=1. If for any element α = (α1, . . . , αd) ∈ Ω the d × d matrix JA(α)
with entries

JA(α)ks =
n
∑

i=1

t2iφ
′
k(αkti)φ

′
s(αsti), 1 ≤ k, s ≤ d, (1)

is invertible, then M =
{(
∑d

k=1 φk(αkti)
)n

i=1
, α = (α1, . . . , αd) ∈ Ω

}

is a submanifold of

R
n, and the map A : Ω → M, Aα(ti) =

∑d

k=1 φk(αkti), is a diffeomorphism.
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Proof. This follows as a straightforward application of the the rank theorem for manifolds.
The first step is to verify that the map A : Ω → R

n, Aα(ti) =
∑d

k=1 φk(αkti) is an injective
immersion. Since Ω is compact we can then conclude that A is also a smooth embedding
(see [16, Proposition 7.4]). With this property, A : Ω → R

n is an homeomorphism onto
its image M = A(Ω).

The injectivity of A can be ensured with the band separation property of Ω. In order
to verify that A is an immersion, we compute the rank of A at α ∈ Ω, defined as the rank
of the linear map A∗ : TαΩ → TA(α)R

n. For this task, we consider a smooth chart (U, χ),

with α ∈ U ⊂ Ω and χ : U ⊂ Ω → Ũ ⊂ R
p a smooth map, where p = dim(Ω). Now, the

derivative A∗ (or pushforward) of A at α ∈ Ω can be described in local coordinates as
the Jacobian matrix of Â = ψ ◦ A ◦ χ−1 : χ(U) = Ũ ⊂ R

p → ψ(Rn) = R
n, at χ(α) for

ψ = IdRn : R
n → R

n, the identity using (Rn, IdRn) as a single chart of the smooth manifold
R
n. The Jacobian matrix of Â is the n× p matrix JÂ = Jψ JA Jχ−1 , i.e., a product of the

n× n matrix Jψ, the n× d matrix JA, and the d× p matrix Jχ−1 . As Jψ is the identity

matrix, we have rank(JÂ) = rank(JA Jχ−1), and since χ−1 : Ũ ⊂ R
p → U ⊂ Ω ⊂ R

d is a
diffeomorphism, we have rank(Jχ−1) = p. Now, if we assume that rank(JA) = d, with the
Sylvester rank inequality we have rank(JA)+rank(Jχ−1)−d ≤ rank(JA Jχ−1). Therefore,
due to our assumption rank(JA) = d, we obtain rank(JÂ) = p, so that A : Ω → R

n is
an immersion, since rank(A) = rank(A∗) = dim(Ω). Our assumption rank(JA) = d is
equivalent to det(JTA(α) JA(α)) 6= 0, for each α ∈ Ω and d × d matrices JTA(α) JA(α).
Therefore, for JA(α) = JTA(α) JA(α), we obtain the representation (1).

Using the previous argument we can guarantee that M = A(Ω) is a submanifold of
R
n, if JA(α) is invertible for each α ∈ Ω. Therefore, the map A : Ω → M is a surjective

smooth constant-rank map. Finally, we now use an important consequence of the rank
theorem for manifolds (see [16, Theorem 7.15]) to conclude that A is a diffeomorphism
between the manifolds Ω and M, and therefore dim(M) = dim(Ω) = p.

Example 3.2 (An explicit case of a frequency modulation map). We now continue the
analysis for Example 3.1, using Proposition 3.1, to construct a frequency modulation
map. A prototypical case is given by trigonometric functions, φ(t) = sin(t), where the
corresponding modulation map A : Ω → R

n, with Ω a submanifold of R
d, is called

frequency modulation map. A concrete construction is given by Aγ : Ω → R
n with

Aγ
α(ti) =

d
∑

k=1

sin((α0
k + γαk)ti), {ti}

n
i=1 ⊂ [0, 1], (2)

for a fixed bandwidth parameter γ > 0, center frequencies α0 = (α0
1, . . . , α

0
d) ∈ R

d, and
separated bands Bk, i.e., Bk ∩Bj = ∅ for all k 6= j, where

Bk = {α0
k + γαk ∈ R, α = (α1, . . . , αk−1, αk, αk+1, . . . , αd) ∈ Ω}.

This construction can be viewed as the application of an affine transform to the manifold
Ω ⊂ R

d, with shift α0 and bandwidth γ, so that the coordinates of the vectors in the
resulting set α0 + γΩ = {α0 + γα, α ∈ Ω} will not share common values. In this case, the
frequency content introduced by each coordinate α ∈ Ω will not overlap.

Now we need to verify that Aγ in (2) is a modulation map for specific parameters γ
and α0. To this end, the following lemma provides only a special case.
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Lemma 3.1 (Diffeomorphism property of frequency modulated maps). Suppose that
Ω is a submanifold of R

d with Ω ⊂ [−1, 1]d, and let α0 ∈ R
d be a vector, such that

Ωα0 = α0 + Ω = {α0 + γα, α ∈ Ω} has separated bands. If the d × d matrix J(α0) is
invertible for {ti = i/n}ni=1 ⊂ [0, 1], and

J(α0)ks =
n
∑

i=1

t2i cos(α0
kti) cos(α0

sti), 1 ≤ k, s ≤ d,

then there exist a bandwidth parameter γ > 0, such that the matrix J(β)ks is regular for
all β ∈ Ωγ

α0 = α0 + γΩ.

Proof. This follows from a straightforward application of the Gershgorin circle theorem,
where we compare the locations of the eigenvalues of J(β) with those of the eigenvalues
of J(α0). Using the mean value theorem for cos(βkti), with βk = α0

k + γαk, we have
cos((α0

k + γαk)ti) = cos(α0
kti) + γαkti cos(η) for α0

kti < η < α0
kti + γαkti. This implies

J(β)ks =
n
∑

i=1

t2i cos((α0
k + γαk)ti) cos((α0

s + γαs)ti)

=
n
∑

i=1

t2i cos(α0
kti) cos(α0

sti) + γτks

n
∑

i=1

t2i

= J(α0)ks + γτks
(n+ 1)(2n+ 1)

6n
,

with ti = i/n and τks ∈ R satisfying |τks| ≤ 1. Using the triangle inequality, we obtain

J(β)kk −
∑

k 6=s

|J(β)ks| ≥ J(α0)kk −
∑

k 6=s

|J(α0)ks| −
d−1
∑

i=1

γ
(n+ 1)(2n+ 1)

6n
.

Therefore, due to the Gershgorin circle theorem, the regularity of the matrices J(β),

for β ∈ Ωγ

α0 , can be guaranteed, if J(α0)kk −
∑

k 6=s |J(α0)ks| >
∑d−1

i=1 γ
(n+1)(2n+1)

6n
. In

particular, this property can be fulfilled for any γ ≥ 0 satisfying

γ < γmax =
6n min

1≤i≤d

(

J(α0)ii −
∑

j 6=i |J(α0)ij|
)

(d− 1)(n+ 1)(2n+ 1)
. (3)

Assuming the hypothesis of the above lemma in combination with Proposition 3.1,
we can conclude that M =

{(
∑d

k=1 sin((α0 + γα)ti)
)n

i=1
∈ R

n, α ∈ Ω
}

is a submanifold

of R
n, and the map Aγ : Ω → M, Aγ

α(ti) =
∑d

k=1 sin((α0
k + γαk)ti), is the corresponding

diffeomorphism. We remark that it is also straightforward to justify this lemma by
using the continuity of the determinant of J(α0). But the bound on γ in (3) allows us
to provide a concrete range for the bandwidth parameter γ, where we can ensure the
desired diffeomorphism and manifold properties for A and M. As a concrete example,
consider a sampling rate n = 256Hz, and center frequencies α0 = (40Hz, 60Hz, 80Hz).
In this case, the matrix J(α0) is regular for any bandwidth parameter γ < γmax with
γmax ≈ 0.2454Hz. We remark that our numerical simulations suggest that the range for
γ, allowing diffeomorphism and manifold properties for A and M, is much larger than
in the estimate (3). A more detailed analysis on these properties, however, is beyond the
aim of the present paper.
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3.2 Geometric Deformation with Curvature Measurements

Now we analyze the geometrical deformation between Ω, M and Ω′, as incurred by the
modulation map A : Ω → M and the dimensionality reduction transform P : M → Ω′.
In order to analyze the geometrical deformation we consider basic curvature concepts,
including Gaussian and mean curvature. On the one hand, we first present a very general
procedure for computing the scalar curvature using the Riemannian metric as main input.
On the other hand, we describe a discrete scheme for computing the mean curvature by
using the Laplace-Beltrami operator.

We first recall basic ingredients for computing the scalar curvature of a p-dimensional
manifold M, and refer to [15,24] for further details. The fundamental tool for describing
the geometry of M is a metric tensor field g : M → R

p×p, defined for local coordinates
(x1, . . . , xp) as

gij(x) = 〈∂i, ∂j〉 for x ∈ M and 1 ≤ i, j ≤ p.

Here, the partial derivatives ∂i represent the tangent vectors at each x ∈ M, and the
notation gij(x) is occasionally used for g(x). With this fundamental building block,
all other required structures for defining the scalar curvature are defined, including the
Christoffel symbols and curvature tensors. The Christoffel symbols can be described as

Γkij =
1

2

p
∑

ℓ=1

(

∂gjℓ
∂xi

+
∂giℓ
∂xj

−
∂gij
∂xℓ

)

gℓk. (4)

Here, the expression gij denotes the inverse matrix of gij. An explicit formula for the
curvature tensor is given in terms of the Christoffel symbols (the 1,3 curvature tensor) as

Rℓ
ijk =

p
∑

h=1

(ΓhjkΓ
ℓ
ih − ΓhikΓ

ℓ
jh) +

∂Γℓjk
∂xi

−
∂Γℓik
∂xj

. (5)

We use the tensor contractions

Rijkℓ =

p
∑

h=1

Rh
ijkgℓh and Rij =

p
∑

k,ℓ=1

gkℓRkijℓ =

p
∑

k=1

Rk
kij (6)

for intermediate computations. The scalar curvature is computed together with Gaussian
curvature, which for the case of two dimensional manifolds differs by a factor 2, as

S =

p
∑

i,j=1

gijRij. (7)

In our particular situation, we are considering manifolds embedded in linear spaces
(i.e., Ω ⊂ R

d and M ⊂ R
n). Our strategy for introducing the concept of curvature

distortion is to compare the geometries of Ω and M generated by their corresponding
first fundamental forms, which are particular metrics induced by their ambient space.

The usage of these concepts in discrete settings as meshes for manifolds is a highly
nontrivial task, and there are relatively simple situations where convergence properties
cannot be guaranteed. A typical example is the Schwarz lantern which is a simple mesh
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discretization of a cylinder with very poor approximation properties [11]. In our imple-
mentation, we consider a straightforward discretization scheme for computing the Gaus-
sian curvature in (7), cf. Algorithm 3.1. But we also consider a rigorous discretization
procedure, with good convergence properties, for computing the mean curvature. This
can be described as follows.

To analyze the curvature distortion we compute the mean curvature using the Laplace-
Beltrami operator ∆Mf = div(∇Mf), where f are the coordinates of the embedded
manifold M ⊂ R

n. The Laplace-Beltrami operator is also defined with the metric tensor
gij, its inverse matrix gij, and its determinant |gij|:

∆Mf(x) =
1

√

|gij(x)|

p
∑

k,ℓ=1

∂k

(
√

|gij(x)|g
ij(x)∂ℓf(x)

)

for x ∈ M.

Designing accurate and robust methods for discretizing the operator ∆ is a very active
research topic. A recent method [1] for doing so provides an efficient strategy by using

LhKf(w) =
1

4πh2

∑

t∈K

Area(t)

#(t)

∑

p∈V (t)

e−
||p−w||2

4h (f(p) − f(w)). (8)

Here, K is a mesh in R
3, the set of vertices is denoted by V , and f : V → R. For a face

t ∈ K, the number of vertices in t is denoted by #(t), and V (t) is the set of vertices of t.
The parameter h is a positive quantity representing the size of the mesh at each point.
As we consider two dimensional manifolds, the mesh Kǫ,η can be described with two
variables ǫ, η for controlling the parameter h. We finally remark that the discretization
scheme in (8) convergences w.r.t. ‖ · ‖∞ (see [1] for details), i.e.,

lim
ǫ,η→0

sup
Kǫ,η

‖L
h(ǫ,η)
Kǫ,η

f − ∆Mf‖∞ = 0.

3.3 Metric Tensor for Frequency Modulated Manifolds

We now compute a metric tensor in M in order to analyze the geometrical deformation
of Ω as incurred by the application of a modulation map A : Ω ⊂ R

d → M ⊂ R
n.

The resulting metric tensor can then be used for computing the curvature tensor and the
corresponding scalar curvature, which will be used as a measure for the geometric defor-
mation. Our strategy is to consider a parametrization of Ω and to compute the metric
tensor generated from the ambient space R

n. In particular, we use the first fundamental
form with respect to the given parametrization. The resulting formula (9) follows by
direct computation, as explained in the following proposition, where we compute the first
fundamental form of a modulated manifold M.

Proposition 3.2. Let M be a manifold constructed from a diffeomorphic modulation
map A : Ω ⊂ R

d → M ⊂ R
n,

Aα(ti) =
d
∑

k=1

φk(αkti) where α = (α1, . . . , αd) ∈ Ω and {ti}
n
i=1 ⊂ [0, 1],

11



and {αj(θ1, . . . , θp)}
d
j=1 be a parametrization of Ω with p = dim(M) = dim(Ω). Then,

the first fundamental form of M constructed from this parametrization is given by

gsr =
n
∑

ℓ=1

t2ℓ

d
∑

r,q=1

(

dφr
dt

(αrtℓ)
dφq
dt

(αqtℓ)
∂αr
∂θs

∂αq
∂θr

)

. (9)

Proof. This follows as a direct computation of the Jacobian of the composition A ◦ α.
The Jacobian with respect to parametrization αj(θ1, . . . , θd) of Ω is given by

JA =

(

∂Aℓ

∂θi

)

ℓ,i

where
∂Aℓ

∂θi
=

∂

∂θi

(

d
∑

j=1

φj(αjtℓ)

)

=
d
∑

j=1

dφj
dt

(αjtℓ)tℓ
∂αj
∂θi

.

The first fundamental form (metric tensor) of M is given by

(

JTAJA
)

s,r
=

n
∑

ℓ=1

(

d
∑

j=1

∂φj
∂t

(αjtℓ)tℓ
∂αj
∂θs

)(

d
∑

j=1

∂φj
∂t

(αjtℓ)tℓ
∂αj
∂θr

)

=
n
∑

ℓ=1

d
∑

r,q=1

(

dφr
dt

(αrtℓ)tℓ
∂αr
∂θs

dφq
dt

(αqtℓ)tℓ
∂αq
∂θr

)

=
n
∑

ℓ=1

t2ℓ

d
∑

r,q=1

(

dφp
dt

(αrtℓ)
dφq
dt

(αqtℓ)
∂αr
∂θs

∂αq
∂θr

)

As gsr is given by
(

JTAJA
)

s,r
, we obtain the resulting equation (9).

The expression in equation (9) will play an important role in our following discussion.
However, due to its complexity (even for rather simple examples as a sphere or a torus),
we prefer to work with a numerical framework for illustrating its properties through the
relevant curvature tensors. Moreover, the numerical approach taken provides a flexible
scheme that can handle arbitrary two-dimensional frequency modulated manifolds M
that are defined by a finite scattered dataset X = {xi}

m
i=1 ⊂ M.

3.4 Numerical Computation of Curvature Tensors

Now we combine the representation (9) with the curvature tensors in (6) and (7) for
describing how Ω is geometrically deformed under the mapping A : Ω → M. In the
following computations, we focus on the particular case of two-dimensional manifolds
embedded in a three-dimensional space, i.e., d = 3, dim(Ω) = 2, with Ω ⊂ R

3. In our
computation of the metric tensor in (9), the main inputs are the functions {φj}

3
j=1 and the

parametrization {αj(θ1, θ2)}
3
j=1 of Ω, which is used to construct the Jacobian components

∂αp

∂θs
and ∂αq

∂θr
. The following algorithm describes the basic steps for computing the scalar

curvature S and the metric tensors gij of the modulated manifold M.
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Algorithm 3.1. (Curvature and metric tensors of manifolds.)

Input:
(a) Parametrization α = (αj(θ1, θ2))

3
j=1 of Ω;

(b) Functions {φj}
3
j=1 generating the map A.

(1) Compute the Jacobian matrices Jα;

(2) Compute the metric tensor gij via equation (9);

(3) Compute the Christoffel symbols Γkij via equation (4);

(4) Compute the tensors Rijkℓ, Rij via equations (6);

(5) Compute the scalar curvature S via equation (7).

Output: Scalar curvature S of M.

4 Computational Experiments

We now apply Algorithm 3.1 and the discretization in (8) to compute the Gaussian and
mean curvature of frequency modulated manifolds for two different toy examples. The
corresponding Matlab code is available at www.math.uni-hamburg.de/home/guillemard/curvature/. In
these test cases we use the sphere Ω = S

2 and the torus Ω = T
2 to illustrate how the

curvature is modified under modulation maps and dimensionality reduction projections.

4.1 Frequency Modulation for a Sphere

In this first numerical example, we use the unit sphere for the parameter space i.e.,
Ω = S

2 ⊂ R
3, and the modulation map A : S

2 ⊂ R
3 → M ⊂ R

256 is defined as
Aα(ti) =

∑3
k=1 sin((α0

k + γαk)ti), where

α1(u, v) = cos(v) cos(u),

α2(u, v) = cos(v) sin(u),

α3(u, v) = sin(v).

Here, we use a finite and regular distribution of values u ∈ [0, 2π], v ∈ [0, π], and
{ti}

256
i=1 ⊂ [0, 1]. We apply shifting and scaling to the manifold S

2, so that the frequency
positions are given by the coordinates (α1

0, α
2
0, α

3
0) and the scaling factor γ. We use these

parameters to obtain a separation of the frequency bands as described in Subsection 3.1.
The scaling factor γ gives the spreading of each frequency band (bandwidth). A main
observation of the following experiments is that the geometrical deformation depends pri-
marily on the parameter γ. A graphical display of the manifolds S

2 and M is presented
in Figure 1, where the sphere S

2 is compared with a three dimensional PCA projection
of M (denoted as P (M)). The PCA projection P (M) of M ⊂ R

n, n = 256, produces a
significant geometrical deformation. One objective of the following analysis is to measure
this distortion. It can be observed experimentally that an increase in the scale factor γ
corresponds to a more pronounced cubic shape deformation, as shown in Figure 1 (b).
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(a) (b) (c)

Figure 1: PCA projections of a modulated sphere M = Aγ(Ω) ⊂ R
n, for Ω = S

2 ⊂
[−1, 1]3, with sample frequency n = 256, center frequencies α0 = (40Hz, 60Hz, 80Hz),
and bandwidth parameter γ = 0.4Hz (a) The sphere S

2 ⊂ R
3 with the mean curvature

of M as color code; (b) PCA projection PPCA(M) ⊂ R
3 with its mean curvature in the

color code; (c) PCA projection PPCA(M) ⊂ R
3 with its Gaussian curvature in the color

code.

(a) (b) (c)

Figure 2: Curvatures of the modulated sphere M = A(Ω) and its projection PPCA(M)
(see Figure 1). (a) The mean curvature of M ⊂ R

256; (b) the mean curvature of
P (M) ⊂ R

3; (c) the Gaussian curvature of P (M) ⊂ R
3.

In order to measure the geometric deformation for this example, we compute the
scalar and mean curvature of M ⊂ R

256 and that of its three-dimensional PCA pro-
jection P (M). Figure 2 (a) shows the mean curvature of the manifold M and the
Gaussian curvature of its projection P (M) is displayed in Figure 2 (c). Note that the
mean curvature of M shows some small variations over its surface, indicating only a
small deformation of the spherical geometry via the frequency modulation map A. In
contrast, the PCA projection of M shows significant curvature variations, as presented
in Figure 1 (c). Note that there are two sets of four maximal scalar curvature values,
corresponding to the corners of the cubic shaped surface shown in Figure 1 (c).

4.2 Frequency Modulation for a Torus

In this second numerical example, we use the torus surface Ω = T
2 ⊂ R

3 in combination
with the modulation map Aα(ti) =

∑3
k=1 sin((α0

k + γαk)ti), and the parametrization

α1(u, v) = (R + r cos(v)) cos(u),

α2(u, v) = (R + r cos(v)) sin(u),

α3(u, v) = r sin(v).
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We use a regular distribution of values u ∈ [0, 2π], v ∈ [0, 2π], and {ti}
256
i=1 ⊂ [0, 1]. As

in the previous example, the parameter γ plays a key role in the cubic deformation,
cf. Figure 3 (c).

(a) (b) (c)

Figure 3: PCA projections of a modulated torus M = Aγ(Ω) ⊂ R
n, for Ω = T

2 ⊂
[−1, 1]3, with sample frequency n = 256, center frequencies α0 = (40Hz, 60Hz, 80Hz),
and bandwidth parameter γ = 0.3Hz (a) The torus T

2 ⊂ R
3 with the mean curvature

of M as color code; (b) PCA projection PPCA(M) ⊂ R
3 with its mean curvature in the

color code; (c) PCA projection PPCA(M) ⊂ R
3 with its Gaussian curvature in the color

code.

(a) (b) (c)

Figure 4: Curvatures of the modulated torus M = A(Ω) and its projection PPCA(M)
(see Figure 3). (a) The mean curvature of M ⊂ R

256; (b) the mean curvature of
PPCA(M) ⊂ R

3; (c) the Gaussian curvature of PPCA(M) ⊂ R
3.

The mean curvature of M ⊂ R
256 is shown in Figure 4 (a). We observe a typical

pattern for the torus geometry: a constant value for the mean curvature along the smaller
circle of the torus (depicted with the middle vertical line in Figure 4 (a)), two circles
with constant curvature on the top and bottom of the torus (depicted with two vertical
lines equidistant to the middle of Figure 4 (a)), and another circle with constant mean
curvature along the larger circle of the torus (depicted with the leftmost and rightmost
vertical lines of the Figure 4 (a)).

The Gaussian curvature of the PCA projection P (M), shown in Figure 4 (c), illus-
trates a similar structure, but with a considerable geometrical deformation which includes
two sets of four points with maximal scalar curvature, representing the corners of the cu-
bic shaped projection P (M) shown in Figure 3 (c).

We finally remark that, for these toy examples, the task of estimating the frequencies
of each x ∈ M (and therefore computing Ω) is not a difficult problem. A straightforward
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method for doing so is to use the Fourier transform of the signals x ∈ M, as for instance
performed in classical partial tracking techniques. But our focus here is to conceptually
understand the geometrical effects of dimensionality reduction methods in datasets M =
A(Ω). From a signal processing point of view, the problem of estimating Ω becomes much
more challenging when considering more complex functions φk for the modulation map
A. In such situations, the presented geometrical framework will be useful for estimating
Ω in more complex test case scenarios.

4.3 Dimensionality Reduction and Topological Effects from Curvature

In our numerical experiments, we observe that an increase of the bandwidth parameter
γ amplifies the geometrical distortion of the modulation manifolds M ⊂ R

n. In fact,
when increasing the bandwidth parameter γ, standard (linear) projection methods, such
as PCA, fail to recover the geometry of the manifold. In contrast, recent nonlinear
dimensionality reduction methods, such as isomap, achieve to recover (up to a certain
bandwidth γ) the geometry of Ω. For the purpose of further illustration, Figure 5 (b)
shows how the linear PCA projection destroys the geometrical content of the modulated
torus M, whereas the nonlinear isomap projection achieves to recover the topological
and geometrical features of the torus T

2 reasonably well. This effect is similar to the
comparison between the isomap and the PCA method for the classical Swiss Roll dataset
example. But with our concept we can generate much more challenging datasets from
modulated manifolds to evaluate the performance of NDR techniques.

(a) (b)

Figure 5: Dimensionality reduction of a frequency modulated manifold M = A(Ω) ⊂ R
n,

for a torus Ω = T
2 ⊂ [−1, 1]3 using a sampling frequency n = 256, with center frequencies

α0 = (40Hz, 60Hz, 80Hz), and bandwidth parameter γ = 4Hz. (a) PIsomap(M) isomap
projection of M; (b) PPCA(M) PCA projection of M.

To further investigate the geometrical distortion of modulated manifolds incurred
by dimensionality reduction maps, we illustrate how the bandwidth parameter γ affects
the topological reconstruction of Ω. To this end, we analyze the evolution of the mean
curvature of the manifold M = Aγ(Ω) for a range of bandwidth parameters γ (see Figure
6). In this case, we compute for values γ ∈ [0, 4] the maximum mean curvature of M.
We let Ω = T

2 ⊂ [−1, 1]3, and therefore, if the projection P (M) correctly reconstructs
the topology of M, we expect the Betti numbers of P (M) to be b0 = 1 and b1 = 2.
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Figure 6 (a) shows an increase of the maximum mean curvature as the bandwidth
parameter is amplified. For small values of γ, a standard (linear) dimensionality reduction
method, such as PCA, achieves to reproduce the topology of Ω. This can be verified by
the persistent homology of P (M), as depicted in the barcode graph of Figure 6 (b),
where for γ = 0.2Hz, the first two Betti numbers agree with that of a torus structure
(b0 = 1, b1 = 2). But for higher values γ, the geometry of M = Aγ(Ω) is more difficult
to reconstruct. In fact, the topological structure of the dimensionality reduced datasets
P (M) are in this case incorrect. This can be seen in Figure 6 (c), where the persistent
homology barcode of PPCA(M) with γ = 4Hz, yields incorrect Betti numbers b0 = 3 and
b1 = 0. An example of one data set PPCA(M) is shown in Figure 5 (b), where γ = 4Hz.

(a) (b) (c)

Figure 6: (a) Maximum mean curvature of M = A(Ω) vs bandwidth parameter γ in
the interval [0, 4], for Ω = T

2 ⊂ [−1, 1]3, and center frequencies α0 = (40Hz, 60Hz, 80Hz).
(b) Betti numbers of PPCA(M) and bandwidth parameter γ = 0.2Hz (b0 = 1, b1 = 2),
(c) Betti numbers of PPCA(M) and bandwidth parameter γ = 4Hz (b0 = 3, b1 = 0).

5 Conclusion and Future Steps

We have introduced the concept of frequency modulation maps and modulation manifolds
as relevant objects in manifold learning and dimensionality reduction. We have developed
a numerical scheme, Algorithm 3.1, for computing the scalar curvature of a modulation
manifold, along with its metric tensor. We applied the algorithm to two different test
cases of frequency modulated manifolds. In one test case, we considered the sphere S

2,
and the other example relies on the torus T

2. The numerical examples are illustrating
the geometrical distortion incurred by the dimensionality reduction when relying on PCA
projections. Moreover, we have shown that the standard linear PCA projection is outper-
formed by the nonlinear isomap projection, which achieves to recover the geometry of the
modulated surface. But the concept of modulation manifold can also be used to construct
more challenging datasets for nonlinear dimensionality reduction methods. The findings
of this paper provide only a first insight into the nature of frequency modulation maps
and modulation manifolds. Weaker structural assumptions on Ω and M (Alexandrov
spaces, cell-complexes, etc) should be considered in future work to cover a larger variety
of engineering applications. To this end, the work on persistent homology, discrete Morse
theory, or Alexandrov spaces [8, 9, 21] gives a suitable background.
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